
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1290

Temporally Coherent 3D Animation Reconstruction
from RGB-D Video Data

Salam Khalifa, Naveed Ahmed

Abstract—We present a new method to reconstruct a temporally
coherent 3D animation from single or multi-view RGB-D video data
using unbiased feature point sampling. Given RGB-D video data, in
form of a 3D point cloud sequence, our method first extracts feature
points using both color and depth information. In the subsequent
steps, these feature points are used to match two 3D point clouds in
consecutive frames independent of their resolution. Our new motion
vectors based dynamic alignement method then fully reconstruct
a spatio-temporally coherent 3D animation. We perform extensive
quantitative validation using novel error functions to analyze the
results. We show that despite the limiting factors of temporal and
spatial noise associated to RGB-D data, it is possible to extract
temporal coherence to faithfully reconstruct a temporally coherent
3D animation from RGB-D video data.

Keywords—3D video, 3D animation, RGB-D video, Temporally
Coherent 3D Animation.

I. INTRODUCTION

IN recent years, there has been a wave of interest in
reconstructing 3D animation from video data. These

methods can capture dynamic shape, appearance and motion
of dynamic real-world objects. Traditionally, many of these
methods employed multi-view video RGB data to reconstruct
a 3D animation. Most of these methods capture the real-world
objects faithfully and using a number of techniques ranging
from shape matching to deformation they can even capture
temporally coherent animation. For all the systems that
use RGB data, 3D reconstruction requires two or more
cameras for the depth reconstruction. Thus the quality of
the reconstruction depends on the quality of underlying
image correspondence algorithms. Similarly, other tasks in the
pipeline, e.g. background segmentation, require working in the
RGB color space.

Recently, with the arrival of high speed depth sensors e.g.
ToF sensors, it is possible to capture 3D animation using
only a single camera. A depth sensor can be coupled with
an RGB sensor to provide both depth and color information.
Microsoft Kinect is one of the RGB-D cameras that provides
the color and depth information at high frame-rate. Unlike
RGB camera-based high resolution acquisition systems, the
resolution of depth sensors is still very low and is marred by
very high spatial and temporal noise. Therefore it poses an
additional challenge to analyze and process this data using
standard computer graphics, vision and geometry techniques,
e.g. dynamic surface reconstruction from high frame rate
depth data is one of the open research problems. Nonetheless,
these cameras do provide both depth and color information

Salam Khalifa (email: salam.khalifa@gmail.com), and Naveed Ahmed
(email: nahmed@sharjah.ac.ae, phone: +97165053559) are with University
of Sharjah, Sharjah, United Arab Emirates.

at high frame rate at a very low cost, allowing us to
avoid using the multi-camera acquisition setup for the depth
estimation. Nevertheless, one can still employ an acquisition
system comprised of multiple RGB-D camera similar to a
traditional multi-view RGB acquisition setups sensors for a
360 ◦ reconstruction.

An RGB-D video representation can be obtained from a
multi-view RGB camera acquisition system or from one or
more RGB-D cameras. However, this representation leads
to a lack of temporal coherence between the consecutive
frames of the data. Temporal coherence is an important and
required property for any animation, as it is also a requirement
for a number of post-processing tasks, e.g. video editing,
compression, scene analysis.

In this paper, we present a new method for generating
a temporally coherent 3D animation from RGB-D video
data. Unlike earlier works, our method does not rely on
any underlying surface representation of the dynamic scene
object. Rather, our algorithm is tailored to the low resolution
noisy RGB-D data provided by the state-of-the-art RGB-D
video cameras, e.g. Microsoft Kinect. Our test data mainly
consists of RGB-D video sequences acquired from one or
more Kinects. After acquisition, we extract optical feature
points from RGB data that are mapped to the depth data to
obtain initial sparse 3D correspondences between two frames.
Thereafter, we employ an iterative geometric matching process
of feature point refinement to get an unbiased matching of 3D
points. The established feature pointss mapping is then used
to derive the resolution-independent global mapping between
any two 3D point clouds. Afterward, we use a novel motion
vectors based dynamic alignment method to track a single
point cloud over the entire sequence. The result of our method
is a temporally coherent 3D animation, i.e. one 3D point cloud
tracked over the whole sequence. We demonstrate and validate
the accuracy of our methods using several RGB-D video
sequences. We have developed novel methods to quantify our
method with new deformation based error metrics. Our method
is analyzed and validated with varying number of parameters
to show the goodness of our work.

