
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1472

Abstract—In this paper, the application of multiple Elman

neural networks to time series data regression problems is studied.
An ensemble of Elman networks is formed by boosting to enhance
the performance of the individual networks. A modified version of
the AdaBoost algorithm is employed to integrate the predictions from
multiple networks. Two benchmark time series data sets, i.e., the
Sunspot and Box-Jenkins gas furnace problems, are used to assess
the effectiveness of the proposed system. The simulation results
reveal that an ensemble of boosted Elman networks can achieve a
higher degree of generalization as well as performance than that of
the individual networks. The results are compared with those from
other learning systems, and implications of the performance are
discussed.

Keywords—AdaBoost, Elman network, neural network
ensemble, time series regression

I. INTRODUCTION
ANY approaches have been examined for tackling time
series data regression problems, e.g., moving average,

exponential smoothing, decomposition, ARIMA
(Autoregressive Integrated Moving Average). Most of the
methods involve the construction of a mathematical model
that best represents the behavior of the observed system.
However, identifying a suitable model requires skilled and
experienced forecasters as real-world processes often exhibit
non-linear characteristics which are difficult to model.
Different forecasters may arrive at different models even if
they use the same set of observations. For example, in ocean
modeling and weather prediction, individual forecasters can
be sensitive to small variations in initial and boundary
conditions [1]. In [2], it is explained that Artificial Neural
Network (ANN) models are inherently unstable in
performance, i.e., small changes in the training set and/or
parameter selection can produce large changes, hence
resulting in different networks. Thus, the sensitivity to small
perturbation in model parameters can be exploited to generate
an ensemble of forecasters, and the output from all ensemble

Manuscript received December 25, 2005. This work was sponsored by
University of Science Malaysia, Malaysia.

C. P. Lim currently is an Associate Professor at School of Electrical and
Electronic Engineering, University of Science Malaysia, Malaysia. (e-mail:
cplim@eng.usm.my).

W.Y. Goh currently is an engineer at a multi-national corporation in
Penang, Malaysia.

members can be analyzed and combined to improve the
overall performance.

In general, an ensemble of models can be used in two ways,
e.g., (i) selecting the output from the “best” (e.g., lowest error
rate, highest posterior probability) of the ensemble members
to be the final prediction; (ii) combining the output from the
ensemble members using some decision combination
algorithm. In this paper, we are concerned with the latter
approach, with specific focus on ANN-based methodologies.
In particular, the scope of work is on the use of an ensemble
of Elman networks [3], generated by perturbation of initial
network weights coupled with a modified AdaBoost algorithm
[4] for tackling time-series regression problems.

Lately, ANNs have received a lot of attention as an
alternative for solving time series data regression problems.
ANNs are parameterized approach that can return the best-fit
curve that approximates behavior of the training data provided
to the network models. ANNs are able to tolerate noisy
inputs, including chaotic components having very heavy tails
[5]. With a suitable architecture, an ANN can offer good
generalization capability and achieve high performance in
solving non-linear time series data regression problems.
Indeed, ANN-based ensembles have been proposed to form a
more accurate and robust learning system [2, 6-9].

In classification tasks, many researchers have investigated
the techniques of combining predictions from multiple
classifiers to produce a result that is generally more accurate
than any of the individual classifiers. Boosting [4] is one of
the recent methods that forms an ensemble of individually
trained classifiers, e.g. decision trees and ANNs, such that the
test set error can be reduced. The theoretical justifications of
its efficiency have been discussed [9-12]. In regression
problems, Zemel and Pitassi [13] proposed a gradient-based
boosting algorithm in which a threshold was introduced to
differentiate correct responses from incorrect ones. Boosting
was also used to combine multiple regression trees and to
reduce the prediction error of a single regressor [14-15], as
well as to improve the predictive power of nonparametric
regression methods [16].

While different strategies have been proposed, boosting, in
general, assigns different voting strengths to classifiers based
on their accuracy rates. It maintains a weight count for each
sample in the training set to reflect the difficulty needed to

The Application of an Ensemble of Boosted
Elman Networks to Time Series Prediction:

A Benchmark Study
Chee Peng Lim and Wei Yee Goh

M

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1473

classify the sample in comparison with previously established
networks. Adjusting the weights causes the boosted networks
to focus on “hard” samples. A good ensemble is produced
when the individual classifiers are both accurate and diverse,
i.e. the classifiers have low error rates and their errors are on
different parts of the input space [17].

