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The Application of Hybrid Orthonomal Bernstein
and Block-Pulse Functions in Finding Numerical
Solution of Fredholm Fuzzy Integral Equations

Mahmoud Zarrini, Sanaz Torkaman

Abstract—In this paper, we have proposed a numerical method
for solving fuzzy Fredholm integral equation of the second kind. In
this method a combination of orthonormal Bernstein and Block-Pulse
functions are used. In most cases, the proposed method leads to
the exact solution. The advantages of this method are shown by an
example and calculate the error analysis.
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Block-Pulse, Orthonormal.

I. INTRODUCTION

INTEGRAL equation is an equation which has integral sign
and an unknown function. Naturally, in such an equation

there can occur other terms as well. The topic of fuzzy integral
equations (FIE) has been developed in recent years. In the
first step often including applicable definitions of the fuzzy
integrals was followed by introducing FIE and establishing
sufficient conditions for the existence of unique solutions to
these equations. Finally, numerical methods for calculation
approximates to these solutions were designed. The concept
of fuzzy sets which was originally introduced by Zadeh [1]
led to the definition of the fuzzy number and implementation
in fuzzy control [2] and approximate reasoning problems [1].

In recent years, many different basic functions have been
used to estimate the solution of integral equations, such as
Block-Pulse functions [3, 4], Triangular functions [5, 6], Haar
functions [7], Hybrid Legendre and Block-Pulse functions [8,
9], Hybrid Chebyshev and Block-Pulse functions [10, 11],
Hybrid Taylor, Block-Pulse functions [12], Hybrid Fourier
and Block-Pulse functions [13]. In the first time, Block-Pulse
functions were introduced to electrical engineering by
Harmuth and several researchers discussed the Block-Pulse
[14, 15]. Fuzzy integral equations arise in many applications
such as physics, geographic, medical, biology, social sciences,
etc. Many practical problems in science and engineering can
be transformed into Fuzzy Fredholm integral equations of the
second kind, thus their solution is one of the main goals in
various areas of applied sciences and engineering.

In this paper, a hybrid of orthonormal Bernstein and
Block-Pulse functions for numerical solution of fredholm
integral equations are used. Leading to the exact solution is
the advantage of proposed method.
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II. PRELIMINARIES

In this section, we introduce Bernestein polynomials
and their properties to get better approximation and we
used orthonormal these polynomials and hybrid them with
Block-pulse functions.

A. Definition of Bernestein Polynomials

The Bernstein basis polynomial of degree n are defined by
[16]

Bi,n(x) =

(
n

r

)
xi(1− x)n−i (1)

By using binomial expansion of (1− x)n−i, we have(
n

i

)
xi(1− x)n−i =

n−i∑
k=0

(−1)k
(
n

i

)(
n− i

k

)
xi+k (2)

Then, {B0,n, B1,n, . . . , Bn,n} in Hilbert space L2[0, 1] is
a complete basis. Therefore, any polynomial of degree n can
be expanded in terms of linear combination of Bi,n(x) for
i = 0, 1, 2, . . . , n. By using Gram-schmid algorithm, we obtain
orthonormal polynomials to construct new basis, these new
basis are OBi,n(x).

B. Definition of Block-Pulse Functions and Their Properties

An M -set of Block-Pulse function is defined over the
interval [0, T ) as

bi(x) =

{
1 iT

M ≤ x < (i+1)T
M

0 otherwise
(3)

where, i = 0, 1, . . . ,M − 1 with M as a positive integer.
Also, h = T

M and bi is the ith BPF. In this paper, it is assumed
that T = 1, so BPFs are defined over [0, 1) and h = 1

M . [17]

bi(x)bj(x) =

{
bi(x) i = j
0 i �= j

(4)

where, other property is orthogonality. It is clear that [18]∫ 1

0

bi(x)bj(x)dx = hδi,j (5)

where, δi,j is Kronecker delta. The third property is
completeness. For every f ∈ L2[0, 1] when M approaches
to infinity, Parsevals identity holds [17]
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∫ 1

0

f2(x)dx =
∞∑
i=0

f2
i ||bi(x)||2 (6)

where,

fi =
1

h

∫ 1

0

f(x)bi(x)dx (7)

Definition 1: We define OHB on the interval [0,1] as follow:

OBHi,j(x) =

{
Bj,n(Mx− i+ 1) i−1

M ≤ x < i
M

0 otherwise
(8)

where, i = 1, 2, · · · ,M and j = 0, 1, · · · , n.

thus, our new basis is {OBH1,0, OBH1,1, . . . , OBHM,n}
and we can approximate function with the base.

