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Abstract—Text Mining is around applying knowledge discovery 
techniques to unstructured text is termed knowledge discovery in text 
(KDT), or Text data mining or Text Mining. In decision tree 
approach is most useful in classification problem. With this 
technique, tree is constructed to model the classification process.  
There are two basic steps in the technique: building the tree and 
applying the tree to the database. This paper describes a proposed 
C5.0 classifier that performs rulesets, cross validation and boosting 
for original C5.0 in order to reduce the optimization of error ratio. 
The feasibility and the benefits of the proposed approach are 
demonstrated by means of medial data set like hypothyroid. It is 
shown that, the performance of a classifier on the training cases from 
which it was constructed gives a poor estimate by sampling or using a 
separate test file, either way, the classifier is evaluated on cases that 
were not used to build and evaluate the classifier are both are large. If 
the cases in hypothyroid.data and hypothyroid.test were to be 
shuffled and divided into a new 2772 case training set and a 1000 
case test set, C5.0 might construct a different classifier with a lower 
or higher error rate on the test cases. An important feature of see5 is 
its ability to classifiers called rulesets. The ruleset has an error rate 
0.5 % on the test cases. The standard errors of the means provide an 
estimate of the variability of results. One way to get a more reliable 
estimate of predictive is by f-fold –cross- validation. The error rate of 
a classifier produced from all the cases is estimated as the ratio of the 
total number of errors on the hold-out cases to the total number of 
cases. The Boost option with x trials instructs See5 to construct up to 
x classifiers in this manner. Trials over numerous datasets, large and 
small, show that on average 10-classifier boosting reduces the error 
rate for test cases by about 25%.  

Keywords—C5.0, Error Ratio, text mining, training data, test 
data. 
 

I.  INTRODUCTION 
ECISION tree approach is most useful in                                      
classification problems. With this technique, a tree is 

constructed to model the classification process. Once the tree 
is built, it is applied to each tuple in the database and results in 
a classification for that tuple. There are two basic steps in the 
technique: building the tree and applying the tree to the 
database.  
 

1) C 5.0 algorithm: [3] C5.0 (called See5 on windows) is a 
commercial version of C4.5 now widely used in many data 
mining packages such as Clementine and RuleQuest. It is 
targeted toward use with large datasets. The DT induction is 
close to that C4.5, but the rule generation is different. Unlike 
C4.5, the precise algorithms used for C4.5 have not been  
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divulged. C5.0 does include improvements to generate rules. 
Results show that C5.0 improves on memory usage by about 
90 percent, runs between 5.7 and 240 times faster than C4.5 
and produces more accurate rules. 
     One major improvement to the accuracy of C5.0 is based 
on boosting. Boosting is an approach to combining different 
classifiers. While boosting normally increase the time that it 
takes to run a specific classifier, it does improve the accuracy. 
Boosting does not always help when the training data contains 
a lot of noise. Boosting works by creating multiple training 
sets from one training set. Each item in the training set is 
assigned a weight. The weight indicates the importance of this 
item to the classification. A classifier is constructed for each 
combination of weights used. Thus, multiple classifiers are 
actually constructed. When C5.0 performs a classification, 
each classifier is assigned a vote, voting is performed, and the 
target tuple is assigned to the class with the most number of 
votes.            

2) Proposed C5.0 algorithm: The feasibility the benefits of the 
proposed approach are demonstrated by means of medial data 
set like hypothyroid. It is shown that, the performance of a 
classifier on the training cases from which it was constructed 
gives a poor estimate by sampling or using a separate test file, 
either way, the classifier is evaluated on cases that were not 
used to build and evaluate the classifier are both are large. If 
the cases in hypothyroid data and hypothyroid test  were to be 
shuffled and divided into a new 2772 case training set and a 
1000 case test set, C5.0 might construct a different classifier 
with a lower or higher error rate on the test cases. One way to 
get a more reliable estimate of predictive is by f-fold –cross- 
validation. The error rate of a classifier produced from all the 
cases is estimated as the ratio of the total number of errors on 
the hold-out cases to the total number of cases.    
    Another innovation incorporated in See5 is adaptive 
boosting, based on the work of Rob Schapire and Yoav 
Freund. The idea is to generate several classifiers (either 
decision trees or rulesets) rather than just one. When a new 
case is to be classified, each classifier votes for its predicted 
class and the votes are counted to determine the final class. 
 