II. RELATED WORK

3D animation or video reconstruction using multi-view
video data has been an active area of research for more than a
decade. In one of the earliest and pioneering works, Carranza
et al. [1] presented a method to reconstruct free-viewpoint
video using the synchronized multi-view video data from eight
RGB cameras. Starck et al. [2] used an acquisition system
comprising of high definition cameras to capture the moving



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1291

Fig. 1: (a) One frame of input RGB and Depth images from two cameras (top and bottom). RGB-D data from each camera
is separately resampled in a 3D point cloud (b). (c) The point clouds are merged in a unified global coordinate system (top)
with RGB mapping (bottom).

actor. They were also able to capture high frequency details
of cloth deformation on the moving actor. MVV acquisition
setups were extended to incorporate a large number of cameras
in a number of iterations of the so-called ”light-stage” by
Debevec et al. [3] [4]. They captured real world subjects
under a variety of static and dynamic lighting conditions.
The work on free-viewpoint video by Carranza et al. [1] was
extended by Theobalt et al. [5] where, in addition to eight high
resolution color cameras, they used to calibrated spot lights to
not only acquire the shape, motion and appearance but also
the surface reflectance properties of a moving person. The
estimation of dynamic surface reflectance allowed rendering
the reconstructed 3D animation in a virtual environment
having starkly different lighting conditions compared to the
recording environment.

A number of methods have been proposed to reconstruct
spatio-temporally consistent 3D animation from MVV data.
De Aguiar et al. [6] presented a method to reconstruct high
quality spatio-temporal reconstruction of dynamic objects by
means of a deformation based method. They first obtained
a high quality template scan of the real-world person that
was deformed over the course of the animation by means
of an optimization method that ensured that the deformed
model is consistent with the input MVV data. Similar approach
was adopted by Vlasic et al. [7] where the skeleton-based
deformation was employed to track the high quality template
mesh over the animation. On the contrary, Ahmed et al. [8]
first reconstructed spatio-temporally incoherent visual hulls
from MVV data for each frame of MVV data. They tracked
the first visual hull over the whole sequence by means of a
dense correspondence finding method that maps one visual

hull to the next. A number of other shape matching algorithm
are proposed for static or dynamic 3D representations using
optical or geometric features [9] [10] [11] [12] [13]. None
of these methods employed depth cameras for the acquisition,
and unlike these method, our work deals with noisy RGB-D
video data and does not rely on any template mesh or 3D
surface representation for reconstructing temporally coherent
3D animation.

With the advent of low cost depth sensors, especially
Microsoft Kinect [14], there has been a wave of interest in
incorporating depth sensors for acquiring static and dynamic
3D content. One of the main benefits of using Kinect is that
it provides both color and depth data simultaneously at 30
frames per second, whereas the earlier works relied only on
the color data where correspondences between cameras had to
be used to reconstruct the depth information. Ahmed et al. [8]
reconstructed time-varying visual hulls by similar means. It is
not necessary to use Kinect for acquiring the depth information
as it can also be obtained from other types of sensors, e.g.
Time of Flight (ToF) sensors [15].

Depth sensors have been employed in a number of
applications to reconstruct a three-dimensional representation
of static and dynamic objects. Kim et al. [16] presented
a multi-view image and depth sensor fusion system to
reconstruct 3D scene geometry. Castaneda et al. [17] used
two depth sensors for stereo-ToF acquisition of a static scene.
Depth data from Kinect was employed by Weiss et al. [18]
for human shape reconstruction. Their method combines
low-resolution image silhouettes with coarse range data to
estimate a parametric model of the body. Similarly, Baak
et al. [19] employed a single depth camera in their pose



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1292

estimation framework for tracking full-body motions. Pose
estimation from a single depth sensor has been a hallmark
of Kinect as an input device, and one of the seminal work in
this area was presented by Girshick et al. [20].

