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Abstract—Due to the importance of yield curve and its 

estimation it is inevitable to have valid methods for yield curve 
forecasting in cases when there are scarce issues of securities and/or 
week trade on a secondary market. Therefore in this paper, after the 
estimation of weekly yield curves on Croatian financial market from 
October 2011 to August 2012 using Nelson-Siegel and Svensson 
models, yield curves are forecasted using Vector autoregressive 
model and Neural networks. In general, it can be concluded that both 
forecasting methods have good prediction abilities where forecasting 
of yield curves based on Nelson Siegel estimation model give better 
results in sense of lower Mean Squared Error than forecasting based 
on Svensson model Also, in this case Neural networks provide 
slightly better results. Finally, it can be concluded that most 
appropriate way of yield curve prediction is Neural networks using 
Nelson-Siegel estimation of yield curves. 
 

Keywords—Nelson-Siegel model, Neural networks, Svensson 
model, Vector autoregressive model, Yield curve 

I. INTRODUCTION 
HE yield curve is a representation of the relationship 
between market remuneration rates and the remaining 

time to maturity of debt securities, also known as the term 
structure of interest rates [1]. A full range of activities in the 
financial markets is actually determined by the relationship 
between the interest rate and maturity.  

To estimate the yield curve central banks and financial 
managers use different models. In most cases dominate 
Svensson and Nelson-Siegel models [2]. Both models have 
their advantages and disadvantages. Nelson Siegel model is 
extremely popular in the practice; both individual investors 
and the central banks use this model. This model is simple and 
stable for the evaluation, it is quite flexible and very well 
suited for assessing yields for more bonds or one bond and for 
the time series of returns, for a large number of countries and 
time periods and for different classes of bonds. It also has 
good prediction ability [3]. Svensson model is an extension of 
the Nelson-Siegel model, which provides sufficient precision 
adjustment and smooth curve shape of periodic rents. It has 
become very popular in the mid 90's. Since then, it has been 
used by the substantial number of central banks worldwide to 
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assess the bond structure with a single coupon and future 
interest rates (forward rates). However, the model has some 
weaknesses, such as limited ability to adapt irregular shapes of 
the yield curve, the tendency of taking extreme values at the 
bottom of the curve and a relatively strong dependence on the 
estimations in different or even nonadjacent segments of the 
yield curve [3]. 

In Croatia still does not exist an official yield curve due to a 
scarce issue of Croatian bonds denominated in Kuna and weak 
trade on a secondary market. Due to the fact that a proper 
yield curve is not estimated for Croatian financial market, but 
also because of its obvious importance, it is necessary to 
provide a tool for yield curve forecasting purposes. In this 
paper two forecasting methodologies are contrasted: a vector 
autoregressive model and a neural network approach. 

In the first part of the paper theoretical overview of the 
yield curve is provided, followed by an explanation of two 
most commonly used models for yield curve estimation: 
Nelson-Siegel and Svensson model. In the third part of the 
paper two forecasting methodologies are presented, and used 
as a forecasting tool in fourth part of the paper. Finally, the 
main conclusions of the paper are given in the last section. 

II. YIELD CURVE ESTIMATION METHODS 

A. Nelson-Siegel Model 
Often used model for developing yield curve in the practice 

is the Nelson-Siegel model [4]. Nelson and Siegel introduced 
a simple, parsimonious model, which can adapt to the range of 
shapes of yield curves: monotonic, humped and S shape. 

A class of functions that readily generates the typical yield 
curve shapes is that associated with solutions to differential or 
difference equations [5]. If the instantaneous forward rate at 
maturity T, f(t,T), is given by the solution to a second-order 
differential equation with real and unequal roots, it is of the 
form: 
 

( ) 1 2
0 1 2,

T t T t

f t T e eτ τβ β β
− −

− −

= + +                  (1)  
                                  

where 1τ  and 2τ  are time constants associated with the 
equation, and 0β , 1β  and 2β  are determined by initial 
conditions.  

Now, zero-coupon rates ( )R t  can be calculated by 
averaging the corresponding instantaneous forward rates:  
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A more parsimonious model that can generate the same 

range of shapes is given by the equation solution for the case 
of equal roots: 
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T t T tT tf t T e eτ τβ β β
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By substituting (3) into (2) and integrating, and after a 

simple rearrangement of this expression, the yield to maturity 
is given by:  
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 (4) 

 
It is obvious that the forward and zero-coupon yield curves 

are functions of four parameters: 0β , 1β , 2β  and τ . 
It can be seen that 

 
( ) 0lim ,

T
R t T β

→∞
=                             (5) 

 
and 0β  corresponds to zero-coupon rates for very long 
maturities.  