C. Function Approximation by Using OHB Functions

A function u(x), square integrable in [0, 1], may be
expressed in terms of the OBH basis as follow [18]

u(x) =

∞∑
i=1

∞∑
j=0

ci,j .OBHi,j(x) (9)

If we truncate the infinite series in (8), then we have

u(x) �
M∑
i=1

n∑
j=0

ci,j .OBHi,j(x) = CTOBH(x) , (10)

where,

OBH(x) = [OBH1,0, OBH1,1, . . . , OBHM,n]
T (11)

and

C = [c1,0, c1,1, · · · , cM,n]
T

Therefore, we have

CT < OBH(x), OBH(x) >=< u(x), OBH(x)) >

then
C = D−1 < u(x), OBH(x) >

where,

D = < OBH(x), OBH(x) >

=

∫ 1

0

OBH(x).OBHT (x)dx

=

⎛
⎜⎜⎜⎝

D1 0 . . . 0
0 D2 . . . 0
...

...
. . .

...
0 0 . . . DM

⎞
⎟⎟⎟⎠ (12)

then, by using (7), Di(i = 0, 1, 2, . . . ,M) is defined as
follow:

(Dn)i+1,j+1 =

∫ i
M

i−1
M

Bi,n(Mx− i+ 1)Bj,n(Mx− j + 1)dx

(Dn)i+1,j+1 =
1

M

∫ 1

0

Bi,n(x)Bj,n(x)dx

=

(
n
i

)(
n
j

)
M(2n+ 1)

(
2n
i+j

) (13)

We can also approximate the function k(x, t) ∈ L2[0, 1] as
follow:

k(x, t) � OBHT (x)KOBH(t) (14)

where, K is an M(n + 1)-matrix that we can obtain as
follows:

K = D−1 < OBH(x) < k(x, t), OBH(t) >> D−1 (15)

III. BASIC DEFINITIONS FUZZY

Definition 2 [19]: A fuzzy number is a set v : R1 → I =
[0, 1] which satisfies:

• v is upper semi continuous,
• v(x) = 0 outside some interval [c, d],
• There are real numbers a, b : c ≤ a ≤ b ≤ d which

– v(x) is monotonic increasing on [c, d],
– v(x) is monotonic decreasing on [b, d],
– v(x) = 1, a ≤ x ≤ b.

The set of all such fuzzy number is denoted by RF .

Definition 3 [19]: Let V be a fuzzy set on R. V is called
a fuzzy interval if:

• V is normal: there exists x0 ∈ R such that V (x0) = 1.
• V is convex: for all x, t ∈ R and 0 ≤ λ ≤ 1, it holds

that V (λx+ (1− λ)t) ≥ min{V (x), V (t)},
• V is upper semi-continuous: for any x0 ∈ R, it holds that

V (x0) ≥ limx→x∓
0
V (x),

• [V ]0 = Cl{x ∈ R|V (x) > 0} is a compact subset of R.
The α-cut of a fuzzy interval V , with 0 < α ≤ 1 is the
crisp set, [V ]α = {x ∈ R|V (x) > α}.
For a fuzzy interval V , its α-cuts are closed intervals in
R. Let denote them by [V ]α = [V (α), V (α)].

An alternative definition or parametric form of a fuzzy
number which yields the same E1 is given by Kaleva [19] as
follows:

Definition 4 [20]: An arbitrary fuzzy number u in the
parametric form is represented by an ordered pair of functions
(u(r), u(r)) which satisfy the following requirements:

• u(r) is a bounded left-continuous non-decreasing
function over [0, 1],

• u(r) is a bounded right-continuous non-increasing
function over [0, 1],

• u(r) ≤ u(r), for all 0 ≤ r ≤ 1.
For arbitrary fuzzy numbers v = (v(r), v(r)), w =

(w(r), w(r)) and real number λ, one may define the addition
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and the scalar multiplication of the fuzzy numbers by using
the extension principle as follows:

• v = w if and only if v(r) = w(r) and v(r) = w(r)
• v ⊕ w = (v(r) + w(r), v(r) + w(r))

• (λ⊗ v) =

{
λv(r), λv(r) λ ≥ 0
λv(r), λv(r) λ < 0

Definition 5 [21]: For arbitrary numbers v = (v(r), v(r))
and w = (w(r), w(r))

D(v, w) = max{ sup
0≤r≤1

|v(r)− w(r)|, sup
0≤r≤1

|v(r)− w(r)|}

in the distance between v and w. It is proved that (RF , D)
is a complete metric space with the properties [21]

• D(u⊕ w, v ⊕ w) = D(u, v) ; ∀u, v, w ∈ RF ,
• D(k⊗u, k⊗v) = |k|D(u, v) ; ∀u, v ∈ RF ∀k ∈ R,
• D(u⊕ v, w⊕ e) ≤ D(u,w) +D(v, e) ; ∀u, v, w, e ∈

RF .