In this paper, a specific type of supervised, partial recurrent
ANN architecture, namely the Elman network [3], is
employed. The Elman network is embedded with feedback
connections that offer a convenient way to accumulate
previous knowledge as “experiences” and perform future
predictions based on these “experiences”. While other
researchers have employed the Elman network for modeling
time series profiles [8, 18], here we investigate the use of an
ensemble of Elman networks coupled with a modified
AdaBoost (Adaptive Boosting) algorithm [4, 19] for time
series data regression problems. The ensemble is created by
randomizing the initial weights of a pool of Elman networks.
Then, modified AdaBoost is implemented by directly
weighting the cost function of Elman networks. This differs
from boosting by sampling as proposed in [14, 15]. Two
benchmark problems are employed to assess the effectiveness
of the modified AdaBoost algorithm coupled with an
ensemble of Elman networks.

The organization of this paper is as follows. The concept
and architecture of the Elman network are described in section
II. After an introductory account of the AdaBoost in section
III, the modified AdaBoost algorithm is presented in section
IV. In section V, an experimental study on two benchmark
data sets with various network configurations using single and
multiple boosted Elman networks are discussed. The results
are analyzed and compared with those from other learning
systems. A summary is included in section VI.

II. THE ELMAN NETWORK
The Elman network is a simple recurrent neural network

that only involves partial feedback in the network structure
(see Fig. 1.) It comprises four layers, namely the input layer,
hidden layer, output layer, and context layer. During
operation, outputs of the hidden layer are fed back to the
context layer at every time step. The context layer, thus, acts
as a “container” that preserves previous information, and this
recurrence gives the network dynamical properties, which
provide the ability to perform mappings that are functions of
time.

Suppose an n-dimensional input vector, ()nttt xx ,,x L1= ,
is given at time t, the learning dynamic of the Elman network
with q hidden nodes is as follows
1. Initially, the context nodes are set to zero. The forward

weights and biases are generated using the Nguyen-
Widrow method [20]. This technique ensures that the
active regions of the nodes were distributed roughly
evenly over the input space and, thus, helps accelerate the
training process. The recurrent connections are non-
adjustable and are fixed at unity weights.

2. The output functions of the hidden and output layers are

computed, respectively, as follows

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++= ∑ ∑

= =
−

n

j

q

,tij,tijii,t hδxγγΨh
1 1

10
l

ll

 ()θ,h,x 1−≡ ttiψ qi ,,L1= (1)

()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∑

=
−

q

i
ttiit ψββΦo

1
10 θ,h,x (2)

where tih , is the output of the i-th hidden node, to is the
estimator of the target variable, θ is the vector of
parameters containing all γ ’s and δ ’s, where γ ’s, δ ’s,
β ’s are the weights from the input layer to the hidden
layer, the context layer to the hidden layer, and the hidden
layer to the output layer, respectively, and ()⋅Ψ and ()⋅Φ
are the activation functions.

3. The prediction error, e.g. mean-squared-error (MSE), is
calculated by comparing the predicted output with the
target sequence.

4. The adjustable weights and biases are updated using
truncated gradient back-propagation [21] with an
additional momentum term and an adaptive learning rate.

Steps 2 to 4 are repeated until a predefined error rate or
number of training epochs is reached.

Fig. 1 Architecture of the Elman network

III. ADABOOST
Boosting is a general method for improving the accuracy of

any given learning algorithm. It produces a final solution by
combining rough and moderately inaccurate decisions offered
by different classifiers, which is at least slightly better than
random guessing. In boosting, the training set used for each
classifier is produced (weighted) based on the performance of
the earlier classifier(s) in the series. Therefore, samples that
are incorrectly classified by previous classifiers in the series
are emphasized more than samples that are correctly
classified.

AdaBoost solved many of the practical difficulties of the
earlier boosting algorithms. The algorithm first receives a

OUTPUT NODES

HIDDEN NODES

INPUT NODES CONTEXT NODES

Adjustable weights
Fixed unity weights

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1474

training set, () () niyxy,x nn ,,1 ,,,,11 KK = as inputs where

ix is a sample in space X, and iy is a class label in set Y
associated with ix . Without loss of generality, assume

{ }11 +−= ,Y for binary class case. AdaBoost repeatedly calls
a weak (base) learning algorithm in a series of rounds

Kk ,,K1= . In each round k, the algorithm assigns a
distribution or a set of weights over the training set. The
weight of training sample i during round k is denoted as

()iDk . The weak learner can use kD on the training samples.
Alternatively, the training inputs can be sampled according to

kD , and these resampled inputs can be used to train the weak
learner. Initially, all the weights are set equally, and the
weights of incorrectly classified samples are increased on each
repetition so that the learner is forced to focus on the “hard”
samples in the training set.