At the short end of the curve it is: 
 

( ) 0 1lim ,
T t

R t T β β
→

= +                        (6)  

            
which implies that the sum of parameter values 0β and 1β  
should be equal to the level of the shortest interest rates.  

If 1β  is negative, the forward curve will have a positive 
slope and other way round. The parameter 2β , indicates the 
magnitude and the direction of the hump and if it is positive, a 
hump will occur at τ  whereas, in case it is negative, a U-
shaped value will occur at τ . It can be concluded that 
parameter τ  which is positive, specifies the position of the 
hump or U-shape on the entire curve. Consequently, Nelson 
and Siegel propose that with appropriate choices of weights 
for these three components, it is possible to generate a variety 
of yield curves based on forward rate curves with monotonic 
and humped shapes [5]. 

B. Svensson Model 
Svensson [6] extended Nelson-Siegel model by introducing 

additional parameters that allow yield curve to have an 
additional hump. Thus this model is considered to be 
computably more demanding. Svensson suggested forward 
curve to be estimated as:  

 

( ) 1 1 2
0 1 2 3

1 2

,
T t T t T tT t T tf t T e e eτ τ τβ β β β

τ τ

− − −
− − −− −
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The corresponding yield to maturity is of the form: 
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(8) 
 

From (7), it can be noticed that the 2β  is identical to the 2β  
term from the Nelson-Siegel model with τ  replaced by 1τ . 

The two additional parameters 3β  and 2τ  explain the 
extended flexibility of the Svensson approach. The parameter 

3β  defines the form (convex or concave) of the second hump 
of the spot interest rate curve, and the parameter 2τ , like 1τ  in 
the Nelson-Siegel model, defines its position [7]. 

III. FORECASTING METHODS 

A. Vector Autoregressive Model 
Diebold and Li [8] chose, among the others, Vector 

Autoregressive (VAR) model to forecast parameters (factors) 
of the Nelson-Siegel model. VAR model groups all the factors 
to take into account the interaction between all the states 
variables [9]. 

VAR is a multivariate time series model that consists of 
multiple equations [10]. VAR model defined with n 
endogenous variables and k lags can be written as: 

 

0 1 1 ...t t k t k t tZ a A Z A Z BD ε− −= + + + + +                   (9) 
 
where Zt is n-dimensional vector of potentially endogenous 
variables, A1,..., Ak are n x n coefficient matrices, Dt is a vector 
of other exogenous variables with coefficient matrix B. Vector 
a0 is a vector of constants (intercept) and εt is vector of error 
terms, i.e. n-dimensional white noise process. The parameters 
of VAR model can be estimated using ordinary least squares 
method, where the optimal order, i.e. number of lags k can be 
found using information criteria: final prediction error (FPE), 
Akaike's information criterion (AIC), Schwarz's Bayesian 
information criterion (SBIC), and the Hannan and Quinn 
information criterion (HQIC). The advantages of VAR models 
are: simplicity of the model (it is not necessary to classify 
endogenous and exogenous variables in the model), ease of 
estimation (each equation can be estimated with ordinary least 
square method), quality of forecasted estimates.  

B. Neural Networks 
Neural network (NN) is an artificial intelligence method, 

which has recently received a great deal of attention in many 
fields of study. NN can be seen as a non-parametric statistical 
procedure that uses the observed data to estimate the unknown 
function [11]. A wide range of statistical and econometric 
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models can be specified modifying activation functions or the 
structure of the network (number of hidden layers, number of 
neurons etc.) [12]: multiple regression, vector autoregression, 
logistic regression, time series models, etc. NN often give 
better results than statistical methods because of their 
possibility of analyzing the missing data, data with noise and 
learning from the previous data. Empirical researches show 
that NN are successful in forecasting extremely volatile 
financial variables that are hard to predict with standard 
statistical methods such as: exchange rates [13], interest rates 
[14] and stocks. More recently they have been used to forecast 
estimated parameters of the yield curve ([8], [9] and [15]). 

