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Abstract—In this paper, the application of multiple Elman 

neural networks to time series data regression problems is studied.  
An ensemble of Elman networks is formed by boosting to enhance 
the performance of the individual networks.  A modified version of 
the AdaBoost algorithm is employed to integrate the predictions from 
multiple networks.  Two benchmark time series data sets, i.e., the 
Sunspot and Box-Jenkins gas furnace problems, are used to assess 
the effectiveness of the proposed system.  The simulation results 
reveal that an ensemble of boosted Elman networks can achieve a 
higher degree of generalization as well as performance than that of 
the individual networks.  The results are compared with those from 
other learning systems, and implications of the performance are 
discussed. 

Keywords—AdaBoost, Elman network, neural network 
ensemble, time series regression 

I. INTRODUCTION 
ANY approaches have been examined for tackling time 
series data regression problems, e.g., moving average, 

exponential smoothing, decomposition, ARIMA 
(Autoregressive Integrated Moving Average).  Most of the 
methods involve the construction of a mathematical model 
that best represents the behavior of the observed system.  
However, identifying a suitable model requires skilled and 
experienced forecasters as real-world processes often exhibit 
non-linear characteristics which are difficult to model.  
Different forecasters may arrive at different models even if 
they use the same set of observations.  For example, in ocean 
modeling and weather prediction, individual forecasters can 
be sensitive to small variations in initial and boundary 
conditions [1].  In [2], it is explained that Artificial Neural 
Network (ANN) models are inherently unstable in 
performance, i.e., small changes in the training set and/or 
parameter selection can produce large changes, hence 
resulting in different networks.  Thus, the sensitivity to small 
perturbation in model parameters can be exploited to generate 
an ensemble of forecasters, and the output from all ensemble 
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members can be analyzed and combined to improve the 
overall performance. 

In general, an ensemble of models can be used in two ways, 
e.g., (i) selecting the output from the “best” (e.g., lowest error 
rate, highest posterior probability) of the ensemble members 
to be the final prediction; (ii) combining the output from the 
ensemble members using some decision combination 
algorithm.  In this paper, we are concerned with the latter 
approach, with specific focus on ANN-based methodologies.  
In particular, the scope of work is on the use of an ensemble 
of Elman networks [3], generated by perturbation of initial 
network weights coupled with a modified AdaBoost algorithm 
[4] for tackling time-series regression problems.   

Lately, ANNs have received a lot of attention as an 
alternative for solving time series data regression problems.  
ANNs are parameterized approach that can return the best-fit 
curve that approximates behavior of the training data provided 
to the network models.  ANNs are able to tolerate noisy 
inputs, including chaotic components having very heavy tails 
[5].  With a suitable architecture, an ANN can offer good 
generalization capability and achieve high performance in 
solving non-linear time series data regression problems.  
Indeed, ANN-based ensembles have been proposed to form a 
more accurate and robust learning system [2, 6-9].  

In classification tasks, many researchers have investigated 
the techniques of combining predictions from multiple 
classifiers to produce a result that is generally more accurate 
than any of the individual classifiers.  Boosting [4] is one of 
the recent methods that forms an ensemble of individually 
trained classifiers, e.g. decision trees and ANNs, such that the 
test set error can be reduced.  The theoretical justifications of 
its efficiency have been discussed [9-12].  In regression 
problems, Zemel and Pitassi [13] proposed a gradient-based 
boosting algorithm in which a threshold was introduced to 
differentiate correct responses from incorrect ones.  Boosting 
was also used to combine multiple regression trees and to 
reduce the prediction error of a single regressor [14-15], as 
well as to improve the predictive power of nonparametric 
regression methods [16]. 

While different strategies have been proposed, boosting, in 
general, assigns different voting strengths to classifiers based 
on their accuracy rates.  It maintains a weight count for each 
sample in the training set to reflect the difficulty needed to 
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classify the sample in comparison with previously established 
networks.  Adjusting the weights causes the boosted networks 
to focus on “hard” samples.  A good ensemble is produced 
when the individual classifiers are both accurate and diverse, 
i.e. the classifiers have low error rates and their errors are on 
different parts of the input space [17]. 