A.  Performances of Decision Trees 
Decision trees [3] are powerful and popular tools for 

classification and prediction. The attractiveness of decision 
trees is due to the fact that, in contrast to neural networks, 
decision trees represent rules. Rules can readily be expressed 
so that humans can understand them or even directly used in a 
database access language like SQL so that records falling into 
a particular category may be retrieved. In some applications, 
the accuracy of a classification or prediction is the only thing 
that matters. In such situations we do not necessarily care how 
or why the model works. In other situations, the ability to 
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explain the reason for a decision is crucial. In marketing one 
has describe the customer segments to marketing 
professionals, so that they can utilize this knowledge in 
launching a successful marketing campaign. This domain 
expert must recognize and approve this discovered knowledge, 
and for this we need good descriptions. There are a variety of 
algorithms for building decision trees that share the desirable 
quality of interpretability. A well known and frequently used 
over the years is C4.5 (or improved, but commercial version 
See5/C5.0). A decision tree can be used to classify an example 
by starting at the root of the tree and moving through it until a 
leaf node, which provides the classification of the instance. 
Decision tree induction is a typical inductive approach to learn 
knowledge on classification. The key requirements to do 
mining with decision trees are: 

 Attribute-value description: object or case must be 
expressible in terms of a fixed collection of 
properties or attributes. This means that we need to 
discrete continuous attributes, or this must have been 
provided in the algorithm.  

 Predefined classes (target attribute values): The 
categories to which examples are to be assigned must 
have been established beforehand (supervised data).  

 Discrete classes: A case does or does not belong to a 
particular class, and there must be more cases than 
classes.  

 Sufficient data: Usually hundreds or even thousands 
of training cases. 

1) Which attribute is the best classifier? 
The estimation criterion in the decision tree algorithm [3] is 

the selection of an attribute to test at each decision node in the 
tree. The goal is to select the attribute that is most useful for 
classifying examples. A good quantitative measure of the 
worth of an attribute is a statistical property called information 
gain that measures how well a given attribute separates the 
training examples according to their target classification. This 
measure is used to select among the candidate attributes at 
each step while growing the tree.  

2) Issues in data mining with decision trees 
Practical issues in learning decision trees include 

determining how deeply to grow the decision tree, handling 
continuous attributes, choosing an appropriate attribute 
selection measure, handling training data with missing 
attribute values, handing attributes with differing costs, and 
improving computational efficiency. Below we discuss each 
of these issues and extensions to the basic ID3 algorithm that 
address them.  

3) Avoiding over-fitting the data  
In principle decision tree algorithm described in Fig. 2 can 

grow each branch of the tree just deeply enough to perfectly 
classify the training examples. While this is sometimes a 
reasonable strategy, in fact it can lead to difficulties when 
there is noise in the data, or when the number of training 
examples is too small to produce a representative sample of 

the true target function. In either of these cases, this simple 
algorithm can produce trees that over-fit the training examples. 
Over-fitting [3] is a significant practical difficulty for decision 
tree learning and many other learning methods. There are 
several approaches to avoiding over-fitting in decision tree 
learning. These can be grouped into two classes: 

• approaches that stop growing the tree earlier, before 
it reaches the point where it perfectly classifies the 
training data,  

• approaches that allow the tree to over-fit the data, and 
then post prune the tree.  

B.  Strengths and weakness of Decision Tree Methods 

The strengths of decision tree methods are: 

• Decision trees are able to generate understandable 
rules.  

• Decision trees perform classification without 
requiring much computation.  

• Decision trees are able to handle both continuous and 
categorical variables.  

• Decision trees provide a clear indication of which 
fields are most important for prediction or 
classification.  

The weaknesses of decision tree methods:  

• Decision trees are less appropriate for estimation 
tasks where the goal is to predict the value of a 
continuous attribute.  

• Decision trees are prone to errors in classification 
problems with many class and relatively small 
number of training examples.  