The weak learner has to compute a hypothesis,
{ }11 +−→ ,: Xhk with respect to kD . The hypothesis is

measured by its error [4], ()[]iik yxh
kik ≠= D~Prε

()
()
∑

≠

=
iik yxhi
k iD

:

. Once hypothesis kh is calculated, AdaBoost

uses a parameter ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

k

k
k ε

ε
α

1
ln

2
1 to measure the reliability

of kh . Note that 0≥kα if 21≤kε . Then, update
() ()()

k

k
k Z

xhyiD
iD ikikα−

=+
exp

1)(, where kZ is a

normalization factor (chosen so that 1+kD is a distribution).
In response, the weights of samples misclassified by kh are
increased, and the weights of correctly classified samples are
decreased, hence the algorithm is forced to focus on “hard”
samples. Finally, the weak hypotheses are combined into a

single final hypothesis, () ()⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

K

k
kk xhxH

1

sign α , which is a

weighted majority vote of the K hypotheses.
Schwenk and Bengio [9] compared three versions of

AdaBoost using ANNs, i.e., (R) training each hypothesis with
a fixed training set obtained by resampling with replacement
from the original training set; (E) training by resampling, after
each epoch, a new training set from the original training set;
and (W) training by directly weighting the cost function of the
ANN. Their experimental results agreed with the findings in
[4] that improvement in generalization error brought by
AdaBoost is mainly due to emphasizing the margin, rather
than variance reduction due to randomization of the
resampling process. The (W) approach, which is preferred in
ANN framework, is implemented in this paper.

IV. MODIFIED ADABOOST
In a previous study [19], modifications to the AdaBoost

algorithm were proposed to suit time series prediction

problems. Generally, use of boosting in regression/prediction
is harder than classification. Classifiers map the inputs with
several classes, while regressors need to predict the expected
values that are associated with the given inputs. In prediction
problems, the outputs are neither correct nor incorrect (in
contrast to classification problems). Rather, performance of a
predictor is measured by the prediction error. This leads to
the proposed modifications of the AdaBoost algorithm so that
it is applicable to real-valued prediction tasks.

The modified AdaBoost algorithm is shown in Fig. 2. It
first takes a sequence of n samples as the training set,
() () niyx,yx nn ≤≤1 11 ,,,,K , where ix is an instance in space
X, and iy is an instance in space Y associated with ix . In
each round k, the Elman network is trained with respect to a
probability distribution ()iDk over an original training set.
The initial distribution 1D is uniform over the training set, so

() niD 11 = for all i. After each round, the network computes
the hypothesis or the predicted output. A normalized unit
error function, kε , is used to assess the difference between
the predicted and actual outputs, which is then weighted by

kD . The normalized error function used can be the difference
or the relative error between the predicted and actual outputs.
Other error functions such as those proposed in [14, 15] are
also applicable. Then, 1+kD is computed by changing the
probabilities of samples in accordance with the error function.
This makes the network put more emphasis on the “hard”
samples. A normalization factor is used to constrain 1+kD as
a distribution. The final output is computed by taking
weighted outputs from the sequentially trained networks. A
weighted median approach was proposed to combine the
results from multiple regressors [14, 15]. The final output is
obtained by simply taking the weighted outputs of the
sequentially trained networks in accordance with parameter

kα that reflects the importance/reliability of the
corresponding network in the ensemble.
Given: () ()nn yxyx ,,,, K11 where YyXx ii ∈∈ ,
Initialize: () niD 11 =
Repeat: For Kk ,,K1= :
1. Train the Elman network with respect to distribution kD .
2. Get weak hypothesis, kh , with the error function, kε ,

with respect to kD .

3. Choose ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

k

k
k ε

ε
α

1
ln

2
1 .

4. Update () () ()()
k

kkkk
k Z

iiD
iD

εεα •
=+

exp
1 , where kZ is a

normalization factor (chosen so that 1+kD is a
distribution).