NN usually have input, hidden and output layer. Input 
neurons receive data from the external world and send it to 
one or more hidden neurons. In the hidden layer information 
from neurons are processed and sent to output neurons. 
Information than backpropagate through network and the 
values of weights between neurons are adjusted to the target 
output. The process in the network is repeated as much 
iterations (epochs) as needed to reach the output that is the 
closest to the targeted output.  

For the given inputs with known outputs the goal is to train 
the network in order to estimate the functional form between 
inputs and outputs. To accomplish the learning some form of 
an objective function is required, in order to optimize the 
weights. Most commonly used goal function is the sum of 
squared errors defined as: 

 
∑ ∑       (10) 

 
where the subscript p refers to observation, with a total of n 
observations, the subscript k to output unit with a total of O 
outputs, y is the observed response, and  is the predicted 
response. This is a sum of squared difference between the 
observed and predicted response averaged over all inputs and 
observations.  

To understand backpropagation learning, firstly the way 
information is passed forward through the network is 
presented. The process starts with the input units being 
presented to the input layer. Input layer simply transfers data 
to the hidden layer. The input into the j-th hidden neuron is: 

 
∑          (11) 

 
here N is total number of input nodes,  is the weight from 
input unit i to output unit j, and  is the value of the i-th 
input for pattern p. The j-th hidden unit applies an activation 
function to its net inputs and outputs: 
 

        (12) 
 
assuming that g(·) is a sigmoid (logistic) function. Using 
nonlinear activation function allows a neural network to 
capture nonlinearity in data. 

Similarly, output unit k receives a net input of: 
 

∑          (13) 
 

where M is the number of hidden units, and  represents the 
weight from hidden unit j to output k. The unit than outputs 
the quantity: 
 

          (14) 
 

assuming that g(·) is a identity (linear) function. 
The goal is to find the set of weights , the weights 

connecting the input and hidden layer, and , the weights 
connecting hidden and output layer, which minimize the sum 
of squared errors given in (10). 

In this case logistic activation function is used in the hidden 
layer and identity (linear) in the output layer.  

IV. DATA AND METHODOLOGY 

In order to calculate yield curve on a Croatian financial 
market data from Zagreb money market, where data for 
treasury bills can be found, and Reuters data base, where data 
for government bonds can be found, is collected. Yield curves 
are calculated on a weekly basis from 7th October 2011 to 24th 
August 2012 using both Nelson-Siegel and Svensson model. 
Even though on these dates there was pour trade on treasury 
bills and bonds (on observed dates the number of securities 
traded was mostly 10), yield curves are successfully estimated 
using above mentioned formulas. 

 

 
Fig. 1 Yield curves on Croatian financial market using Nelson-Siegel 

model 
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Fig. 2 Yield curves on Croatian financial market using Svensson 

model 
 
Parameters 0β , 1β , 2β  and τ are estimated for Nelson-

Siegel model, and 0β , 1β , 2β  , 3β  and 1τ  and 2τ for Svensson 
model in MS Office Excel using least square method with 
quasi-Newton. In the case where it was particularly difficult to 
estimate parameters, using Simplex method in Statistica 
starting points for an estimation of parameters are generated. 
These appropriate start values are then used in subsequent 
quasi-Newton iterations1. Figs. 1 and 2 present calculated 
yield curves using Nelson-Siegel and Svensson models 
respectively. 

Tables I and II show means, standard deviations, and 
extreme low and high values of estimated parameters on 
Croatian financial market through the whole sample period for 
Nelson-Siegel and Svensson model respectively. For Nelson-
Siegel model parameter 0β corresponds to zero-coupon rates 
for very long maturities and equals 6.95% on average. The 
sum of parameters 0β  and 1β  represents the level of the 
shortest interest rates and equals 2.13% on average. Since 1β  
is negative, the curve has a positive slope. The parameter 2β , 
indicates the magnitude and the direction of the hump at time 
τ  and since it is nearly equal to zero (0.0039 on average) the 
curves have a monotonic shape. In Svensson model the long 
term interest rate equals 7.45% on average, the short term 
interest rate is 1.72% on average, the parameter 2β which is 
negative indicates that an U-shape occurs at time 1τ =0.891 

and 3β which is positive indicates the position of a hump at 
time 2τ =0.6559. 