• Decision tree can be computationally expensive to 
train. The process of growing a decision tree is 
computationally expensive. At each node, each 
candidate splitting field must be sorted before its best 
split can be found. In some algorithms, combinations 
of fields are used and a search must be made for 
optimal combining weights. Pruning algorithms can 
also be expensive since many candidate sub-trees 
must be formed and compared.  

• Decision trees do not treat well non-rectangular 
regions. Most decision-tree algorithms only examine 
a single field at a time. This leads to rectangular 
classification boxes that may not correspond well 
with the actual distribution of records in the decision 
space.  

The remainder of this article is structured as follows. First, 
the state of the art is analyzed to motivate our work (Section 
II) and the C5.0 algorithm was described (Section III). Then, 
the model evaluation of C5.0 algorithm is introduced (Section 
IV). After that, preprocessing of dataset was described. 
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(Section V). Finally, the main findings are summarized and an 
outlook on future work is given (Section VI). 
 

II.  STATE OF THE ART 
In this section, the state of the art concerning rule sets, cross 

validation, boosting of C5.0 algorithm is investigated. The 
results of this survey will motivate a new approach. 
 

A.  Related Work 
These articles focus on error ratio using rulesets, cross 

validation, boosting of C5.0 algorithm. Rule sets, Cross 
validation, boosting methods are described in [1]. Here, we 
discuss examples of the combination of C5.0 and Proposed 
C5.0 algorithm. The feasibility the benefits of the proposed 
approach are demonstrated by means of medial data set like 
hypothyroid. The following steps are carrying out to classify 
decision tree methods like C5.0 algorithm [4]. 
 
1. Decision tree induction: Construct a DT using training   
    data 
2.  For each ti  є D, apply the DT to determine its class 
 

Since the application of a given tuple to a DT is relatively 
straightforward. 
  

B.  Motivation for a New Approach 
C5.0 [4] offers a number of improvements on C4.5. Some 

of these are: 

 Speed - C5.0 is significantly faster than C4.5 
(several orders of magnitude)  

 Memory Usage - C5.0 is more memory efficient 
than C4.5  

 Smaller Decision Trees - C5.0 gets similar 
results to C4.5 with considerably smaller 
decision trees.  

 Support For Boosting - Boosting improves the 
trees and gives them more accuracy.  

 Weighting - C5.0 allows you to weight different 
attributes and misclassification types.  

Winnowing - C5.0 automatically winnows the data to help 
reduce noise. 
 

III.  CLASSIFICATION WITH C5.0 ALGORITHM 
C5.0 (called See5 on windows) [4] is a commercial version 

of C4.5 now widely used in many data mining packages such 
as Clementine and RuleQuest. It is targeted toward use with 
large datasets. The DT induction is close to that C4.5, but the 
rule generation is different. Unlike C4.5, the precise 
algorithms used for C4.5 have not been divulged. C5.0 does 
include improvements to generate rules. Results show that 
C5.0 improves on memory usage by about 90 percent, runs 
between 5.7 and 240 times faster than C4.5 and produces more 
accurate rules. One major improvement to the accuracy of 
C5.0 is based on boosting. Boosting is an approach to 
combining different classifiers. While boosting normally 
increase the time that it takes to run a specific classifier, it 

does improve the accuracy. Boosting does not always help 
when the training data contains a lot of noise. Boosting works 
by creating multiple training sets from one training set. Each 
item in the training set is assigned a weight. The weight 
indicates the importance of this item to the classification. A 
classifier is constructed for each combination of weights used. 
Thus, multiple classifiers are actually constructed. When C5.0 
performs a classification, each classifier is assigned a vote, 
voting is performed, and the target tuple is assigned to the 
class with the most number of votes. 

In pseudocode the algorithm looks like this: 

• Check for base cases 
• For each attribute a 
• Find the normalized information gain from splitting 

on a 
• Let a_best be the attribute with the highest 

normalized    
• information gain 
 
• Create a decision node node that splits on a_best 
• recurse on the sublists obtained by splitting on a_best 

and add those nodes as children of node 

IV.  MODEL EVALUATION 
In this section, a schematic overview of rule sets, cross 

validation, boosting used for C5.0 algorithm. Then, the 
standard techniques are sketched and our innovative 
extensions are described in detail. 
 