The low cost of Microsoft Kinect, coupled with the benefits
of acquiring depth information directly from the sensor, has led
to the use of multiple depth sensors in an acquisition system.
In one of the pioneering works, Kim et al. [15] presented the
design and calibration of a system that enables simultaneous
recording of dynamic scenes with multiple high-resolution
video and low-resolution ToF depth cameras. Berger et al. [21]
employed four Kinects for unsynchronized marker-less motion
capture. Recently, Ahmed et al. [22] presented an acquisition
system comprising of six Kinects that can capture synchronous
RGB-D data. None of these three methods [15] [21] [22] try
to extract any time coherence information from the captured
depth and color data.

Our main contribution is a new method to extract temporal
coherence from noisy RGB-D video data using motion vector
based dynamic alignment. Our method does not rely on surface
representation of the depth data and being an object space
method it does not requires any parametrization of the 3D
point cloud. It uses both optical and geometric features for
shape matching, is independent of the resolution of the 3D
point cloud and can gracefully handle the difficult tracking
scenarios when some part of input data is not available due
to the limitations of the acquisition system. Unlike previous
works, we have tested our method on sequences of multiple
objects which provides unique challenges for object tracking.
In addition, we have developed new error measures to validate
our method and have done an extensive analysis to test the
goodness of our work.

III. DATA ACQUISITION AND CALIBRATION

Our RGB-D video acquisition system is comprised of one
or more Kinects. In case of two Kinects, they are placed with
an approximate angle of 90 degrees between them. While
using multiple Kinects for the acquisition one has to address
two issues; the synchronization and the interference between
the cameras. For the synchronization, we follow the same
principals as employed by Ahmed et al. [22]. Since all Kinects
emit the infrared laser at the same frequency, there is bound
to be interference in acquiring the depth data. Similar to [22],
we do not compensate for it, rather the missing information
from one camera is filled by the other or vice versa. Kinect
delivers 30 fps of both RGB and depth data at 640x480 pixels
per frame.

The new Kinect SDK directly provides a mapping between
color and depth data, and the mapping of the depth data to
real world distances. This allows us to resample each frame
from of the acquired RGB-D video in the form of a 3D
point cloud with the mapping of an RGB value for every 3D
position. This sequence of 3D point clouds with RGB values
from one or more cameras will be the main data container
for all subsequent steps of our method. In practice, we use
the Point Cloud Library (PCL) [23] to efficiently store the
3D point clouds and also make use of this library for the

registering the point clouds from multiple cameras in a unified
global coordinate system. Thus for each frame, point clouds
from multiple cameras are merged into a unified single point
cloud. We performed a simple depth-based segmentation for
the background subtraction. Our acquisition setup, captured
RGB and depth frames from Kinects, 3D point clouds from
each camera and the unified 3D point cloud with an without
RGB mapping can be seen in Fig. 1.

IV. TEMPORALLY COHERENT 3D ANIMATION
RECONSTRUCTION

As explained in the previous section, the input to our system
is a sequence of 3D point clouds with RGB mapping from
one or more cameras. A 3D point cloud at each frame is
independent of the other, and the number of 3D points is
different in each frame. Let us denote a 3D point cloud as
C = (V, T ), where (V, T ) denotes the set of all 3D points
and their corresponding RGB mapping in the point cloud.
Therefore, for (V, T ) ∈ C we will associate for each 3D
position p ∈ V a 3D point (x, y, z) and its texture coordinate
(u, v) to each texel (2D position in an image) q ∈ T . Using T
all 3D positions V obtained from the depth data are mapped
to the corresponding RGB value. Since we consider a video
sequence consisting of N time-frames, therefore we write
the sequence of point clouds as a function of time t. Thus
C(t) = (V(t), T (t)), where t=0, ..., N − 1.