In this paper, a specific type of supervised, partial recurrent 
ANN architecture, namely the Elman network [3], is 
employed.  The Elman network is embedded with feedback 
connections that offer a convenient way to accumulate 
previous knowledge as “experiences” and perform future 
predictions based on these “experiences”.  While other 
researchers have employed the Elman network for modeling 
time series profiles [8, 18], here we investigate the use of an 
ensemble of Elman networks coupled with a modified 
AdaBoost (Adaptive Boosting) algorithm [4, 19] for time 
series data regression problems.  The ensemble is created by 
randomizing the initial weights of a pool of Elman networks.  
Then, modified AdaBoost is implemented by directly 
weighting the cost function of Elman networks.  This differs 
from boosting by sampling as proposed in [14, 15].  Two 
benchmark problems are employed to assess the effectiveness 
of the modified AdaBoost algorithm coupled with an 
ensemble of Elman networks. 

The organization of this paper is as follows.  The concept 
and architecture of the Elman network are described in section 
II.  After an introductory account of the AdaBoost in section 
III, the modified AdaBoost algorithm is presented in section 
IV.  In section V, an experimental study on two benchmark 
data sets with various network configurations using single and 
multiple boosted Elman networks are discussed.  The results 
are analyzed and compared with those from other learning 
systems.  A summary is included in section VI. 

II. THE ELMAN NETWORK 
The Elman network is a simple recurrent neural network 

that only involves partial feedback in the network structure 
(see Fig. 1.)  It comprises four layers, namely the input layer, 
hidden layer, output layer, and context layer.  During 
operation, outputs of the hidden layer are fed back to the 
context layer at every time step.  The context layer, thus, acts 
as a “container” that preserves previous information, and this 
recurrence gives the network dynamical properties, which 
provide the ability to perform mappings that are functions of 
time. 

Suppose an n-dimensional input vector, ( )nttt xx ,,x L1= , 
is given at time t, the learning dynamic of the Elman network 
with q hidden nodes is as follows 
1. Initially, the context nodes are set to zero. The forward 

weights and biases are generated using the Nguyen-
Widrow method [20].  This technique ensures that the 
active regions of the nodes were distributed roughly 
evenly over the input space and, thus, helps accelerate the 
training process.  The recurrent connections are non-
adjustable and are fixed at unity weights. 

 
2. The output functions of the hidden and output layers are 

computed, respectively, as follows 
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where tih ,  is the output of the i-th hidden node, to  is the 
estimator of the target variable, θ  is the vector of 
parameters containing all γ ’s and δ ’s, where γ ’s, δ ’s, 
β ’s are the weights from the input layer to the hidden 
layer, the context layer to the hidden layer, and the hidden 
layer to the output layer, respectively, and ( )⋅Ψ  and ( )⋅Φ  
are the activation functions. 

3. The prediction error, e.g. mean-squared-error (MSE), is 
calculated by comparing the predicted output with the 
target sequence. 

4. The adjustable weights and biases are updated using 
truncated gradient back-propagation [21] with an 
additional momentum term and an adaptive learning rate. 

Steps 2 to 4 are repeated until a predefined error rate or 
number of training epochs is reached.  

 

 
Fig. 1  Architecture of the Elman network 

III. ADABOOST 
Boosting is a general method for improving the accuracy of 

any given learning algorithm.  It produces a final solution by 
combining rough and moderately inaccurate decisions offered 
by different classifiers, which is at least slightly better than 
random guessing.  In boosting, the training set used for each 
classifier is produced (weighted) based on the performance of 
the earlier classifier(s) in the series.  Therefore, samples that 
are incorrectly classified by previous classifiers in the series 
are emphasized more than samples that are correctly 
classified. 

AdaBoost solved many of the practical difficulties of the 
earlier boosting algorithms.  The algorithm first receives a 
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training set, ( ) ( ) niyxy,x nn ,,1  ,,,,11 KK =  as inputs where 

ix  is a sample in space X, and iy  is a class label in set Y 
associated with ix .  Without loss of generality, assume 

{ }11 +−= ,Y  for binary class case.  AdaBoost repeatedly calls 
a weak (base) learning algorithm in a series of rounds 

Kk ,,K1= .  In each round k, the algorithm assigns a 
distribution or a set of weights over the training set.  The 
weight of training sample i during round k is denoted as 

( )iDk .  The weak learner can use kD  on the training samples.  
Alternatively, the training inputs can be sampled according to 

kD , and these resampled inputs can be used to train the weak 
learner.  Initially, all the weights are set equally, and the 
weights of incorrectly classified samples are increased on each 
repetition so that the learner is forced to focus on the “hard” 
samples in the training set. 