Definition 6: [22] Let f, g : [a, b] → RF , be fuzzy real
number valued functions. The uniform distance between f, g
is defined by:

DU (f, g) = sup{D(f(x), g(x))|x ∈ [a, b]} (16)

In [23], the authors proved that if the fuzzy function, f(t),
is continuous in the metric D, its definite integral exists and
also,

∫ b

a

f(t, r)dt =

∫ b

a

f(t, r)dt

∫ b

a

f(t, r)dt =

∫ b

a

f(t, r)dt

Definition 7 [24]: A fuzzy real number valued function
f : [a, b] → RF is said to be continuous in x0 ∈ [a, b], if
for each ε > 0 there is δ > 0 such that D(f(x), f(x0)) < ε,
whenever x ∈ [a, b] and |x− x0| < δ. We say that f is fuzzy
continuous on [a, b] if f is continuous at each x0 ∈ [a, b] and
denote the space of all such functions by CF ([a, b]).

Definition 8 [22]: Let f : [a, b] → RF be a bounded
function, then function ω[a,b](f, .) : R+

⋃{0} → R+

ω[a,b](f, δ) = sup{D(f(x), f(y))|x, y ∈ [a, b], |x− y| ≤ δ}
(17)

where, R+ is the set of positive real numbers, is called the
modulus of continuity of f on [a, b].

Definition 9 [22]: Let f : [a, b] → RF , f is fuzzy-Riemann
integrable to I ∈ RF if for any ε > 0, there exists δ > 0 such
that for any division P = {[u, v] ; ξ} of [a, b] with the norms
Δ(p) < δ, we have:

D

(∑
p

∗(v − u)⊗ f(ξ), I

)
< ε (18)

where,
∑ ∗ denotes the fuzzy summation. In this case it

is denoted by I = (FR)
∫ b

a
f(x)dx.

Lemma 1 [22] If f, g : [a, b] ⊆ R → RF are fuzzy
continuous functions, then the function F : [a, b] → R+ by
F (x) = D(f(x), g(x)) is continuous on [a, b] and by

D

(
(FR)

∫ b

a

f(x)dx, (FR)

∫ b

a

g(x)dx

)

≤
∫ b

a

D(f(x), g(x))dx

IV. SOLVING FUZZY FREDHOLM INTEGRAL EQUATION
VIA OBH FUNCTIONS

In this section, first the fuzzy integral equations of the
second kind are introduced then we solving it’s via OBH
function. The Fredholm fuzzy integral equation of the second
kind is [25]

ũ(x) = f̃(x) + λ

∫ b

a

k(x, t)ũ(t)dt (19)

Where, λ > 0, k(x, t) is an arbitrary kernel function over
the square a ≤ x, t ≤ b and ũ(x) , f̃(x) are fuzzy functions
such that k(x, t), f̃(x) ∈ L2[0, 1]. If f̃(x) is a crisp function
then the solutions of (19) is crisp .However, if f̃(x) is a fuzzy
function then this equation may only possess fuzzy solutions
[25]. Now, if we introduce (19) by definition 4 then we have,

u(x, r) = f(x, r) + λ

∫ b

a

V1(k(x, t)u(t, r))dt (20)

u(x, r) = f(x, r) + λ

∫ b

a

V2(k(x, t)u(t, r))dt (21)

Where,

V1(k(x, t)u(t, r)) =

{
k(x, t)u(t, r) k(x, t) ≥ 0
k(x, t)u(t, r) k(x, t) < 0

(22)

and

V2(k(x, t)u(t, r)) =

{
k(x, t)u(t, r) k(x, t) ≥ 0
k(x, t)u(t, r) k(x, t) < 0

(23)

Throughout this paper, we consider Fuzzy Fredholm integral
equation (19), with a = 0, b = 1 and λ = 1, then we write
(19), in the following form:

u(x, r) = f(x, r) + λ

∫ 1

0

k(x, t)u(t, r)dt (24)

u(x, r) = f(x, r) + λ

∫ 1

0

k(x, t)u(t, r)dt (25)

we know (u(x, r), u(x, r)) is an unknown function with can
be expanded into OBH function. Likewise, k(x, t), u(x, r) and
u(x, r) are also expanded into the OBH functions, then we
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must Let approximate u(x, r), u(x, r), f(x, r), f(x, r) and
k(x, t) by (14) as following for:

k(x, t) = OBHT (x)KOBH(t) (26)
u(x, r) = OBHT (x)U1OBH(r) (27)
u(x, r) = OBHT (x)U2OBH(t) (28)
f(x, r) = OBHT (x)F1OBH(t) (29)

f(x, r) = OBHT (x)F2OBH(t) (30)