Output: The final output

() ()∑
= =

⎟
⎠
⎞

⎜
⎝
⎛

∑•=
K

k

K

k
kkk xhxH

1 1
αα

Fig. 2 The modified AdaBoost algorithm

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1475

The differences between the original AdaBoost algorithm
and the modified version shown in Fig. 2 occur in steps 2 and
4 and the “output” section. Parameter kε in modified
AdaBoost (step 2) is a user-defined unit error function
weighted by kD . In contrast, kε of original AdaBoost is the
summation of the probabilities of misclassified samples. In
step 4, the exponential part of 1+kD is updated in accordance
with the error distribution, while weights of
correctly/incorrectly classified samples in original AdaBoost
are decreased/increased by a factor. In addition, the final
output is modified from the weighted majority vote
(AdaBoost) to the weighted predictions of the sequentially
trained networks in accordance with their assigned
reliabilities.

V. SIMULATION STUDIES
Two sets of simulations using benchmark data were

conducted to examine the effectiveness of an ensemble of
boosted Elman networks coupled with the modified AdaBoost
algorithm in time series prediction problems. They were the
Sunspot and Box-Jenkins gas furnace data sets. An ensemble
of diverse Elman networks was created by randomly
initializing the weights of the constituting networks. Then,
modified AdaBoost was used to directly weight the cost
function of ANN predictors, which differs from the use of
boosting for resampling a training set [14, 15]. Each network
was trained by weighting the cost function, i.e. the MSE,
according to the (W) approach proposed in [9]. The cost
function was weighted by the probability of each sample in

kD . The weighted MSE is computed as follows

()()[]
2

1

1MSE weighted ∑
=

−=
n

i
iik oyiD

n
 (3)

where iy is the expected output presented to the network, io
is the output predicted by the network, kD is the probability
distribution of the original training set, and n is the number of
samples. Thus, the network can focus on the “hard” samples
that contribute more error to the cost function.

A. The Sunspot Series
The Sunspot series, a well-known benchmark time series

prediction problem, comprises yearly average sunspot activity
recorded for the period 1700-1979. The data set can be
downloaded from a public repository with explanation [22].
The procedure in [23] was followed in this study in order to
compare the network performance with those of other models.
As stated in [23], the Sunspot data from year 1700 to 1920
and year 1921 to 1979 were used for training and test,
respectively. The inputs were the past samples of sunspot
activities, () () ()1221 −−− txtxtx iii ,,, K , while the output was
the next in-coming sample, ()txy ii = . The network structure
contained 12 input nodes, 8 hidden sigmoid nodes, and a
single output node (12-8-1).

In the experiment, the modified AdaBoost algorithm shown

in Fig. 2 was employed. By following the procedure in [23],
4000 iterations were employed in the Elman network and the
sum of squared errors (SSEs) as in equation (4) (with iO the
final predicted output) was used as the performance
measurement in both the training and test phases.

()2

1 2
1SSEs ii

n

i

Oy −= ∑
=

 (4)

The weighted error of each sample was evaluated by
multiplying the weight of the corresponding sample, ()iDk .
The difference (error) between the predicted and the desired
outputs of each sample was calculated and normalized
between 0 and 1. Each error was weighted by ()iDk , and sum
of all errors of the training samples computed. As shown in
[10, 11], the training error would drop exponentially fast if
each weak hypothesis is slightly between than random guess.
Thus, the network training process was terminated either
when the total error was greater than 0.5 or when convergence
occurred, i.e. improvement in the error rate was insignificant.

After several repeated experiments, the results converged
after combining 22 individual networks. The best three results
of single and boosted Elman networks are tabulated in Table I.
The boosting algorithm can improve the network
performance. The errors in the training and test phases were,
respectively, reduced by at least 26% and 28%. The mean
error reduction was 27% in the training phase, and 43% in the
test phase. The second experiment yielded the lowest error
rates in the training and test phases. Fig. 3 shows the original
Sunspot series and the predicted outputs of the second
experiment.

From Fig. 3, we can observe that the prediction errors were
in the range of 150.± during training, while the prediction
errors were in the range of 210.± during testing, except in
year 1959 where the prediction error was 0.4. Note that year
1959 generated the highest sunspot activity among the
monitored period. This highest peak was hard to forecast
because it constituted an extrapolation condition.
Extrapolation arises when the prediction process occurs
beyond the range of the training samples, while interpolation
refers to the conversed situation [24]. Basically, the network
performs better in interpolated (as compared to extrapolated)
regions of the input data. Notice that all the models in [23]
yielded poor performances around the particular year too.

