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Texture Characterization Based on
a Chandrasekhar Fast Adaptive filter 

Mounir Sayadi and Farhat Fnaiech 

Abstract—In the framework of adaptive parametric modelling of 
images, we propose in this paper a new technique based on the 
Chandrasekhar fast adaptive filter for texture characterization. An 
Auto-Regressive (AR) linear model of texture is obtained by 
scanning the image row by row and modelling this data with an 
adaptive Chandrasekhar linear filter. The characterization efficiency 
of the obtained model is compared with the model adapted with the 
Least Mean Square (LMS) 2-D adaptive algorithm and with the co-
occurrence method features. The comparison criteria is based on the 
computation of a characterization degree using the ratio of "between-
class" variances with respect to "within-class" variances of the 
estimated coefficients. Extensive experiments show that the 
coefficients estimated by the use of Chandrasekhar adaptive filter 
give better results in texture discrimination than those estimated by 
other algorithms, even in a noisy context.  

Keywords—Texture analysis, Statistical features, Adaptive 
filters, Chandrasekhar algorithm. 

I. INTRODUCTION

EXTURE analysis plays an important role in several 
image processing and pattern recognition applications 

such as remote sensing, cartography, robot vision, military 
surveillance and medical imaging. It has long been the topic of 
intense research [1][6][13]. Texture can be found in the 
background of natural scenes as well, as filling elements of 
surface images, thus the textural features are an important 
pattern elements in image interpretation. Various methods for 
texture features extracting for texture characterisation have 
been proposed during the last two decades. One such method 
characterizes texture by discrete Wavelet representation 
[1][8][15]. Fractal based features have been also used as 
features for texture characterization [6]. These features depend 
mostly on textural characteristics than on intensity 
information. Several authors have made a comparison of the 
performance of various features for texture characterisation 
purpose. In addition, the co-occurrence matrix is a popular 
statistical technique for extracting textural features [15]. In 
[10], Ojala et al have compared four texture features: gray 
level differences, Laws texture features, center-symetric 
covariance features, and local binary patterns. One of the most 
promising methods for texture features extraction is the 
parametric modelling [7][12][13], where the coefficients of 
the AR parametric model are used for texture characterisation 
and synthesis. 
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Various adaptive parametric filters have been proposed for 
texture characterization. In [12], the AR coefficients estimated 
with the 2-D Fast Lattice RLS filter [7] are used for texture 
classification in a noiseless context. In [13], an adaptive 
approach in texture characterization with the transversal 2-D 
AR coefficients obtained from the 2-D OLRIV 
(Overdetermined Lattice Recursive Instrumental Variable) 
algorithm is presented. This algorithm uses higher order 
statistics. It is compared in [12] to the 2-D Fast Lattice RLS 
algorithm, based on second order statistic. It has been shown 
that although the effect of the additive gaussian noise is more 
important on the 2-D Fast Lattice RLS filter than the 2-D 
OLRIV filter, the 2-D FLRLS provides a good 
characterization of the texture model. It presents a large 
classification sensitivity.  

On the other hand, one of the approaches for decreasing the 
computation cost of the adaptive filtering algorithms is the use 
of the Chandrasekhar factorisation techniques [9][11]. The 
strength of this approach derives from the fact that it avoids 
the resolution of the standard Riccati equation of the Kalman 
filter. The derivation of fast adaptive algorithms based on 
Chandrasekhar fast equations using a state space model was 
presented in [3] and [4] for MA and ARMA linear filtering, 
respectively. It has been extended to the multichannel and 
non-linear filtering in [11]. The main contribution of the 
present work is the use of the coefficients issued from the fast 
Chandrasekhar adaptive filter as features for texture 
characterization. We will show how much these coefficients 
can improve the texture characterization in comparison with 
those estimated by other adaptive filters.  

II. THE IMAGE PARAMETRIC ADAPTIVE LINEAR MODEL

A texture image of size (L L) can be represented by a 2-D 
AR parametric linear model with quarter-plane support of 
order (p,q) i.e. , : 0 1,0 1R i j i p j p
with ( , ) (0,0)i j  as shown in Fig. 1. The value of a pixel 
at position (n,r) is represented by the following relationship:  
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n and r are in the interval 0..L-1. In the stationary case, the 
2-D AR filter coefficients lma  don't depend on the position of 
the pixel (n,r). 
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Fig. 1 The quarter-plane support 2-D scheme 

Fig. 2 The adaptive scanning mask from left to right and top to 
bottom 

To produce an approximate value for a given pixel, all the 
values of the pixel image which are covered by the sliding 
mask R, weighted by the 2-D AR filter coefficients and 
summed. The mask is then moved to the following location 
(Fig. 2). 