The aim of our algorithm is to track the C(0) over the
complete animation sequence by mapping it iteratively to each
C(t) in the sequence. That is, first mapping is from C(0) to
C(1) which yields C0(1) , i.e. V(0) ∈ C(0) aligned to C(1)
with respect to its mapping. Thus C0(t) will refer to C(0)
aligned with C(t) after t iterations of the algorithm where
t=0, ..., N − 1. To this end, our formulation is similar to any
other tracking based system. In the following sub-sections, we
will describe the algorithm to obtain C0(t) for any given t.

A. Estimating Optical Feature Points

For every input RGB frame Ic(t) for all time steps t and
cameras c, we first start by extracting the 2D SIFT feature
locations [24]. For all the RGB-D video sequences that we
have recorded, we obtained around 200 to 300 features for
each input image. Using SIFT features has a number of
benefits, mainly accuracy, stability and rotational and scale
invariance. Each SIFT feature has a location q(t) = (u, v, t)
in the texture space, and using the formulation (V(t), T (t)) ∈
C(t) we can map each SIFT feature to the corresponding
p(t) ∈ V(t) . We denote the set of all 3D points at time
t that are associated with SIFT feature points as the optical
feature points L(t).

In the next step, we establish a mapping between L(t) and
L(t + 1) by finding the matching between the corresponding
SIFT features using a simple Euclidean distance measure D.
This is a trivial step employed in many SIFT based matching
algorithms, where a match is established if the ratio of D
between the nearest and second nearest feature is less than a
certain threshold. This measure also helps in eliminating most



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1293

Fig. 2: Matching of optical feature points between two RGB images using SIFT.

of the false positives. A visualization of the SIFT mapping
can be seen in Fig. 2.

Unfortunately, the mapping from RGB to depth data is not
one-to-one but one-to-many, resulting in a single q(t) assigned
to multiple p(t) that are in a close vicinity within the 3D space.
Thus, there exist multiple feature points l(t) ∈ L(t) that are
associated with the same SIFT feature. If we are to match
C(t) with C(t+1) using the feature point matching from L(t)
to L(t + 1) then this ambiguity should be resolved and one
SIFT feature at t should be associated with only one p(t). We
resolve this ambiguity by choosing the most reliable feature
point match using a novel geometrical matching algorithm
explained in the next section.

B. Estimating Geometrical Feature Points Mapping

In order to resolve this ambiguity of one SIFT feature
associated to multiple optical feature point matches, we
propose an iterative algorithm to select the best match based
on the geometrical matching. Given the optical feature points
L(t), we define it as a set of clusters ls(t) ∈ L(t), where
all p(t) in a ls(t) are associated with one SIFT feature and
s=0, ..., NumberofClusters−1. The cluster ls(t) is matched
to ls(t+ 1) using the distance measure D as explained in the
previous section. Thus one-to-many mapping of a SIFT feature
with p(t) and p(t + 1) results in a many-to-many mapping
between ls(t) and ls(t+1). To find the most reliable one-to-one
mapping between ls(t) and ls(t + 1) we use the following
algorithm:

We start by selecting one ps(t) randomly from all p(t) ∈
ls(t) and choose its match ps(t+ 1) randomly from all p(t+
1) ∈ ls(t + 1). Choosing the random mapping between the
clusters is not ideal, but it resolves many-to-many ambiguity
and gives us an initial rough correspondence between L(t) and
L(t+ 1) as the starting point of our algorithm. Let us denote
this initial mapping as M(t). Given the initial correspondence
M(t), we perform the following steps to find the best match
between ls(t) and ls(t+ 1):

1) For the given cluster ls(t), choose three 3 space feature
point positions Lp0(t), Lp1(t) and Lp2(t) from M(t)
such that Lp0(t) = ps(t), whereas Lp1(t) and Lp2(t) are
chosen to be the nearest feature pont position in terms of

Euclidean distance to Lp1(t) given Lp0(t), Lp1(t) and
Lp2(t) are non-collinear.

2) For the cluster ls(t + 1) choose three 3 space feature
point positions Lp0(t + 1), Lp1(t + 1) and Lp2(t + 1)
from M(t) under the same conditions outlined in step
number 1 for t+ 1.

3) Define a plane P (t) with the normal n(t) using the
positions Lp0(t), Lp1(t) and Lp2(t).