With substituting above equations into (24) and (25), we
have:

OBHT (x)U1OBH(r) = OBHT (x)F1OBH(t) +∫ 1

0

OBHT (x)KOBH(t)OBHT (t)U1OBH(r)dt

OBHT (x)U2OBH(r) = OBHT (x)F2OBH(t) +∫ 1

0

OBHT (x)KOBH(t)OBHT (t)U2OBH(r)dt

By substituting (12) into above equation we get

OBHT (x)U1OBH(r) = OBHT (x)F1OBH(t) +

OBHT (x)KDU1OBH(r)

OBHT (x)U2OBH(r) = OBHT (x)F2OBH(t) +

OBHT (x)KDU2OBH(r)

Therefore,

U1 = F1 +KDU1 (31)
U2 = F2 +KDU2 (32)

where, the dimensional subscripts have been dropped to
simplify the notation. Rewriting (31) and (32), we have

U1 = (I −KD)−1F1 (33)
U2 = (I −KD)−1F2 (34)

where, I is nM×nM -identity matrix. The unknowns matrix
U1 and U2 can be obtained by solving (33) and (34). Thus
the solutions u(x, r) and u(x, r) can be calculated in the OBH
function expansion by using U1, U2 and (27)-(28).

V. THE CONVERGENCE OF THE METHOD

In this section, we obtain error estimate for the numerical
method proposed in previous section.
The solution of Fredholm fuzzy integral equation (19), by
using OBH converges if M < 1, where

M = max
0≤x,t≤1

|k(x, t)|

Proof. Assume ũ(x) and ũNM (x) show approximate and
exact solution of (19) respectively. then

D(ũ(x), ũNM (x)) = D(

∫ 1

0

k(x, t)ũ(t)dt,

∫ 1

0

k(x, t)
N∑
i=1

∗
M∑
j=0

∗cijOBHij(t)dt)

≤ M

∫ 1

0

D

⎛
⎝ũ(t),

N∑
i=1

∗
M∑
j=0

∗cijOBHij(t)

⎞
⎠ dt

therefore, we have

D(ũ(x), ũNM (x)) ≤ M

∫ 1

0

D(ũ(t), ũNM (t))dt

sup
x∈[0,1]

D(ũ(x), ũNM (x)) ≤ M sup
x∈[0,1]

D(ũ(t), ũNM (t))

Therefore, if M < 1, we will have:

lim
NM→∞

sup
x∈[0,1]

D(ũ(x), ũNM (x)) = 0

VI. NUMERICAL EXAMPLE

Consider the following linear fuzzy fredholm integral
equation with

f(x, r) = rx− x2[
2

3
rx3 − 4

3
x3 − 1

2
rx2 + x2 +

1

12
r − 1

12
]

f(x, r) = (2− r)x+ x2[
2

3
rx3 − 1

2
rx2 +

1

12
r − 1

12
]

and

k (x, t) = x2(1− 2t), 0 ≤ x, t ≤ 1 and λ = 1

The exact solution in this case is given by

u(x, r) = rx

u(x, r) = (2− r)x.

Results are shown in Table 1.

VII. CONCLUSION

In this paper, we presented a numerical method for
solving the fuzzy Fredholm integral equation of second kind.
We solved Fredholm integral equations by combination of
orthonormal Bernstein and Block-Pulse functions. We have
shown advantages of this numerical method by an example
and calculate the error analysis.
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TABLE I
COMPARING OF EXACT AND OBH METHOD SOLUTIONS

r Exact solution OBH method for x = 0.1 Exact solution OBH method for x = 0.1

(u(x, r) and M = 2, N = 1 u(x, r)) and M = 2, N = 1

0.0 0.00000000 0.00000000 0.20000000 0.20000000
0.1 0.01000000 0.01000000 0.19000000 0.19000000
0.2 0.02000000 0.02000000 0.18000000 0.18000000
0.3 0.03000000 0.03000000 0.17000000 0.17000000
0.4 0.04000000 0.04000000 0.16000000 0.16000000
0.5 0.05000000 0.05000000 0.15000000 0.15000000
0.6 0.06000000 0.06000000 0.14000000 0.14000000
0.7 0.07000000 0.07000000 0.13000000 0.13000000
0.8 0.08000000 0.08000000 0.12000000 0.12000000
0.9 0.09000000 0.09000000 0.11000000 0.11000000
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