The weak learner has to compute a hypothesis, 
{ }11 +−→ ,: Xhk  with respect to kD .  The hypothesis is 

measured by its error [4], ( )[ ]iik yxh
kik ≠= D~Prε  
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normalization factor (chosen so that 1+kD  is a distribution).  
In response, the weights of samples misclassified by kh  are 
increased, and the weights of correctly classified samples are 
decreased, hence the algorithm is forced to focus on “hard” 
samples.  Finally, the weak hypotheses are combined into a 

single final hypothesis, ( ) ( )⎟⎟
⎠
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weighted majority vote of the K hypotheses. 
Schwenk and Bengio [9] compared three versions of 

AdaBoost using ANNs, i.e., (R) training each hypothesis with 
a fixed training set obtained by resampling with replacement 
from the original training set; (E) training by resampling, after 
each epoch, a new training set from the original training set; 
and (W) training by directly weighting the cost function of the 
ANN.  Their experimental results agreed with the findings in 
[4] that improvement in generalization error brought by 
AdaBoost is mainly due to emphasizing the margin, rather 
than variance reduction due to randomization of the 
resampling process.  The (W) approach, which is preferred in 
ANN framework, is implemented in this paper. 

IV. MODIFIED ADABOOST 
In a previous study [19], modifications to the AdaBoost 

algorithm were proposed to suit time series prediction 

problems.  Generally, use of boosting in regression/prediction 
is harder than classification.  Classifiers map the inputs with 
several classes, while regressors need to predict the expected 
values that are associated with the given inputs.  In prediction 
problems, the outputs are neither correct nor incorrect (in 
contrast to classification problems).  Rather, performance of a 
predictor is measured by the prediction error.  This leads to 
the proposed modifications of the AdaBoost algorithm so that 
it is applicable to real-valued prediction tasks.   

The modified AdaBoost algorithm is shown in Fig. 2.  It 
first takes a sequence of n samples as the training set, 
( ) ( ) niyx,yx nn ≤≤1  11 ,,,,K , where ix  is an instance in space 
X, and iy  is an instance in space Y associated with ix .  In 
each round k, the Elman network is trained with respect to a 
probability distribution ( )iDk  over an original training set.  
The initial distribution 1D  is uniform over the training set, so 

( ) niD 11 =  for all i.  After each round, the network computes 
the hypothesis or the predicted output.  A normalized unit 
error function, kε , is used to assess the difference between 
the predicted and actual outputs, which is then weighted by 

kD .  The normalized error function used can be the difference 
or the relative error between the predicted and actual outputs.  
Other error functions such as those proposed in [14, 15] are 
also applicable.  Then, 1+kD  is computed by changing the 
probabilities of samples in accordance with the error function.  
This makes the network put more emphasis on the “hard” 
samples.  A normalization factor is used to constrain 1+kD  as 
a distribution.  The final output is computed by taking 
weighted outputs from the sequentially trained networks.  A 
weighted median approach was proposed to combine the 
results from multiple regressors [14, 15].  The final output is 
obtained by simply taking the weighted outputs of the 
sequentially trained networks in accordance with parameter 

kα  that reflects the importance/reliability of the 
corresponding network in the ensemble. 
Given: ( ) ( )nn yxyx ,,,, K11  where YyXx ii ∈∈ ,  
Initialize:  ( ) niD 11 =  
Repeat: For Kk ,,K1= : 
1.  Train the Elman network with respect to distribution kD . 
2. Get weak hypothesis, kh , with the error function, kε , 

with respect to kD . 
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Fig. 2 The modified AdaBoost algorithm 
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The differences between the original AdaBoost algorithm 
and the modified version shown in Fig. 2 occur in steps 2 and 
4 and the “output” section.  Parameter kε  in modified 
AdaBoost (step 2) is a user-defined unit error function 
weighted by kD .  In contrast, kε  of original AdaBoost is the 
summation of the probabilities of misclassified samples.  In 
step 4, the exponential part of 1+kD  is updated in accordance 
with the error distribution, while weights of 
correctly/incorrectly classified samples in original AdaBoost 
are decreased/increased by a factor.  In addition, the final 
output is modified from the weighted majority vote 
(AdaBoost) to the weighted predictions of the sequentially 
trained networks in accordance with their assigned 
reliabilities. 