4) Define a plane P (t+1) with the normal n(t+1) using
the positions Lp0(t+ 1), Lp1(t+ 1) and Lp2(t+ 1).

5) Project all p(t) ∈ ls(t) on P (t) and obtain their
parametric coordinates (a, b, t) on P (t). Root point of
the plane is chosen randomly from Lp0(t), Lp1(t) and
Lp2(t).

6) Project all p(t+1) ∈ ls(t+1) on P (t+1) and obtain their
parametric coordinates (a, b, t + 1) on P (t + 1). Root
point of the plane is chosen randomly from Lp0(t+ 1),
Lp1(t+ 1) and Lp2(t+ 1).

7) A new match between ls(t) and ls(t+1) is now defined
to be between the two points ps(t) and ps(t+1) that have
the least distance in terms of their parametric coordinates
(a, b, t) and (a, b, t+ 1).

8) Update the mapping ps(t) and ps(t+ 1) in M(t).
9) Repeat for all clusters until the matches stabilize.

The result of the geometric matching algorithm is a
one-to-one correspondence M(t) between L(t) and L(t+ 1)
and subsequently this gives a direct correspondence between
C(t) with C(t+ 1). Our algorithm is inspired by the work of
Tevs et al. [9]. Thus we obtain a correct sparse matching of
two frames using a geometric based mapping algorithm which
uses color based matching as the starting point. We validated
our geometric matching algorithm by estimating temporal
coherence with and without the algorithm. More discussion
can be seen in the Results and Validation section (Sect. V).

Even though we have obtained a feature points based
correspondence between C(t) with C(t + 1), it is still not
enough to align the two point clouds, because we only get 200
to 300 feature points matches, whereas the number of points
in the point cloud is more than 60,000. In the next section, we
will explain our method for global alignment of point clouds
using the feature points based correspondence.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1294

Fig. 3: (a) Zoomed-out point cloud with feature points shown in blue and green. Red point at time-step t is to be matched,
and green points are the five nearest feature points. (b) Shows the zoomed-in point cloud at t. Motion vectors are calculated
with respect to the 5 nearest feature points. These motion vectors are used to calculate the matching point at t+1 as shown in
(c) and explained in (Sect. IV-C). Note that the matching point (red) in (c) is not centered on any point because the matching
is resolution independent.

C. Alignment using Motion Vectors

In order to align C(t) with C(t + 1) we need to find the
mapping for V(t) ∈ C(t), whereas the featuer points based
correspondence gives us a sparse matching M(t). To establish
the mapping for all p(t) ∈ V(t) that are not associated with
any feature point in M(t) we use the following algorithm:

1) Find N nearest feature point positions Ln(t) in terms
of Euclidean distance to p(t), where n=0, ...,N − 1.

2) Find the mapping of Ln(t) to t+1, which is Ln(t+1)
using M(t).

3) Find motion vectors Vn(t) from Ln(t) to each 3
corresponding 3 space position in Ln(t), i.e. Vn(t) =
Ln(t+ 1)-Ln(t).

4) Find the average motion vector Vp(t) for p(t) by
summing up all Vn(t) and dividing by N .

5) The match p(t+1) of p(t) is found using p(t+1)=p(t)+
Vp(t), i.e. the matching point lies at the same distance
with respect to the average motion of Ln(t+1) to Ln(t).

A visualization of feature points and the alignment
algorithm can be seen in Fig. 3. We can justify our global
alignment algorithm under the assumption that the given an
arbitrary motion of the dynamic object, the deformations will
be largely isometric. Obviously for extreme non-isometric
deformations, where points collapse on each other, our
algorithm will not hold but the same is true for any temporal
shape matching algorithm. On the other hand, we validated our
algorithm on a number of data sets and were able to extract
time coherence with remarkable accuracy. Even in the extreme
cases where the depth data has holes in some areas due to noise
or the limitation of the depth sensor and no motion information
can be inferred for that area, our method is able to track the
motion using the nearest feature points gracefully. The value
of N is found through experiments and more discussion can
be seen in the Results and Validation section (Sect. V).