Table I shows high volatility of parameter τ  from the 
Nelson-Siegel model with standard deviation of 0.95 and 
extreme values (minimum and maximum values) ranging from 
0.04 to 3.94. The same situation is with the parameters 2β  ,

3β  and 1τ  and 2τ  from the Svensson model, given in Table II. 
 

 
1 Simplex method is generally less sensitive to local minima and is usually 

used in combination with the quasi-Newton method [16] 

TABLE I 
DESCRIPTIVE STATISTICS OF ESTIMATED PARAMETERS USING NELSON-

SIEGEL MODEL 
Parameters Mean Std. Dev. Min Max 

0β  0.0695 0.0062 0.0460 0.0808 

1β  -0.0482 0.0119 -0.0675 -0.0123 
τ  0.9001 0.9454 0.0478 3.9361 

2β  0.0039 0.0344 -0.0894 0.0970 

Source: Author 
 

TABLE II 
DESCRIPTIVE STATISTICS OF ESTIMATED PARAMETERS USING SVENSSON 

MODEL 
Parameters Mean Std. Dev. Min Max 

0β  0.0745 0.0103 0.0473 0.1051 

1β  -0.0573 0.0155 -0.0919 -0.0171 

1τ  0.8910 0.8558 0.0095 4.4552 

2β  -0.1912 0.9062 -5.0478 1.3427 

3β  0.2183 0.8999 -1.2840 5.0358 

2τ  0.6559 0.6665 0.0359 2.7959 

Source: Author 
 

After the estimation of the parameters using Nelson-Siegel 
model and Svensson model, yield curves are forecasted using 
Vector autoregressive and Neural network models, by 
predicting parameters 0β , 1β , 2β  and τ  for Nelson-Siegel 
model, and 0β , 1β , 2β , 3β  and 1τ  and 2τ for Svensson 
model.  

The parameters are predicted using Vector autoregressive 
(VAR) model in Stata11 by dividing the sample on two sets: 
first, the test set from 7th October 2011 until 15th June 2012 
and second, the validation set from 22nd June 2012 until 24th 
August 2012. Based on final prediction error (FPE) and 
Akaike's information criterion (AIC) VAR (1) model is 
chosen, which can is defined as:  

 

0 1 1t t tZ a A Z ε−= + +           (15)  
 
VAR (1) model is tested on test set and based out-of-sample 

forecast of parameters mean square error (MSE) is calculated 
both for Nelson-Siegel and Svensson model. The results are 
presented in Tables III and V respectively.  

For prediction of Nelson-Siegel and Svensson parameters 
using Neural networks (NN), training sample from 7th October 
2011 until 11th May 2012, testing sample from 18th May 2012 
until 15th June 2012 and validation sample from 22nd June 
2012 until 24th August 2012 is used. MLP model with one 
hidden layer is used with the process of trial and errors for 
defining the right number of units in a hidden layer and the 
activation function. The best neutral networks are: MLP 4-14-
4 for Nelson-Siegel model and MLP 6-18-6 for Svensson 
model; logistic activation function in hidden layer and identity 
activation function in output layer are set in advance. Based on 
validation sample (the same as out-of-sample forecast in VAR 
(1)) mean square error (MSE) is calculated and given in 
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Tables IV and VI for Nelson-Siegel and Svensson model 
respectively. 

Neural network model gives marginally smaller MSE than 
VAR based method for Nelson-Siegel model (Tables III and 
IV). Both models predict the values of parameters 0β , 1β  and 

2β  extremely well, ending with small mean square errors. 
However, due to the fact that estimated parameter τ  is 
varying extremely through forecasting period, both models’ 
forecasting abilities are weak, ending with much larger mean 
square errors. Fig. 3 shows the yield curve estimated with 

Nelson-Siegel model on 22nd June 2012 and yield curves 
predicted with neural network and vector autoregressive 
model. It shows good short term forecast abilities of both 
models and marginally better results of NN model. Fig. 4 
shows the yield curve estimated with Nelson-Siegel model on 
24th August 2012 and yield curves predicted with neural 
network and vector autoregressive model. It shows long term 
forecast abilities of both models and it can be concluded that 
both models perform slightly worse in longer term forecast 
horizons. 