V. SIMULATION STUDIES 
Two sets of simulations using benchmark data were 

conducted to examine the effectiveness of an ensemble of 
boosted Elman networks coupled with the modified AdaBoost 
algorithm in time series prediction problems.  They were the 
Sunspot and Box-Jenkins gas furnace data sets.  An ensemble 
of diverse Elman networks was created by randomly 
initializing the weights of the constituting networks.  Then, 
modified AdaBoost was used to directly weight the cost 
function of ANN predictors, which differs from the use of 
boosting for resampling a training set [14, 15].  Each network 
was trained by weighting the cost function, i.e. the MSE, 
according to the (W) approach proposed in [9].  The cost 
function was weighted by the probability of each sample in 

kD .  The weighted MSE is computed as follows 

( )( )[ ]
2

1

1MSE weighted ∑
=

−=
n

i
iik oyiD

n
            (3) 

where iy  is the expected output presented to the network, io  
is the output predicted by the network, kD  is the probability 
distribution of the original training set, and n is the number of 
samples.  Thus, the network can focus on the “hard” samples 
that contribute more error to the cost function. 

A. The Sunspot Series 
The Sunspot series, a well-known benchmark time series 

prediction problem, comprises yearly average sunspot activity 
recorded for the period 1700-1979.  The data set can be 
downloaded from a public repository with explanation [22].  
The procedure in [23] was followed in this study in order to 
compare the network performance with those of other models.  
As stated in [23], the Sunspot data from year 1700 to 1920 
and year 1921 to 1979 were used for training and test, 
respectively.  The inputs were the past samples of sunspot 
activities, ( ) ( ) ( )1221 −−− txtxtx iii ,,, K , while the output was 
the next in-coming sample, ( )txy ii = .  The network structure 
contained 12 input nodes, 8 hidden sigmoid nodes, and a 
single output node (12-8-1). 

In the experiment, the modified AdaBoost algorithm shown 

in Fig. 2 was employed.  By following the procedure in [23], 
4000 iterations were employed in the Elman network and the 
sum of squared errors (SSEs) as in equation (4) (with iO  the 
final predicted output) was used as the performance 
measurement in both the training and test phases. 

( )2

1 2
1SSEs ii

n

i

Oy −= ∑
=

                  (4) 

The weighted error of each sample was evaluated by 
multiplying the weight of the corresponding sample, ( )iDk .  
The difference (error) between the predicted and the desired 
outputs of each sample was calculated and normalized 
between 0 and 1.  Each error was weighted by ( )iDk , and sum 
of all errors of the training samples computed.  As shown in 
[10, 11], the training error would drop exponentially fast if 
each weak hypothesis is slightly between than random guess.  
Thus, the network training process was terminated either 
when the total error was greater than 0.5 or when convergence 
occurred, i.e. improvement in the error rate was insignificant. 

After several repeated experiments, the results converged 
after combining 22 individual networks.  The best three results 
of single and boosted Elman networks are tabulated in Table I.  
The boosting algorithm can improve the network 
performance.  The errors in the training and test phases were, 
respectively, reduced by at least 26% and 28%.  The mean 
error reduction was 27% in the training phase, and 43% in the 
test phase.  The second experiment yielded the lowest error 
rates in the training and test phases.  Fig. 3 shows the original 
Sunspot series and the predicted outputs of the second 
experiment. 

From Fig. 3, we can observe that the prediction errors were 
in the range of 150.±  during training, while the prediction 
errors were in the range of 210.±  during testing, except in 
year 1959 where the prediction error was 0.4.  Note that year 
1959 generated the highest sunspot activity among the 
monitored period.  This highest peak was hard to forecast 
because it constituted an extrapolation condition.  
Extrapolation arises when the prediction process occurs 
beyond the range of the training samples, while interpolation 
refers to the conversed situation [24].  Basically, the network 
performs better in interpolated (as compared to extrapolated) 
regions of the input data.  Notice that all the models in [23] 
yielded poor performances around the particular year too. 

The mean of the three best results shown in Table I was 
compared with those from a number of different models 
reported in [23].  The results of different models with 
specified sizes (shown in bracket) are listed in Table II.  In 
[23], a cascade-form predictor that consisted of a non-linear 
sub-predictor (NSP) and a linear sub-predictor (LSP) was 
proposed.  The ML-WDC model is a multi-layer network with 
direct linear connections from the input layer to the output 
layer.  From the results shown in Table II, the boosted Elman 
network performed better than other models.  The boosted 
network achieved the lowest errors in both the training and 
test phases.  By comparing with Khalaf and Nakayama’s 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1476

 

 

model, the boosted network reduced the SSEs by 40% in the 
training phase and by 5% in the test phase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Predictions of the boosted network in the training and test phases, [(a), 
(b)] and [(c), (d)], respectively, of the Sunspot series.  (a) original series (solid 
line) and predicted series (dashed line); (b) prediction errors from year 1712 to 
1920; (c) original series (solid line) and predicted series (dashed line); (d) 
prediction errors from year 1921 to 1979 

 
TABLE I   

THE SUM OF SQUARED ERRORS OF SINGLE AND BOOSTED NETWORKS AND 
THE PERCENTAGES OF ERROR REDUCTION (SUNSPOT SERIES) 

Training Test 
No. 

