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 
Abstract—Fluid rheology may have essential impact on sound 

propagation in a liquid-filled pipe, especially, in a low frequency 
range. Rheological parameters of liquid are temperature-sensitive, 
which ultimately results in a temperature dependence of the wave 
speed and attenuation in the waveguide. The study is devoted to 
modeling of this effect at sound propagation in an elastic pipe with 
polymeric liquid, described by generalized Maxwell model with non-
zero high-frequency viscosity. It is assumed that relaxation spectrum 
is distributed according to the Spriggs law; temperature impact on the 
liquid rheology is described on the basis of the temperature-
superposition principle and activation theory. The dispersion equation 
for the waveguide, considered as a thin-walled tube with polymeric 
solution, is obtained within a quasi-one-dimensional formulation. 
Results of the study illustrate the influence of temperature on sound 
propagation in the system. 
 

Keywords—Elastic tube, sound propagation, temperature effect, 
viscoelastic liquid. 

I. INTRODUCTION 

AVE dispersion in a pipe with flowing viscoelastic 
liquid has importance for polymer processing 

technology. Parameters of wave propagation can be used for 
flow diagnostics and pipe inspection [1], [2]; novel methods of 
acoustic monitoring of polymer dynamic modules by the use 
of guided waves were verified recently [3], [4]. Mathematical 
model of sound wave propagation in an elastic cylindrical 
waveguide with non-Newtonian liquid was developed in [5], 
[6]; it accounts for fluid viscoelasticity inherent to polymeric 
liquids (solutions and melts), suspensions of elastic particles in 
viscous liquid, etc. At a macroscopic level this kind of non-
Newtonian behavior is described by relaxational models using 
time derivatives of the stress tensor, or by equivalent integral 
equations [7]. Parameters in such models can be estimated 
from empirical data obtained at relaxation measurements, or 
from molecular theories. Polymeric liquids have complex 
ramified structure, and different structure units are 
characterized by different mobility. It results in distribution of 
relaxation times and phenomenologically is accounted for 
within models with a spectrum of relaxation times  . 
Temperature has essential impact on both relaxation spectrum 
of liquid and its viscosity, which ultimately leads to 
temperature dependence of losses at acoustic wave 
propagation. Because low-frequency dispersion of acoustic 
wave in a tube is governed mainly by the liquid rheology [8], 
it may yield also changes in the sound speed in the waveguide. 
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The target of the study is to describe this coupling and to 
estimate its manifestation quantitatively for the case of 
polymeric liquid flow in a thin-walled cylindrical tube. 

II.  MODEL FORMULATION 

A. Rheological Model 

It is supposed that the liquid follows generalized linear 
Maxwell model [7], which is used usually for description of 
polymer liquids dynamics: 
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Here 1( )G t t  is the relaxation function; ,ij ijs - deviators 

of stress and rate-of-strain tensors, respectively; s - low-

molecular solvent viscosity; v


 - liquid velocity. Rheological 
formulation (1) means that only shear viscoelasticity of liquid 
is accounted for hereafter and relaxation features at bulk 
deformations of pure liquid in the wave are neglected. It was 
shown [9] that the input of liquid volume viscoelasticity is 
small in a wide range of conditions, as compared with other 
sources of dispersion and dissipation. In the case of 
acoustically induced oscillations in the system with frequency 
 , all mechanical characteristics (flow velocity, 
deformations, pressure, etc.) are proportional to exp( )i t , and 

viscoelastic properties of liquid can be described by the 

complex dynamic viscosity coefficient ( ) ( )i        , 

which must be used instead of the usual dynamic viscosity . 
Complex dynamic viscosity of liquid is connected with the 
relaxation spectrum ( )F  by the equation: 
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For a large number of polymeric solutions the behavior of 

* can be closely approximated by a discrete spectrum with 

1 /k k  (k = 1, 2, …), where  2 is the distribution 

parameter (the Spriggs constant [7]). It leads to the following 
relation for dynamic liquid module G*: 
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Here p , 1  are Newtonian viscosity of solution and the 

main relaxation time in the spectrum, respectively. Both p  

and 1 depend, besides the temperature T , from concentration 
 and molecular mass M of the polymer, thermodynamic 

properties of the solvent, etc. 