The mean of the three best results shown in Table I was
compared with those from a number of different models
reported in [23]. The results of different models with
specified sizes (shown in bracket) are listed in Table II. In
[23], a cascade-form predictor that consisted of a non-linear
sub-predictor (NSP) and a linear sub-predictor (LSP) was
proposed. The ML-WDC model is a multi-layer network with
direct linear connections from the input layer to the output
layer. From the results shown in Table II, the boosted Elman
network performed better than other models. The boosted
network achieved the lowest errors in both the training and
test phases. By comparing with Khalaf and Nakayama’s

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1476

model, the boosted network reduced the SSEs by 40% in the
training phase and by 5% in the test phase.

Fig. 3 Predictions of the boosted network in the training and test phases, [(a),
(b)] and [(c), (d)], respectively, of the Sunspot series. (a) original series (solid
line) and predicted series (dashed line); (b) prediction errors from year 1712 to
1920; (c) original series (solid line) and predicted series (dashed line); (d)
prediction errors from year 1921 to 1979

TABLE I

THE SUM OF SQUARED ERRORS OF SINGLE AND BOOSTED NETWORKS AND
THE PERCENTAGES OF ERROR REDUCTION (SUNSPOT SERIES)

Training Test
No.

Single Boosted
Error

reduction (%) Single Boosted
Error

reduction (%)

1 0.361 0.263 27 0.667 0.295 56
2 0.331 0.244 26 0.368 0.264 28
3 0.347 0.255 27 0.529 0.289 45

Mean 0.346 0.254 27 0.521 0.283 43

TABLE II

THE SUM OF SQUARED ERRORS OF VARIOUS MODELS FOR THE SUNSPOT SERIES
No Model Name Training Test
1 Multi-layer perceptron model (12-8-1) 0.4087 0.4476
2 ML-WDC model (12-8-1) 0.5786 0.7152
3 Sandwich model LSP(5)+NSP(12-8-1)+LSP(5) 0.6514 0.4093
4 The reverse order model LSP(6)+NSP(12-8-1) 0.4787 0.4235
5 Khalaf and Nakayama NSP(12-8-1)+LSP(10) 0.4227 0.2963
6 Boosted Elman network model 0.2537 0.2828

B. The Box-Jenkins Series
The Box-Jenkins series is another frequently used

benchmark for time series prediction. The data set used in this
study is the gas furnace data (series J) [25]. It was recorded
from a combustion process of a mixture of methane-air. The
data set contained 296 samples. The input ()tu was the gas
flow into the furnace and the output ()ty was the CO2
(Carbon Dioxide) concentration in the outlet gas.

This study followed closely the experimental procedure in
[26] in order to compare the performance of the boosted
Elman network with a list of performances from other
approaches. The Elman network was provided with two
inputs and an output: the values of methane at time (t-4) and
CO2 produced at time (t-1) as inputs, and CO2 produced at
time (t) as output. Hence, the original 296 data pairs were
reduced to 292 data pairs of () () ()[]tytytu ;, 14 −− . A total of
200 data samples were used for training and the remaining for
test.

In accordance with the procedure in [26], the Elman
network was trained using only 200 iterations, and the
performance was measured by MSE of all the outputs as in
(5), including the outputs in the training and test phases.

()∑
=

−=
n

i
ii Oy

n 1

21MSE (5)

As in the previous study, the error between the predicted
output and actual output for each sample was computed,
normalized, and weighted by ()iDk . The sum of all errors
was then calculated. After several trials, the best network
architecture was formed with 26 hidden nodes (2-26-1). The
results converged after combining 18 networks. Three best
results of the single and boosted networks are tabulated in
Table III. All the MSEs produced by the single network were
reduced significantly (54%–76%) with the use of boosting.
The mean of the MSEs was reduced by 65%. These results,
again, demonstrate that boosting is able to greatly improve the
performance of the individual networks. Among the results,
the third experiment yielded the best performance. Thus, the
original and predicted outputs, together with the prediction
errors of the third experiment are shown in Fig. 4.

Table IV tabulates the MSEs of other approaches listed in
[26] that employed the same number of inputs. Referring to
Table IV, the boosted Elman networks (mean of the three best
obtained results) ranked six out of twelve. The HyFIS
(Hybrid Neural Fuzzy Inference System), FuNN (Fuzzy
Neural Network) and ANFIS (Adaptive-Network-Based
Fuzzy Inference System) models yielded very good results.
These three models are fuzzy inference systems implemented
in the framework of adaptive networks. The models
constructed the input-output mapping based on both human
knowledge (in the form of fuzzy if-then rules) and stipulated
input-output data pairs. The HyFIS model has a two-phase
learning scheme. Phase one is the rule finding phase, which
the fuzzy rules are generated from the desired input-output
pairs and the structure of the neural fuzzy system is
established from these fuzzy rules. Phase two is the parameter
learning phase in which the gradient descent learning is used