Single Boosted 
Error 

reduction (%) Single Boosted
Error 

reduction (%)

1 0.361 0.263 27 0.667 0.295 56 
2 0.331 0.244 26 0.368 0.264 28 
3 0.347 0.255 27 0.529 0.289 45 

Mean 0.346 0.254 27 0.521 0.283 43 

 
TABLE II   

THE SUM OF SQUARED ERRORS OF VARIOUS MODELS FOR THE SUNSPOT SERIES 
No Model Name Training Test 
1 Multi-layer perceptron model (12-8-1) 0.4087 0.4476 
2 ML-WDC model (12-8-1) 0.5786 0.7152 
3 Sandwich model LSP(5)+NSP(12-8-1)+LSP(5) 0.6514 0.4093 
4 The reverse order model LSP(6)+NSP(12-8-1) 0.4787 0.4235 
5 Khalaf and Nakayama NSP(12-8-1)+LSP(10) 0.4227 0.2963 
6 Boosted Elman network model 0.2537 0.2828 

B. The Box-Jenkins Series 
The Box-Jenkins series is another frequently used 

benchmark for time series prediction.  The data set used in this 
study is the gas furnace data (series J) [25].  It was recorded 
from a combustion process of a mixture of methane-air.  The 
data set contained 296 samples.  The input ( )tu  was the gas 
flow into the furnace and the output ( )ty  was the CO2 
(Carbon Dioxide) concentration in the outlet gas. 

This study followed closely the experimental procedure in 
[26] in order to compare the performance of the boosted 
Elman network with a list of performances from other 
approaches.  The Elman network was provided with two 
inputs and an output: the values of methane at time (t-4) and 
CO2 produced at time (t-1) as inputs, and CO2 produced at 
time (t) as output.  Hence, the original 296 data pairs were 
reduced to 292 data pairs of ( ) ( ) ( )[ ]tytytu ;, 14 −− .  A total of 
200 data samples were used for training and the remaining for 
test. 

In accordance with the procedure in [26], the Elman 
network was trained using only 200 iterations, and the 
performance was measured by MSE of all the outputs as in 
(5), including the outputs in the training and test phases. 

( )∑
=

−=
n

i
ii Oy

n 1

21MSE                   (5) 

As in the previous study, the error between the predicted 
output and actual output for each sample was computed, 
normalized, and weighted by ( )iDk .  The sum of all errors 
was then calculated.  After several trials, the best network 
architecture was formed with 26 hidden nodes (2-26-1).  The 
results converged after combining 18 networks.  Three best 
results of the single and boosted networks are tabulated in 
Table III.  All the MSEs produced by the single network were 
reduced significantly (54%–76%) with the use of boosting.  
The mean of the MSEs was reduced by 65%.  These results, 
again, demonstrate that boosting is able to greatly improve the 
performance of the individual networks.  Among the results, 
the third experiment yielded the best performance.  Thus, the 
original and predicted outputs, together with the prediction 
errors of the third experiment are shown in Fig. 4. 

Table IV tabulates the MSEs of other approaches listed in 
[26] that employed the same number of inputs.  Referring to 
Table IV, the boosted Elman networks (mean of the three best 
obtained results) ranked six out of twelve.  The HyFIS 
(Hybrid Neural Fuzzy Inference System), FuNN (Fuzzy 
Neural Network) and ANFIS (Adaptive-Network-Based 
Fuzzy Inference System) models yielded very good results.  
These three models are fuzzy inference systems implemented 
in the framework of adaptive networks.  The models 
constructed the input-output mapping based on both human 
knowledge (in the form of fuzzy if-then rules) and stipulated 
input-output data pairs.  The HyFIS model has a two-phase 
learning scheme.  Phase one is the rule finding phase, which 
the fuzzy rules are generated from the desired input-output 
pairs and the structure of the neural fuzzy system is 
established from these fuzzy rules.  Phase two is the parameter 
learning phase in which the gradient descent learning is used 
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to optimally adjust the membership functions for the desired 
outputs.  Because the initial structure is properly set in the first 
phase, the network only needs 200 epochs to converge.  On 
the other hand, the Elman network needs more training 
iterations to converge since it does not perform a coarse 
tuning phase (before network training).  Fig. 5 illustrates the 
MSE curve of a single Elman network where convergence 
(with MSE less than 0.001) occurred slowly after a large 
number of training epochs.  However, for comparison 
purpose, the number of network iterations was fixed to 200 as 
what had been used in [26]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4  Predictions of the boosted network of the Box-Jenkin series (a) original 
series (solid line) and predicted series (dashed line); (b) prediction errors 
 