 
TABLE III 

ESTIMATED AND PREDICTED PARAMETERS OF NELSON-SIEGEL MODEL USING VAR (1) WITH MSE  

Date 0β  0β̂  1β 1̂β τ  τ̂  2β 2β̂  
22.6.2012 0.0713 0.0684 -0.0402 -0.0507 2.7827 0.7737 0.0313 0.0032 
29.6.2012 0.0792 0.0685 -0.0422 -0.0493 2.3586 0.8435 0.0000 0.0082 
6.7.2012 0.0769 0.0693 -0.0444 -0.0495 1.7828 0.7983 0.0000 0.0054 

13.7.2012 0.0619 0.0695 -0.0490 -0.0493 0.1801 0.8057 0.0000 0.0042 
20.7.2012 0.0694 0.0695 -0.0419 -0.0491 0.8197 0.8234 0.0000 0.0043 
27.7.2012 0.0659 0.0695 -0.0497 -0.0490 0.4400 0.8286 0.0000 0.0044 
3.8.2012 0.0688 0.0695 -0.0394 -0.0490 1.0312 0.8290 0.0000 0.0044 

10.8.2012 0.0667 0.0695 -0.0462 -0.0490 0.5670 0.8294 0.0000 0.0044 
17.8.2012 0.0669 0.0695 -0.0443 -0.0490 0.6059 0.8297 0.0000 0.0044 
24.8.2012 0.0663 0.0695 -0.0458 -0.0490 0.5763 0.8298 0.0000 0.0044 

MSE 0.0166 0.0193 2.8403 0.0319 
Source: Author 

 
TABLE IV 

ESTIMATED AND PREDICTED PARAMETERS OF NELSON-SIEGEL MODEL USING NN (4-14-4) WITH MSE 

Date 0β  0β̂  1β  1̂β  τ  τ̂  2β  2β̂  

22.6.2012 0.0713 0.0696 -0.0402 -0.0482 2.7827 0.8623 0.0313 0.0051 
29.6.2012 0.0792 0.0695 -0.0422 -0.0482 2.3586 0.8654 0.0000 0.0049 

6.7.2012 0.0769 0.0696 -0.0444 -0.0482 1.7828 0.8651 0.0000 0.0049 
13.7.2012 0.0619 0.0696 -0.0490 -0.0482 0.1801 0.8647 0.0000 0.0050 
20.7.2012 0.0694 0.0696 -0.0419 -0.0482 0.8197 0.8628 0.0000 0.0051 
27.7.2012 0.0659 0.0696 -0.0497 -0.0482 0.4400 0.8643 0.0000 0.0050 

3.8.2012 0.0688 0.0696 -0.0394 -0.0482 1.0312 0.8631 0.0000 0.0051 
10.8.2012 0.0667 0.0696 -0.0462 -0.0482 0.5670 0.8645 0.0000 0.0050 
17.8.2012 0.0669 0.0696 -0.0443 -0.0482 0.6059 0.8636 0.0000 0.0050 
24.8.2012 0.0663 0.0696 -0.0458 -0.0482 0.5763 0.8638 0.0000 0.0050 

MSE 0.0158 0.0161 2.7706 0.0302 
Source: Author 

 
TABLE V 

ESTIMATED AND PREDICTED PARAMETERS OF SVENSSON MODEL USING VAR (1) WITH MSE 

Date 0β  0β̂  1β  1̂β  1τ  1̂τ  2β  2β̂  3β  3β̂  2τ  2̂τ  
22.6.2012 0.0716 0.0758 -0.0666 -0.1056 0.8059 0.5322 0.0000 -0.1640 0.1245 0.6318 0.0489 0.7047 
29.6.2012 0.0726 0.0771 -0.0584 -0.0827 0.4558 0.7231 -0.0972 -0.3082 0.1797 0.5484 0.1069 0.7544 

6.7.2012 0.0709 0.0765 -0.0560 -0.0792 2.9877 0.7017 0.0565 -0.2498 0.1287 0.4570 0.0797 0.7513 
13.7.2012 0.0736 0.0766 -0.0689 -0.0814 0.9757 0.6975 0.0000 -0.2813 0.1384 0.5041 0.0842 0.7581 
20.7.2012 0.0473 0.0766 -0.0260 -0.0811 4.4552 0.6947 0.1025 -0.2833 0.0603 0.5006 0.2402 0.7482 
27.7.2012 0.0756 0.0765 -0.0633 -0.0816 0.6421 0.6890 -0.1437 -0.2802 0.1585 0.5019 0.4186 0.7430 