-0.40
0.00
0.40
0.80
1.20

1712 1762 1812 1862 1912
Year

Su
ns

po
t a

ct
iv

ity

-0.20

-0.10

0.00

0.10

0.20

1712 1762 1812 1862 1912
Year

Pr
ed

ic
tio

n
er

ro
r

-0.40
0.00
0.40
0.80
1.20

1921 1931 1941 1951 1961 1971
Year

Su
ns

po
t a

ct
iv

ity

-0.20

0.00

0.20

0.40

0.60

1921 1931 1941 1951 1961 1971
Year

Pr
ed

ic
tio

n
er

ro
r

(a)

(b)

(c)

(d)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1477

to optimally adjust the membership functions for the desired
outputs. Because the initial structure is properly set in the first
phase, the network only needs 200 epochs to converge. On
the other hand, the Elman network needs more training
iterations to converge since it does not perform a coarse
tuning phase (before network training). Fig. 5 illustrates the
MSE curve of a single Elman network where convergence
(with MSE less than 0.001) occurred slowly after a large
number of training epochs. However, for comparison
purpose, the number of network iterations was fixed to 200 as
what had been used in [26].

Fig. 4 Predictions of the boosted network of the Box-Jenkin series (a) original
series (solid line) and predicted series (dashed line); (b) prediction errors

TABLE III
THE MEAN SQUARE D ERRORS OF SINGLE AND BOOSTED NETWORKS AND THE

PERCENTAGES OF ERROR REDUCTION (BOX-JENKINS SERIES)
No. Single Boosted Error reduction (%)
1 0.612 0.223 64
2 0.526 0.242 54
3 0.868 0.206 76

Mean 0.669 0.224 65

TABLE IV
THE RESULTS (MSE) OF VARIOUS MODELS FOR THE BOX-JENKINS SERIES
Model & Reference MSE Model & Reference MSE

HyFIS model [26] 0.00042 Pedrycz's model [31] 0.320
FuNN model [27] 0.00051 Xu's model [32] 0.328
ANFIS model [28] 0.00073 Sugeno's model [33] 0.355

Hauptmann's model [29] 0.134 Pedrycz's model [34] 0.395
Surmann's model [30] 0.160 Lee's model [35] 0.407

Boosted Elman networks 0.224 Tong's model [36] 0.469

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10
-3

10
-2

10
-1

10
0

10
1

Epoch

Tr
ai

ni
ng

 M
SE

200
Fig. 5 The mean-squared-error curve of a single network of the Box-Jenkins
series

VI. SUMMARY
In this paper, an ensemble of Elman recurrent networks

coupled with a modified AdaBoost algorithm has been
employed to handle time series data regression problems.
AdaBoost is simple and easy-to-use, and can be flexibly
combined with other learning systems that establish only weak
hypotheses because it requires minimum prior knowledge
about the weak learners. Furthermore, AdaBoost comes with
theoretical justifications [37], i.e. the bias-variance
decomposition and the margin distribution of generalization
error that can iteratively drive the final prediction error to zero
given sufficient data and weak learners that can reliably
provide only moderately accurate weak hypotheses, with their
errors kept below 50%.

It has been recognized that good and effective ensembles
must have accurate but diverse members. Here, an ensemble
of Elman networks that differ only in their random initial
weights was able to perform very well by using the modified
AdaBoost algorithm. Modified AdaBoost is used for directly
weighting the cost function of ANN predictors, rather than for
sampling the training samples. Empirical evaluations of the
boosted networks using two benchmark data sets have been
presented. The simulation studies indicated the boosted
Elman networks produced reasonably good ensembles that
demonstrate good generalization capabilities and high
performances in time series prediction tasks. The results from
the boosted networks always outperformed those from the
individual networks. The results also showed that the boosted
networks were comparable with those from other models.

For further work, the findings in [37] serve as a good
source to study the theoretical properties of the modified
AdaBoost algorithm. In addition, more real-world time-series
prediction problems have to be performed to further ascertain
the applicability of the ensemble of Elman networks. The
results have to be compared not only with those from ANN-
based systems but also other established statistical techniques
that have been widely used in undertaking time-series
regression problems.