TABLE III   
THE MEAN SQUARE D ERRORS OF SINGLE AND BOOSTED NETWORKS AND THE 

PERCENTAGES OF ERROR REDUCTION (BOX-JENKINS SERIES) 
No. Single Boosted Error reduction (%) 
1 0.612 0.223 64 
2 0.526 0.242 54 
3 0.868 0.206 76 

Mean 0.669 0.224 65 
 

TABLE IV   
THE RESULTS (MSE) OF VARIOUS MODELS FOR THE BOX-JENKINS SERIES 
Model & Reference MSE Model & Reference MSE 

HyFIS model [26] 0.00042 Pedrycz's model [31] 0.320 
FuNN model [27] 0.00051 Xu's model [32] 0.328 
ANFIS model [28] 0.00073 Sugeno's model [33] 0.355 

Hauptmann's model [29] 0.134 Pedrycz's model [34] 0.395 
Surmann's model [30] 0.160 Lee's model [35] 0.407 

Boosted Elman networks 0.224 Tong's model [36] 0.469 
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Fig. 5  The mean-squared-error curve of a single network of the Box-Jenkins 
series 

VI. SUMMARY 
In this paper, an ensemble of Elman recurrent networks 

coupled with a modified AdaBoost algorithm has been 
employed to handle time series data regression problems.  
AdaBoost is simple and easy-to-use, and can be flexibly 
combined with other learning systems that establish only weak 
hypotheses because it requires minimum prior knowledge 
about the weak learners.  Furthermore, AdaBoost comes with 
theoretical justifications [37], i.e. the bias-variance 
decomposition and the margin distribution of generalization 
error that can iteratively drive the final prediction error to zero 
given sufficient data and weak learners that can reliably 
provide only moderately accurate weak hypotheses, with their 
errors kept below 50%. 

It has been recognized that good and effective ensembles 
must have accurate but diverse members.  Here, an ensemble 
of Elman networks that differ only in their random initial 
weights was able to perform very well by using the modified 
AdaBoost algorithm.  Modified AdaBoost is used for directly 
weighting the cost function of ANN predictors, rather than for 
sampling the training samples.  Empirical evaluations of the 
boosted networks using two benchmark data sets have been 
presented.  The simulation studies indicated the boosted 
Elman networks produced reasonably good ensembles that 
demonstrate good generalization capabilities and high 
performances in time series prediction tasks.  The results from 
the boosted networks always outperformed those from the 
individual networks.  The results also showed that the boosted 
networks were comparable with those from other models. 

For further work, the findings in [37] serve as a good 
source to study the theoretical properties of the modified 
AdaBoost algorithm.  In addition, more real-world time-series 
prediction problems have to be performed to further ascertain 
the applicability of the ensemble of Elman networks.  The 
results have to be compared not only with those from ANN-
based systems but also other established statistical techniques 
that have been widely used in undertaking time-series 
regression problems. 

45

50

55

60

65

1 51 101 151 201 251

time

-3

-2

-1

0

1

2

3

1 51 101 151 201 251

t ime

(a) 

(b) 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1478

 

 

REFERENCES 
[1] R.N. Miller and L.L. Ehret, “Ensemble generation for models of 

multimodal systems”, Monthly Weather Review, vol. 130, pp. 2313-
2333, 2002. 

[2] J. G. Carney and P. Cunningham, “The NeuralBAG algorithm:  
Optimizing generalization performance in bagged neural networks,” 
Proc. 7th European Symp. Artificial Neural Networks, M. Verleysen, Ed.  
D-Facto, Brussels, 1999 pp. 35-40. 

[3] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 
179-211, 1990. 

[4] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of 
on-line learning and an application to boosting,” Journal of Computer 
and System Sciences, vol. 55, no. 1, pp. 119-139, 1997. 