In the following, we give an overview on the 2-D Least 
Mean Square algorithm [5], based on the minimization of the 
mean square error between the filter output and the desired 
output. This algorithm is the most widely used adaptive filter 
due to its implementation simplicity. 

The steps of the 2-D LMS algorithm, when it is used for 
modelling a texture d of size (L L), are [5]: 

Step 1: Using a sliding window from left to right and top to 
bottom, calculate the adaptive filter output: 
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where 
k
lma  are the AR coefficients at index time k, being 

expressed according to coordinates of the pixel ),( rn  by 

rnLk . The filter coefficients 
k
lma  are initialised to zero 

in the first iteration. 

Step 2: Adaptation of the 2-D AR coefficients: 
For l  from 0  to 1p ,                For   m  from 0  to q-1 : 

),(),(),(
1

mrlnyrnyrndμaa
k
lm

k
lm .              (3) 

In texture modelling, the desired output ),( rnd  is the gray 
level value of the pixel (n,r) of the texture image to be 
modelled. μ  is the step size of the algorithm.  

III. THE PROPOSED CHANDRASEKHAR ADAPTIVE FILTER

To use the Chandrasekhar adaptive filter, we propose to scan 
the quarter plane model window row by row as shown in Fig. 
3.
Equation (1) can be then written in the following form:  

1

0
)(.)(

pq

i
i ikxbkx                                                            (4) 

Fig. 3 The transformation of the 2-D model 

In this model, two linear scanning indexes i and k are 
respectively i=m+lq and k= nL+r.

The sample x(k) corresponds to y(n,r) and x(k-1) to y(n,r-1). 
The coefficients ib  corresponding to lma are set in a vector b
of size N=pq-1. According to the works presented in [3][4] 
and [11], the Chandrasekhar fast adaptive algorithm can be 
applied to estimate the coefficients of the model (4).  

We summarize in the following the steps of this algorithm 
applied in texture modelling: [11] 
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Prediction error:  )()1()()( kbkUkdke
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                (11) 
Estimated coefficient vectors:  
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kekRkCkbkb .                                    (12) 
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d(k) represents the corresponding pixel of index (n,r) in the 
desired texture image. The algorithm is initialised with: 

10)1( NK  and 
2

)1( dR . By defining a pinning vector 

of length p: 
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dS . The matrix k0  is a k

vectors whose elements are zeros. The initial values of the 
coefficients ib  are set to zero.  For more details about the 
Chandrasekhar algorithm, the reader is referred to [11].  

IV. CHARACTERIZATION DEGREE OF THE FILTERS COEFFICIENTS

Consider a set of 25 different gray-scale textures of 
(256 256) pixels extracted from the Brodatz album [2] (Fig. 
5). From each texture, 100 sample images of (32 32) pixels 
are randomly chosen. Both Chandrasekhar filter and 2-D LMS 
AR coefficients are then evaluated for each one of the 
resulting 2500 sample images. A quarter-plane support with a 
sliding (3 3) order window. In order to check whether the use 
of the Chandrasekhar adaptive filter improves the texture 
characterization in comparison with the 2-D LMS adaptive 
filter, we propose to evaluate the characterization efficiency of 
the coefficients estimated by each adaptive filter. Thus we 
define a "characterization degree" J as the ratio between 
"inter-class" and "intra-class" deviations of each texture class 
[14]. For a given estimated coefficient, we define the "inter-
class" (between-class) deviation as the standard deviation of 
this coefficient with respect to the texture class variation. The 
"intra-class" (within-class) deviation is defined as the standard 
deviation of this coefficient in the same texture class with 
respect to various realizations. Total inter-class and intra-class 
deviations are calculated by averaging out all the coefficient 
standard deviations obtained from all independent realizations. 
Large inter-class deviations along with a small intra-class one 
yield a high characterization degree. The greater the 
characterization degree is, the more robust the classification 
process is. The comparison of the capability of the filter 
coefficients will be presented through the next two 
experiments.  