45

50

55

60

65

1 51 101 151 201 251

time

-3

-2

-1

0

1

2

3

1 51 101 151 201 251

t ime

(a)

(b)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1478

REFERENCES
[1] R.N. Miller and L.L. Ehret, “Ensemble generation for models of

multimodal systems”, Monthly Weather Review, vol. 130, pp. 2313-
2333, 2002.

[2] J. G. Carney and P. Cunningham, “The NeuralBAG algorithm:
Optimizing generalization performance in bagged neural networks,”
Proc. 7th European Symp. Artificial Neural Networks, M. Verleysen, Ed.
D-Facto, Brussels, 1999 pp. 35-40.

[3] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp.
179-211, 1990.

[4] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer
and System Sciences, vol. 55, no. 1, pp. 119-139, 1997.

[5] T. Masters, Practical Neural Network Recipes in C++. San Diego, CA:
Academic Press, Inc., 1993.

[6] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 12, no. 10, pp. 993-1001,
1990.

[7] Y. Liu and X. Yao, “Negatively correlated neural networks can produce
best ensembles,” Australian Journal of Intelligent Information
Processing Systems, vol. 4, no. 3/4, pp. 176-185, 1997.

[8] F. Fessant, S. Bengio, and D. Collobert, “On the prediction of solar
activity using different neural network models,” Annales Geophysicae,
vol. 14, pp. 20-26, 1995.

[9] H. Schwenk and Y. Bengio, “Boosting Neural Networks,” Neural
Computation, vol. 12, no. 8, pp. 1869-1887, 2000.

[10] R. E. Schapire and Y. Singer, “Improved boosting algorithms using
confidence-rated predictions,” Machine Learning, vol. 37, no. 3, pp.
297-336, 1999.

[11] J.R. Quinlan, “Bagging, Boosting, and C4.5” Proc of the Thirteenth
National Conference on Artificial Intelligence and the Eighth Innovative
Applications of Artificial Intelligence Conference, pp. 725-730, 1996.

[12] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: bagging, boosting, and
randomization,” Machine Learning, vol. 40, no. 2, pp. 139-158, 2000.

[13] R. S. Zemel and T. Pitassi, "A gradient-based boosting algorithm for
regression problems," Advances in Neural Information Processing
Systems 13, T. Leen, T. Dietterich, and V. Tresp eds., the MIT Press,
2001, pp. 696-702.

[14] H. Drucker, “Fast committee machines for regression and classification,”
Third Int. Conf. Knowledge Discovery and Data Mining (KDD’97), D.
Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy eds., Menlo
Park, CA: AAADietterichI Press, 1997, pp. 159-162.

[15] H. Drucker, “Improving regressors using boosting techniques,” Proc.
Fourteenth Int. Conf. Machine Learning (ICML’97), D. H. Fisher, Ed.
Morgan Kaufmann, 1997, pp. 107-115.

[16] S. Borra and A. Di Ciaccio, “Improving nonparametric regression
methods by bagging and boosting,” Computational Statistics & Data
Analysis, vol. 38, pp. 407-420, 2002.

[17] G. Giacinto and F. Roli, “An approach to the automatic design of
multiple classifier systems,” Pattern Recognition Letters, vol. 22, pp. 25-
33, 2001.

[18] P. Stagge and B. Sendhoff, "An extended Elman net for modeling time
series,” Int. Conf. Artificial Neural Networks (ICANN´97), W. Gerstner,
A. Germond, M. Hasler, and J. Nicoud, eds., Springer Verlag, 1997, vol.
1327 of Lecture Notes in Computer Science, pp. 427-432.

[19] W.Y. Goh, C.P. Lim, and K.K. Peh, “Predicting Drug Dissolution
Profiles with an Ensemble of Boosted Neural Networks: A Time-series
Approach”, IEEE Trans. on Neural Networks, vol. 14, pp. 459-463,
2003. Y. Freund and R. E. Schapire, “A short introduction to boosting,”
Journal of Japanese Society for Artificial Intelligence, vol. 14, no. 5, pp.
771-780, (Appearing in Japanese, translation by Naoki Abe.), 1999.

[20] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights,”
Proc. Int. Joint Conf. Neural Networks, vol. 3, pp. 21-26, 1990.

[21] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning internal
representations by error propagation”. Parallel Distributed Processing:
Explorations in the microstructure of cognition, D. E. Rumelhart and J.
L. McClelland, Eds. Cambridge, MA: MIT Press, 1986 vol. 1, pp. 318-
362.