[5] T. Masters, Practical Neural Network Recipes in C++.  San Diego, CA:  
Academic Press, Inc., 1993. 

[6] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE 
Trans. Pattern Anal. Machine Intell., vol. 12, no. 10, pp. 993-1001, 
1990. 

[7] Y. Liu and X. Yao, “Negatively correlated neural networks can produce 
best ensembles,” Australian Journal of Intelligent Information 
Processing Systems, vol. 4, no. 3/4, pp. 176-185, 1997. 

[8] F. Fessant, S. Bengio, and D. Collobert, “On the prediction of solar 
activity using different neural network models,” Annales Geophysicae, 
vol. 14, pp. 20-26, 1995. 

[9] H. Schwenk and Y. Bengio, “Boosting Neural Networks,” Neural 
Computation, vol. 12, no. 8, pp. 1869-1887, 2000. 

[10] R. E. Schapire and Y. Singer, “Improved boosting algorithms using 
confidence-rated predictions,” Machine Learning, vol. 37, no. 3, pp. 
297-336, 1999. 

[11] J.R. Quinlan, “Bagging, Boosting, and C4.5” Proc of the Thirteenth 
National Conference on Artificial Intelligence and the Eighth Innovative 
Applications of Artificial Intelligence Conference, pp. 725-730, 1996. 

[12] T. G. Dietterich, “An experimental comparison of three methods for 
constructing ensembles of decision trees: bagging, boosting, and 
randomization,” Machine Learning, vol. 40, no. 2, pp. 139-158, 2000. 

[13] R. S. Zemel and T. Pitassi, "A gradient-based boosting algorithm for 
regression problems," Advances in Neural Information Processing 
Systems 13, T. Leen, T. Dietterich, and V. Tresp eds., the MIT Press, 
2001, pp. 696-702. 

[14] H. Drucker, “Fast committee machines for regression and classification,” 
Third Int. Conf. Knowledge Discovery and Data Mining (KDD’97), D. 
Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy eds., Menlo 
Park, CA:  AAADietterichI Press, 1997, pp. 159-162. 

[15] H. Drucker, “Improving regressors using boosting techniques,” Proc. 
Fourteenth Int. Conf. Machine Learning (ICML’97), D. H. Fisher, Ed.  
Morgan Kaufmann, 1997, pp. 107-115. 

[16] S. Borra and A. Di Ciaccio, “Improving nonparametric regression 
methods by bagging and boosting,” Computational Statistics & Data 
Analysis, vol. 38, pp. 407-420, 2002. 

[17] G. Giacinto and F. Roli, “An approach to the automatic design of 
multiple classifier systems,” Pattern Recognition Letters, vol. 22, pp. 25-
33, 2001. 

[18] P. Stagge and B. Sendhoff, "An extended Elman net for modeling time 
series,” Int. Conf. Artificial Neural Networks (ICANN´97), W. Gerstner, 
A. Germond, M. Hasler, and J. Nicoud, eds., Springer Verlag, 1997, vol. 
1327 of Lecture Notes in Computer Science, pp. 427-432. 

[19] W.Y. Goh, C.P. Lim, and K.K. Peh, “Predicting Drug Dissolution 
Profiles with an Ensemble of Boosted Neural Networks: A Time-series 
Approach”, IEEE Trans. on Neural Networks, vol. 14, pp. 459-463, 
2003.  Y. Freund and R. E. Schapire, “A short introduction to boosting,” 
Journal of Japanese Society for Artificial Intelligence, vol. 14, no. 5, pp. 
771-780, (Appearing in Japanese, translation by Naoki Abe.), 1999. 

[20] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer 
neural networks by choosing initial values of the adaptive weights,” 
Proc. Int. Joint Conf. Neural Networks, vol. 3, pp. 21-26, 1990. 

[21] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning internal 
representations by error propagation”.  Parallel Distributed Processing:  
Explorations in the microstructure of cognition, D. E. Rumelhart and J. 
L. McClelland, Eds.  Cambridge, MA:  MIT Press, 1986 vol. 1, pp. 318-
362. 

[22] M. Nørgaard, O. Ravn, N. K. Poulsen, and L. K. Hansen.  (2000).  
Neural Networks for Modelling and Control of Dynamic Systems.  
London:  Springer-Verlag.  [Online].  Available: 
http://www.iau.dtu.dk/nnspringer.html 

[23] A. A. M. Khalaf and K. Nakayama, “A cascade form predictor of neural 
and FIR filters and its minimum size estimation based on nonlinearity 
analysis of time series,” IEICE Trans. Fundamentals, vol. E81-A, no. 3, 
pp. 364-373, 1998. 