A.  Rulesets 
Decision trees can sometimes be quite difficulty to 

understand. An important feature of C5.0 is its ability to 
generate classifiers called rulesets that consists of unordered 
collections of (relatively) simple if-then rules. Rulesets [1] are 
generally easier to understand than trees since each rule 
describes a specific context associated with a class. 
Furthermore, a ruleset generated from a tree usually has fewer 
rules than the tree has leaves, another plus for 
comprehensibility. (In this example, the first decision tree with 
14 leaves is reduced to seven rules.) Finally, rules are often 
more accurate predictors than decision trees -- a point not 
illustrated here, since the ruleset has an error rate of 0.5% on 
the test cases. For very large datasets, however, generating 
rules with the ruleset option can require considerably more 
computer time.  
 

B.  Cross-Validation Method 
The performance of a classifier on the training cases from 

which it was constructed gives a poor estimate of its accuracy 
on new cases. The true predictive accuracy of the classifier 
can be estimated by sampling, as above, or by using a separate 
test file; either way, the classifier is evaluated on cases that 
were not used to build it. However, this estimate can be 
unreliable unless the numbers of cases used to build and 
evaluate the classifier are both large. If the cases in 
hypothyroid.data and hypothyroid.test were to be shuffled and 
divided into a new 2772-case training set and a 1000-case test 
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set, See5 might construct a different classifier with a lower or 
higher error rate on the test cases. One way to get a more 
reliable estimate of predictive accuracy is by f-fold cross-
validation. The cases in the data file are divided into f blocks 
of roughly the same size and class distribution. For each block 
in turn, a classifier is constructed from the cases in the 
remaining blocks and tested on the cases in the hold-out block. 
In this way, each case is used just once as a test case. The 
error rate of a classifier produced from all the cases is 
estimated as the ratio of the total number of errors on the hold-
out [6] cases to the total number of cases.  

C.  Boosting 
Another innovation incorporated in See5 is adaptive 

boosting, based on the work of Rob Schapire and Yoav 
Freund. The idea is to generate several classifiers (either 
decision trees or rulesets) rather than just one. When a new 
case is to be classified, each classifier votes for its predicted 
class and the votes are counted to determine the final class. 
But how can we generate several classifiers from a single 
dataset? As the first step, a single decision tree or ruleset is 
constructed as before from the training data (e.g. 
hypothyroid.data). This classifier will usually make mistakes 
on some cases in the data; the first decision tree, for instance, 
gives the wrong class for 7 cases in hypothyroid.data. When 
the second classifier is constructed, more attention is paid to 
these cases in an attempt to get them right. As a consequence, 
the second classifier will generally be different from the first. 
It also will make errors on some cases, and these become the 
the focus of attention during construction of the third 
classifier. This process continues for a pre-determined number 
of iterations or trials, but stops if the most recent classifiers is 
either extremely accurate or inaccurate. The Boost option with 
x trials instructs See5 to construct up to x classifiers in this 
manner. Naturally, constructing multiple classifiers requires 
more computation that building a single classifier -- but the 
effort can pay dividends! Trials over numerous datasets, large 
and small, show that on average 10-classifier boosting reduces 
the error rate for test cases by about 25%.  

V.  DATA PRE-PROCESSING 
Even though See5 is relatively fast, building classifiers 

from large numbers of cases can take an inconveniently long 
time, especially when options such as boosting are employed. 
See5 incorporates a facility to extract a random sample from a 
dataset, construct a classifier from the sample, and then test 
the classifier on a disjoint collection of cases. By using a 
smaller set of training cases in this way, the process of 
generating a classifier is expedited, but at the cost of a 
possible reduction in the classifier's predictive performance. 
The Sample option with x% has two consequences. Firstly, a 
random sample containing x% of the cases in the application's 
data file is used to construct the classifier. Secondly, the 
classifier is evaluated on a non-overlapping set of test cases 
consisting of another (disjoint) sample of the same size as the 
training set (if x is less than 50%), or all cases that were not 
used in the training set (if x is greater than or equal to 50%). In 
the hypothyroid example, using a sample of 60% would cause 
a classifier to be constructed from a randomly-selected 1663 

of the 2772 cases in hypothyroid.data [6] then tested on the 
remaining 1109 cases. By default, the random sample changes 
every time that a classifier is constructed, so that successive 
runs of See5 with sampling will usually produce different 
results. This re-sampling can be avoided by selecting the Lock 
sample option that uses the current sample for constructing 
subsequent classifiers. If this option is selected, the sample 
will change only when another application is loaded, the 
sample percentage is altered, the option is unselected, or See5 
is restarted.  