Given the establishment of the alignment between C(t) and
C(t+1), our tracking algorithm starts from t=0 and map C(0)
to C(1) yielding C0(1) that is C(0) aligned with C0(1) using the
feature point matching M(0) between L(0) and L(1). At the

next step C0(1) is aligned with C(2) yielding C0(2) using the
feature point matching M(1) between L(1) and L(2). Thus
at every subsequent step of the algorithm the tracked point
cloud C0(t) is aligned with C(t+1) yielding C0(t+1) using the
feature point matching M(t) between L(t) and L(t+1). Thus
our method tracks C(0) over the whole sequence, resulting in
a temporally coherent 3D animation.

V. RESULTS AND VALIDATION

We apply our temporally coherent 3D animation
reconstruction method on three real-world data sets. The
data sets are acquired from our RGB-D video acquisition
system (Sect. III). The first two of the three RGB-D data sets
are recorded using 2 Kinects, while the third was recorded
using just one Kinect. The first sequence shows a floating
tiger balloon in the air depicting interesting motion without
significant deformations. Second data set is similar to the first
but this time with two dynamic objects, tiger and Dora. While
the third data set is a floating Pooh balloon. All sequences
are 100 frames long. It should be noted that the RGB data
from Kinect is very low resolution but we are still able to
correctly match the feature points from RGB to depth data.
On average for the first two data sets we had on average
300 feature point matches between two consecutive frames,
whereas for the third data set there were only 50 feature
point matches for each frame. Average number of points in
each camera for the first two sequences is 60,000, while for
the third sequence is 25,000. It can be seen in Fig. 4 and
the accompanying video that our method can convincingly
reconstruct temporally coherent 3D animation from noisy
RGB-D data. It is evident from the non-coherent data that
our method is able to extract temporal coherence even in
the presence of large spatial and temporal noise, which is
especially evident by the missing depth data in the RGB-D
video streams causing holes in the point clouds. More results
can be seen in the accompanying video. It should be noted
that due to the space limitations of the paper and the size
limitation of the video we cannot show all of the sequences.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1295

Fig. 4: (a) Two frames (zoomed-in) of the non-coherent tiger balloon RGB-D sequence. It can be seen that the point cloud
changes dramatically from one frame to other, e.g. face. (b) Shows the same two frames tracked using our temporally coherent
3D animation reconstruction method, in which the point cloud is tracked without significant distortions. More results can be
seen in the accompanying video.

Even though the visual analysis of our sequences provides
a good evidence of the robustness of our method, we also
perform a quantitative analysis on the quality of the temporally
coherent 3D animation to validate different steps of our
algorithm. We wanted to test if the geometric feature point
mapping step is improving the tracking, and similarly how
does the number of nearest feature points N impact the
tracking results and what would be the good value for N . For
the quantitative analysis, since we do not have any ground
truth data to compare against, we have developed a distortion
measure to check the quality of reconstructed 3D animation
under different initial conditions.

The main idea is to measure the tangential distortion by
comparing the distances between a small set of points at each
frames under the assumption that dynamic object goes through
low deformation. We achieve this by sampling 200 points
evenly distributed over C(0) and store the distance vectors
between each one of them for the starting frame in a list Ei(0),
where i=0, ..., ‖E‖− 1 and ‖E‖ is the total number of vectors
in Ei(0). After tracking, we calculate the same distance vectors
Ei(t) for each tracked frame C0(t), where t=1, ..., N − 1. The
error measure Ei(t) for one frame at time-step t is defined as:

Ei(t) =

∑‖E‖−1
i=0 ‖Ei(t)− Ei(0)‖

‖E‖ (1)

whereas the average error measure E for the complete
sequence is defined as:

E =

∑N−1
t=1 Ei(t)

N − 1
(2)

We use the average error measure E to find out the optimal
value of N in terms of low distortion and tracking quality. It
is also used to validate our geometric feature point mapping
algorithm. As explained in Sect. IV-C the alignment algorithm
looks for N nearest features to construct the vector field for
each p(t). The value of N depends a lot on the type of motion
and the shape of the object. For example, if the object is
animated by a global transformation then increasing the value
of N will not induce significant errors rather it will normalize
the motion resulting in the reduced average error for each
match. On the other hand if in addition to some global motion,

individual areas of the object also experience local motion,
e.g. parts of the body moving independently, then increasing
the value of N beyond a certain threshold will result in the
incorrect animation.