[24] J. A. Leonard, M. A. Kramer, and L. H. Ungar, “A neural network 
architecture that computes its own reliability,” Computers & Chemical 
Engineering, vol. 16, no. 9, pp. 819-835, 1992. 

[25] G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting and 
Control.  San Francisco:  Holden-Day, 1970. 

[26] J. Kim and N. Kasabov, “HyFIS:  Adaptive neuro-fuzzy inference 
systems and their application to nonlinear dynamical systems,” Neural 
Networks, vol. 12, pp. 1301-1319, 1999. 

[27] N. Kasabov, J. Kim, M. Watts, and A. Gray, “FuNN/2 — A fuzzy neural 
network architecture for adaptive learning and knowledge acquisition,” 
Information Sciences, vol. 101, no.3-4, pp. 155-175, 1997. 

[28] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft 
Computing:  A Computational Approach to Learning and Machine 
Intelligence.  Upper Saddle River, NJ:  Prentice-Hall, 1997. 

[29] W. Hauptmann and K. Heesche, “A neural net topology for bidirectional 
fuzzy-neuro transformation,” Proc. IEEE Int. Conf. Fuzzy Systems 
(FUZZ-IEEE/IFES), Yokohama, Japan, 1995, pp. 1511-1518. 

[30] H. Surmann, A. Kanstein, and K. Goser, “Self-organizing and genetic 
algorithms for an automatic design of fuzzy control and decision 
systems,” Proc. First European Congress on Fuzzy and Intelligent 
Technologies (EUFIT’93), Aachen, 1993, vol. 1, pp. 1097-1104. 

[31] W. Pedrycz, “An identification algorithm in fuzzy relational systems,” 
Fuzzy Sets and Systems, vol. 13, pp. 153-167, 1984. 

[32] C.-W. Xu and Y.-Z. Lu, “Fuzzy model identification and self-learning 
for dynamic systems,” IEEE Trans. Syst., Man, Cybern., vol. 17 no. 4, 
pp. 683-689, 1987. 

[33] M. Sugeno and T. Yasukawa, “Linguistic modelling based on numerical 
data,” Proc. Fourth Int. Fuzzy Systems Association World Congress 
(IFSA’91), R. Lowen and M. Roubens, Eds.  Brüssels, Belgium:  
Computer, Management & Systems Science, 1991, pp. 264-267. 

[34] W. Pedrycz, P. C. F. Lam, and A. F. Rocha, “Distributed fuzzy system 
modelling,” IEEE Trans. Syst., Man, Cybern., vol. 25, no. 5, pp. 769-
780, 1995. 

[35] Y.-C. Lee, C. Hwang, and Y.-P. Shih, “A combined approach to fuzzy 
model identification,” IEEE Trans. Syst., Man, Cybern., vol. 24, no. 5, 
pp. 736-744, 1994. 

[36] R. M. Tong, “The evaluation of fuzzy models derived from experimental 
data,” Fuzzy Sets and Systems, vol. 4, pp. 1-12, 1980. 

[37] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the 
margin: A new explanation for the effectiveness of voting methods,” 
Annals of Statistics, vol. 26, no. 5, pp. 1651-1686, 1998. 

 
 
 
 
 
 
 
 
 
 
 
 
 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1479

 

 

 

CP Lim received the BEng(Elect.) degree with first 
class honors from the University of Technology 
Malaysia in 1992, the MSc(Eng) and PhD degrees 
from the University of Sheffield, UK in 1993 and 
1997.  He is currently Associate Professor at School 
of Electrical & Electronic Engineering, University 
of Science Malaysia.  His research interests include 
soft computing, pattern classification, medical 
diagnosis, and fault detection and diagnosis. 

Dr. Lim has published more than 100 technical papers, and received six best 
paper awards at national and international conferences.  He is recipient of the 
Japan Society for the Promotion of Science Research Fellowship (2002), 
Fulbright Scholarship (2002), and Commonwealth Fellowship (2003), as well 
as The Outstanding Young Malaysians Award (2001) and National Young 
Scientist Award (2002) of Malaysia. 
 
 
  

WY Goh received her BTech and MSc(Eng.) 
degrees from University of Science Malaysia in 
1999 and 2002, respectively.  Her research interests 
include theory and application of artificial neural 
network models to time series data regression and 
drug dissolution profile prediction. 

 
 
 
 
 
 