VI.  EMPIRICAL RESULTS 
In this section we demonstrated the properties and 

advantages of our approach by means of data set like 
hypothyroid. The performance of classification algorithms is 
usually examined by evaluating the accuracy of the 
classification. However, since classification is often a fuzzy 
problem [1] [7], the correct answer may depend on the user. 
Traditional algorithm [2] evaluation approaches such as 
determining the space and time overhead can be used, but 
these approaches are usually secondary. Classification 
accuracy [4] is usually calculated determining the percentage 
of tuples placed in the correct class. This ignores the fact that 
there also may be a cost associated with an incorrect 
assignment to the wrong class. This perhaps should also be 
determined [12]. We examine the Performance of rulsets, 
cross validation, boosting for original C5.0 algorithm 
depending on error rate. The standard errors of the means 
provide an estimate of the variability of results. 

 

 
 
 

TABLE II 
ERROR RATIO (USING RULESETS) 

Dataset 
Factor of 

Proposed 
C5.0 
algorithm 
(PC5.0) 

Original 
C5.0 
algorithm 
(OC5.0) 

Faster by 

 
Hypothyroid 

 
0.5 % 

 
7.2 % 6.7 % 

                              
 
 
 
 
 
 
 
 
 
 

TABLE I 
PROPERTIES OF DATA SET 

Dataset 
Factor of 

Proposed 
C5.0 
algorithm 
(PC5.0) 

Original 
C5.0 
algorithm 
(OC5.0) 

Faster by 

 
Hypothyroid 

 
0.5 % 

 
7.2 % 6.7 % 
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Fig. 1 Error ratio for Rulesets 
 

TABLE III 
ERROR RATIO (USING 10-CROSS VALIDATION) 

Dataset 
Factor of 

Proposed 
C5.0 
algorithm 
(PC5.0) 
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C5.0 
algorithm 
(OC5.0) 

Faster by 

 
Hypothyroid  

 
0.3 % 

 
7.2 % 6.9 % 
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Fig. 2 Error ratio for 10-fold Cross Validation 
 

 
TABLE IV 

ERROR RATIO (USING BOOSTING) 

Dataset 
Factor of 

Proposed 
C5.0 
algorithm 
(PC5.0) 

Original 
C5.0 
algorithm 
(OC5.0) 

Faster by 

 
Hypothyroid  

 
0.2 % 

 
7.2 % 7.0 % 
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Fig. 3 Error ratio for Boosting 

VII.  CONCLUSION 
In this work we developed one text mining classifier using 

C5.0 methods to measure the classification accuracy for 
hypothyroid data set. First, we utilized our developed text 
mining algorithms, including text mining techniques based on 
classification of medical data like hypothyroid After that, we 
employ exiting C5.0 to deal with measure the classification 
accuracy. It is shown that, the performance of a classifier on 
the training cases from which it was constructed gives a poor 
estimate by sampling or using a separate test file, either way, 
the classifier is evaluated on cases that were not used to build 
and evaluate the classifier are both are large. If the cases in 
hypothyroid.data and hypothyroid.test were to be shuffled and 
divided into a new 2772 case training set and a 1000 case test 
set, C5.0 might construct a different classifier with a lower or 
higher error rate on the test cases. An important feature of 
see5 [11] is its ability to classifiers called rulesets. The ruleset 
has an error rate 0.5 % on the test cases. The standard errors of 
the means provide an estimate of the variability of results. One 
way to get a more reliable estimate of predictive is by f-fold –
cross- validation. The error rate of a classifier produced from 
all the cases is estimated as the ratio of the total number of 
errors on the hold-out cases to the total number of cases. The 
Boost option with x trials instructs See5 to construct up to x 
classifiers in this manner. Naturally, constructing multiple 
classifiers requires more computation that building a single 
classifier -- but the effort can pay dividends! Trials over 
numerous datasets, large and small, show that on average 10-
classifier boosting reduces the error rate for test cases by about 
25%.  
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