3.8.2012 0.0718 0.0765 -0.0445 -0.0817 0.6645 0.6882 -0.1029 -0.2804 0.0931 0.5037 0.4577 0.7421 
10.8.2012 0.0495 0.0765 -0.0324 -0.0817 3.0436 0.6884 0.0882 -0.2796 0.0613 0.5029 0.1989 0.7421 
17.8.2012 0.0728 0.0765 -0.0533 -0.0817 0.3243 0.6886 0.0783 -0.2795 -0.1013 0.5026 0.6126 0.7425 
24.8.2012 0.0742 0.0765 -0.0562 -0.0817 0.5909 0.6888 0.2284 -0.2795 -0.2358 0.5025 0.7093 0.7427 

MSE 0.0409 0.0476 4.9696 1.0500 0.8470 1.7108 
Source: Author 
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TABLE VI 

ESTIMATED AND PREDICTED PARAMETERS OF SVENSSON MODEL USING NN (6-18-6) WITH MSE 

Date 0β  0β̂  1β  1̂β  1τ  1̂τ  2β  2β̂  3β  3β̂  2τ  2̂τ  

22.6.2012 0.0716 0.0776 -0.0666 -0.0577 0.8059 0.6628 0.0000 -0.0779 0.1245 0.1945 0.0489 0.7709 
29.6.2012 0.0726 0.0777 -0.0584 -0.0570 0.4558 0.6778 -0.0972 -0.0353 0.1797 0.1959 0.1069 0.7976 

6.7.2012 0.0709 0.0776 -0.0560 -0.0573 2.9877 0.6749 0.0565 -0.0678 0.1287 0.2129 0.0797 0.7947 
13.7.2012 0.0736 0.0797 -0.0689 -0.0516 0.9757 0.7988 0.0000 0.3840 0.1384 0.1969 0.0842 1.0330 
20.7.2012 0.0473 0.0777 -0.0260 -0.0568 4.4552 0.6843 0.1025 -0.0244 0.0603 0.1929 0.2402 0.8031 
27.7.2012 0.0756 0.0820 -0.0633 -0.0480 0.6421 0.8744 -0.1437 0.7416 0.1585 0.2016 0.4186 1.2255 

3.8.2012 0.0718 0.0772 -0.0445 -0.0578 0.6645 0.6738 -0.1029 -0.1127 0.0931 0.2049 0.4577 0.7759 
10.8.2012 0.0495 0.0778 -0.0324 -0.0564 3.0436 0.7022 0.0882 -0.0203 0.0613 0.2306 0.1989 0.8495 
17.8.2012 0.0728 0.0808 -0.0533 -0.0507 0.3243 0.8186 0.0783 0.5080 -0.1013 0.2068 0.6126 1.1159 
24.8.2012 0.0742 0.0772 -0.0562 -0.0584 0.5909 0.6612 0.2284 -0.1546 -0.2358 0.2175 0.7093 0.7639 

MSE 0.0449 0.0482 5.0453 1.1471 0.6138 2.0393 
Source: Author 

 
Vector autoregressive model gives marginally smaller MSE 

than NN based method for Svensson model (Tables V and VI) 
for most of the parameters. Both models predict the values of 
parameters 0β and 1β  well, ending with small mean square 
errors. However, due to the fact that estimated parameters 2β , 

3β  , 1τ  and 2τ  are varying extremely through forecasting 
period, both models’ forecasting abilities are weak, ending 
with much larger mean square errors. Fig. 5 shows the yield 
curve estimated with Svensson model on 22nd June 2012 and 
yield curves predicted with neural network and vector 
autoregressive model. It shows rather poor short term forecast 
abilities of both models. Fig. 6 shows the yield curve 
estimated with Svensson model on 24th August 2012 and yield 
curves predicted with neural network and vector 
autoregressive model. It shows long term forecast abilities of 
both models and it can be concluded that both models perform 
somewhat better than in the short term, but still not good 
enough.  

 

 
Fig. 3 Nelson-Siegel yield curve and predicted yield curves using 

VAR and NN models on 22.06.2012 
 
 
 
 

 
Fig. 4 Nelson-Siegel yield curve and predicted yield curves using 

VAR and NN models on 24.08.2012 
 

 
Fig. 5 Svensson yield curve and predicted yield curves using VAR 

and NN models on 22.06.2012 
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Fig. 6 Svensson yield curve and predicted yield curves using VAR 

and NN models on 24.08.2012 
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