TABLE I: Average error comparison

N Geom. Map No Geom. Map
1 4.73% 6.46%
3 3.91% 4.16%
5 2.93% 3.33%
10 2.55% 2.76%
15 2.14% 2.25%
20 1.90% 1.97%
30 1.80% 1.86%

For the balloon sequences, due to less local motion, we
observe that the increasing value of N results in smaller
average error for the whole sequence. Table I shows the
average error for different values of N for this first sequence
with one tiger balloon. As can be seen in the table that the
average error for 10 nearest feature points is around 2.55%,
whereas for 20 nearest feature points it is around 1.90%. It can
be seen that the error does not reduce linearly with respect to
the increasing value of N . Although the higher value of N
reduces the overall error, it also results in the normalization
of the motion. Thus all the results in the video for balloon
sequences are generated with N=10. We address this issue
below in the discussion of the limitations of our method.

Finally we validated the geometric feature point mapping
by looking at the average error per frame and for the
complete sequence with and without the geometric feature
point mapping. Table I shows that on average geometrical
feature point mapping results in reducing the error by 0.2% to
0.4%. Fig. 5 shows the average error plot for each frame of
the RGB-D sequence with one tiger balloon with and without
geometrical feature point mapping for N=5.

Our method is computationally very efficient, on average
we can reconstruct a temporally coherent animation at the rate
of 20 frames per minute. Thus it takes around 5 minutes to
process a 100 frames sequence on a dual core 2.4 Ghz Core
i5 system.

Our method is subject to a couple of limitations. One of
the limitations is that we have to rely on Euclidean distance



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1296

Fig. 5: Average error per time-step with and without geometric
feature point mapping algorithm for N=5.

measures in all the steps of our algorithm because we do not
try to reconstruct any surface representation from the point
cloud data. This is partially a hardware induced limitation
as the depth data from Kinect is extremely noisy, and even
though there has been recent work in using Kinect as a
laser scanner for static objects, estimating surface of dynamic
objects remains a challenging problem. The other limitation,
as we mentioned above is not limiting the search for nearest
feature points within a local region of similar motion. A
data set with very fast motion and high local motion or
deformations will be very challenging to handle without a
local search. This is not a principal limitation of our method
because a local search can be integrated independently without
modifying the actual algorithm but is an area that we would
definitely like to address in future. Additionally we would
like to add more quantitative analysis for the validation, e.g.
a silhouette-based error measure or a bounding box error
measure. These error measures are challenging for Kinect
based RGB-D data because of very high spatial and temporal
random noise, which results in a very large variation of
either measurement at each time step. Therefore it is not
straightforward to make a direct comparison between input
and tracked sequences using these error measures.

Despite the limitations we have presented an efficient
method for reconstructing a temporally coherent 3D animation
from single or multi-view RGB-D video.

VI. CONCLUSIONS

We presented a new method to reconstruct a temporally
coherent 3D animation from single or multi-view RGB-D
video data using unbiased feature point sampling. Starting
from RBG-D video data resampled in the form of 3D
point clouds with the RGB color mapping, we first find
optical feature points that map two consecutive frames of
the sequence. The feature points mapping is refined by a
new geometrical mapping algorithm which is then used to
derive the resolution-independent global mapping of all the
points in a point cloud to the next frame. The result of
our work is a single point cloud tracked over the complete
animation sequence. We tested our method on data recorded

from one or more Kinects. The resulting temporally coherent
3D animation can be used in a number of tasks, e.g. video
editing, compressions or dynamic scene analysis.

REFERENCES

[1] Joel Carranza, Christian Theobalt, Marcus A. Magnor, and Hans-Peter
Seidel. Free-viewpoint video of human actors. ACM Trans. Graph.,
22(3):569–577, 2003.

[2] Jonathan Starck and Adrian Hilton. Surface capture for
performance-based animation. IEEE Computer Graphics and
Applications, 27(3):21–31, 2007.