Experiment 1: Comparison of the characterization degree in a 
noisy context 

For each coefficient family class i.e. the Chandrasekhar 
adaptive coefficients and the 2-D LMS filter ones, we 
compute the "characterization degree" J as follows [14]:  

Note nkx ,  the nth estimated vector of coefficients for the kth

texture class ,251 k 1001 n . The mean of the kth

texture class vectors of coefficient is noted 

100

1
,100

1
n

nkk
xμ  and 

25

1
25
1

k
kc  notes the mean of 

all the coefficient vectors. The mean of the within-class (intra-
class) dispersion matrices is given by the matrix:  
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which is the maximum likelihood estimation of the 
covariance matrix of the class. Complementary to this is the 
mean of the between-class (inter-class) dispersion matrices 
which describes the scattering of the class sample means and 
is calculated by the matrix:  

25

1
inter 25

1

k

t
ckck μμμμS .                         (14) 

The "characterization degree"  J  proposed and detailed in 
[14] is given by: 

erra.SStraceJ int
1

int .                                             (15) 

The greater the characterization degree is, the more robust 
the classification process is. The comparison of the ability of 
the studied 2-D coefficients in presence of additive noise will 
be presented through the next simulation results. In Fig. 4, we 
plot the characterization degree J for both Chandrasekhar 
adaptive filter and 2-D LMS coefficients.  

For reason of comparison, the method based on the co-
occurrence matrices features [15] is also applied. The elements 
of the co-occurrence matrix Ci,j, represents how often pairs of 
pixels with values i and j separated by a specific distance 
occurs. The horizontal direction is used to obtain the co-
occurrence matrices. A set of seven standard features are 
extracted from these matrices for each studied image for each 
direction. These features are: the contrast, the energy, the 
entropy, the homogeneity, the maximum probability, the 
cluster shade and the cluster prominence of the co-occurrence 
matrix [15]. 

Four cases are considered: the noiseless case, and two Signal 
to Noise Ratio (SNR) values: 5 dB and 0 dB. An additive 
Gaussian noise and a 2-D order of 3 3 quarter-plane support 
have been used providing 8 AR coefficients. Clearly, the 
characterization degree of the Chandrasekhar filter is greater 
than that of the 2-D LMS filter and the co-occurrence method. 
In all cases, the increase of additive noise variance causes 
attenuation in the characterization degree. The additive noise 
perturbs the classification process. Therefore, the 
Chandrasekhar filter based coefficients are better texture 
discriminators than those of the other filters.  
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Fig. 4 Characterization degree of the Chandrasekhar filter 
coefficients, the 2-D LMS filter ones and the co-occurrence method 

features for various SNR values 
(Filter order of 3 3).

Experiment 2: Influence of the filter order 

In this experiment, the characterization degree is calculated 
for different filter orders ranging from 3 3 to 6 6 without any 
additive noise. Fig. 6 depicts the characterization degree with 
respect to the 2-D filter orders for both Chandrasekhar 
adaptive filter and 2-D LMS coefficients. It should be noted 
that for any order, the characterization degree provided by the 
Chandrasekhar adaptive filter coefficients is greater than the 
one provided by the 2-D LMS filter ones. Furthermore, the 
coefficients seem to give better characterization degree for a 
high filter order.  
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Fig. 6 Plot of the characterization degree with respect to the filter 
orders for the Chandrasekhar filter coefficients (*) and the 2-D LMS 

filter ones (o)

V. CONCLUSION

In this paper, we have proposed for the first time the 
adaptive Chandrasekhar filter coefficients as new parametric 
features for texture characterisation. The texture image is 
scanned row by row and filtered with the adaptive 
Chandrasekhar mono dimensional filter. We have shown how 
much the use of the Chandrasekhar adaptive filter in texture 
modelling can improve the texture characterization in 
comparison with the classical 2-D LMS adaptive filter. The 
estimated coefficients by the Chandrasekhar adaptive filter 
give better results in texture discrimination than those 
estimated by other classical algorithms, even in a noisy 
context. Further work taking into account the effect of the 
texture orientation and the scaling of the texture images on the 
estimated coefficients still remain to be done.  
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Bulle Netting Woven aluminum wire Pressed cork Wood

Fur Wool Cloths French canvas Woollen cloth 

Reptile skin Bubbles Raffia Oriental straw cloth Oriental straw cloth 

Grass Straw matting Random fibber Pressed calf leather Cheese cloth 

Brick wall Oriental fibber Cotton canvas Oriental grass cloth Water 
Fig. 5 The 25 Brodatz textures used in the study 