[22] M. Nørgaard, O. Ravn, N. K. Poulsen, and L. K. Hansen. (2000).
Neural Networks for Modelling and Control of Dynamic Systems.
London: Springer-Verlag. [Online]. Available:
http://www.iau.dtu.dk/nnspringer.html

[23] A. A. M. Khalaf and K. Nakayama, “A cascade form predictor of neural
and FIR filters and its minimum size estimation based on nonlinearity
analysis of time series,” IEICE Trans. Fundamentals, vol. E81-A, no. 3,
pp. 364-373, 1998.

[24] J. A. Leonard, M. A. Kramer, and L. H. Ungar, “A neural network
architecture that computes its own reliability,” Computers & Chemical
Engineering, vol. 16, no. 9, pp. 819-835, 1992.

[25] G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting and
Control. San Francisco: Holden-Day, 1970.

[26] J. Kim and N. Kasabov, “HyFIS: Adaptive neuro-fuzzy inference
systems and their application to nonlinear dynamical systems,” Neural
Networks, vol. 12, pp. 1301-1319, 1999.

[27] N. Kasabov, J. Kim, M. Watts, and A. Gray, “FuNN/2 — A fuzzy neural
network architecture for adaptive learning and knowledge acquisition,”
Information Sciences, vol. 101, no.3-4, pp. 155-175, 1997.

[28] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft
Computing: A Computational Approach to Learning and Machine
Intelligence. Upper Saddle River, NJ: Prentice-Hall, 1997.

[29] W. Hauptmann and K. Heesche, “A neural net topology for bidirectional
fuzzy-neuro transformation,” Proc. IEEE Int. Conf. Fuzzy Systems
(FUZZ-IEEE/IFES), Yokohama, Japan, 1995, pp. 1511-1518.

[30] H. Surmann, A. Kanstein, and K. Goser, “Self-organizing and genetic
algorithms for an automatic design of fuzzy control and decision
systems,” Proc. First European Congress on Fuzzy and Intelligent
Technologies (EUFIT’93), Aachen, 1993, vol. 1, pp. 1097-1104.

[31] W. Pedrycz, “An identification algorithm in fuzzy relational systems,”
Fuzzy Sets and Systems, vol. 13, pp. 153-167, 1984.

[32] C.-W. Xu and Y.-Z. Lu, “Fuzzy model identification and self-learning
for dynamic systems,” IEEE Trans. Syst., Man, Cybern., vol. 17 no. 4,
pp. 683-689, 1987.

[33] M. Sugeno and T. Yasukawa, “Linguistic modelling based on numerical
data,” Proc. Fourth Int. Fuzzy Systems Association World Congress
(IFSA’91), R. Lowen and M. Roubens, Eds. Brüssels, Belgium:
Computer, Management & Systems Science, 1991, pp. 264-267.

[34] W. Pedrycz, P. C. F. Lam, and A. F. Rocha, “Distributed fuzzy system
modelling,” IEEE Trans. Syst., Man, Cybern., vol. 25, no. 5, pp. 769-
780, 1995.

[35] Y.-C. Lee, C. Hwang, and Y.-P. Shih, “A combined approach to fuzzy
model identification,” IEEE Trans. Syst., Man, Cybern., vol. 24, no. 5,
pp. 736-744, 1994.

[36] R. M. Tong, “The evaluation of fuzzy models derived from experimental
data,” Fuzzy Sets and Systems, vol. 4, pp. 1-12, 1980.

[37] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the
margin: A new explanation for the effectiveness of voting methods,”
Annals of Statistics, vol. 26, no. 5, pp. 1651-1686, 1998.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1479

CP Lim received the BEng(Elect.) degree with first
class honors from the University of Technology
Malaysia in 1992, the MSc(Eng) and PhD degrees
from the University of Sheffield, UK in 1993 and
1997. He is currently Associate Professor at School
of Electrical & Electronic Engineering, University
of Science Malaysia. His research interests include
soft computing, pattern classification, medical
diagnosis, and fault detection and diagnosis.

Dr. Lim has published more than 100 technical papers, and received six best
paper awards at national and international conferences. He is recipient of the
Japan Society for the Promotion of Science Research Fellowship (2002),
Fulbright Scholarship (2002), and Commonwealth Fellowship (2003), as well
as The Outstanding Young Malaysians Award (2001) and National Young
Scientist Award (2002) of Malaysia.

WY Goh received her BTech and MSc(Eng.)
degrees from University of Science Malaysia in
1999 and 2002, respectively. Her research interests
include theory and application of artificial neural
network models to time series data regression and
drug dissolution profile prediction.