[3] Paul E. Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker,
Westley Sarokin, and Mark Sagar. Acquiring the reflectance field of
a human face. In SIGGRAPH, pages 145–156, 2000.

[4] Tim Hawkins, Per Einarsson, and Paul E. Debevec. A dual light stage.
In EGSR, pages 91–98, 2005.

[5] Christian Theobalt, Naveed Ahmed, Gernot Ziegler, and Hans-Peter
Seidel. High-quality reconstruction of virtual actors from multi-view
video streams. IEEE Signal Processing Magazine, 24(6):45–57, 2007.

[6] Edilson de Aguiar, Carsten Stoll, Christian Theobalt, Naveed Ahmed,
Hans-Peter Seidel, and Sebastian Thrun. Performance capture from
sparse multi-view video. ACM Trans. Graph., 27(3), 2008.

[7] Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popovic.
Articulated mesh animation from multi-view silhouettes. ACM Trans.
Graph., 27(3), 2008.

[8] Naveed Ahmed, Christian Theobalt, Christian Rössl, Sebastian
Thrun, and Hans-Peter Seidel. Dense correspondence finding for
parametrization-free animation reconstruction from video. In CVPR,
2008.

[9] Art Tevs, Alexander Berner, Michael Wand, Ivo Ihrke, and Hans-Peter
Seidel. Intrinsic shape matching by planned landmark sampling. In
Eurographics, 2011.

[10] Peng Huang, Adrian Hilton, and Jonathan Starck. Shape similarity for
3d video sequences of people. International Journal of Computer Vision,
89(2-3):362–381, 2010.

[11] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L.
Kunii. Topology matching for fully automatic similarity estimation of
3d shapes. In SIGGRAPH ’01, pages 203–212, New York, NY, USA,
2001. ACM.

[12] Cedric Cagniart, Edmond Boyer, and Slobdodan Ilic. Iterative mesh
deformation for dense surface tracking. In ICCV Workshops, ICCV’09,
2009.

[13] Kiran Varanasi, Andrei Zaharescu, Edmond Boyer, and Radu Horaud.
Temporal surface tracking using mesh evolution. In ECCV’08, pages
30–43, Berlin, Heidelberg, 2008.

[14] MICROSOFT. Kinect for microsoft windows and xbox 360.
http://www.kinectforwindows.org/, November 2010.

[15] Y. M. Kim, D. Chan, Christian Theobalt, and S. Thrun. Design and
calibration of a multi-view tof sensor fusion system. In CVPR Workshop,
2008.

[16] Y. M. Kim, Christian Theobalt, J. Diebel, J. Kosecka, B. Micusik,
and S. Thrun. Multi-view image and tof sensor fusion for dense 3d
reconstruction. In 3DIM, pages 1542–1549, Kyoto, Japan, 2009. IEEE.

[17] Victor Castaneda, Diana Mateus, and Nassir Navab. Stereo
time-of-flight. In ICCV, 2011.

[18] Alexander Weiss, David Hirshberg, and Michael J. Black. Home 3d
body scans from noisy image and range data. In ICCV, 2011.

[19] Andreas Baak, Meinard Muller, Gaurav Bharaj, Hans-Peter Seidel, and
Christian Theobalt. A data-driven approach for real-time full body pose
reconstruction from a depth camera. In ICCV, 2011.

[20] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon.
Efficient regression of general-activity human poses from depth images.
In ICCV, 2011.

[21] Kai Berger, Kai Ruhl, Yannic Schroeder, Christian Bruemmer, Alexander
Scholz, and Marcus A. Magnor. Markerless motion capture using
multiple color-depth sensors. In VMV, pages 317–324, 2011.

[22] Naveed Ahmed. A system for 360 degree acquisition and 3d animation
reconstruction using multiple rgb-d cameras. In Proceedings of the 25th
International Conference on Computer Animation and Social Agents
(CASA), Casa’12, 2012.

[23] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). In ICRA, 2011.

[24] David G. Lowe. Object recognition from local scale-invariant features.
In ICCV, pages 1150–1157, 1999.