B. Parameter Temperature Dependence 

The main relaxation time in the spectrum 1can be 
estimated from the Rouse formula [10]: 
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The dependency of Newtonian viscosity of the solution p  

on the polymer concentration   at not too large values of   is 

described usually by the Martin relation: 

M ))(1 exp(p sk    . Here Mk  is the Martin constant, 

[ ]    - reduced polymer concentration, [ ] - characteristic 

viscosity of solution, GR is the universal gas constant and T 

the absolute temperature. The value of [] can be estimated 
from the Mark-Houwink relation 

 

[ ] aKM                                 (5) 
 

where K and a are constants for a given polymer-solvent pair 
at a given temperature over a certain range of molecular mass 
variation. The parameter a (the Mark-Houwink exponent) lies 
in the range 0.5 to 0.6 for solutions of flexible chains polymers 
in thermodynamically bad solvents and in the range 0.7- 0.8 
for good solvents [11]. For the former ones the constant K  
10-2 (if the intrinsic viscosity [] is measured in cm3/g), while 
for the latter K  10-3. Temperature dependence of the 
relaxation characteristics of polymeric liquids is described by 
the time-temperature superposition (TTS) principle [10], 
which states that with change in temperature the spectrum of 
relaxation times shifts as a whole in a self-similar manner 
along t axis, according to the value of the temperature-shift 
factor Ta , defined by the formula: 
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where   is the liquid density. With aT for an argument it 

becomes possible to plot temperature-invariant curves 
Re{G1*(aT)} and Im{G1*(aT)}. The dependence of 

viscosity from the temperature can be described by the 
activation theory: 
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where Ep, Es are activation energies of the solution and the 
solvent, respectively; 0 0( )p p T  , 0 0( )s s T  . The Es 

value is usually about 10 to 20 kJ/mol. For low-concentrated 
solutions of polymers with moderate molecular masses, the 
difference between these two activation energies, E = Ep- Es, 
does not exceed usually 10 kJ/mol [11]. For low-concentrated 
solutions of certain polymers in thermodynamically bad 
solvents negative E values were reported [12]. 

C. Dispersion Equation for the Waveguide 

Wave propagation equations for elastic tube with 
viscoelastic liquid are formulated within quasi-one 
dimensional approach. The tube wall is considered as a thin-
walled elastic cylindrical circular shell with the width 2h  and 
the middle surface radius R (it is supposed that /h R  <<1); 

the Kirchhoff-Love model is used for description of 
axisymmetric shell dynamics in the wave: 
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Here ,x r  are axial and radial coordinates of cylindrical 

coordinate system with the origin on the tube axis; ,x ru u - 

longitudinal and transverse displacements of the shell middle 
surface; , ,  s E   - density, Young and Poisson module of 

the tube material; cp  is the contact pressure equal to normal 

stress in liquid at the pipe wall. Boundary conditions for (8) 
are formulated at the liquid-shell interface for r R h R   . 
They have the form: 

 

0, , ,xr
r x c f rr f f

uu
v v p p p p p

t t



        

 
  (9) 

 

where rr is the normal component of deviatoric stress in liquid 

at the interface; ,x rv v - liquid velocity components in 

longitudinal and transverse directions; 0,fp p  - pressure in 

liquid in the wave and equilibrium pressure in the waveguide, 
respectively.  

The basic assumptions of liquid dynamics in the tube at 
acoustic excitation in a low frequency range imply: 
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As a result, the momentum and mass balance equations for 

liquid in the tube can be written in the form: 
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where 0, f   are liquid density in the wave and its 

equilibrium value, respectively, related to the pressure in the 

wave by the state equation 2
0 0( )f f fp p c     . Equation 

(11) doesn't account for the cross effect of liquid's rheology 
and compressibility, which is small and can be neglected. The 
equations (1), (11), (12) are averaged along the tube cross-
section and solved with account for (10). The obtained 
solution is coupled with solution of the shell dynamics 
equations through the boundary conditions (9). Then a 
standard procedure [13] leads to the following dispersion 
equation in a non-dimensional form: 
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Here k  is the dimensional wave number, 0t  - characteristic 

time, fc  - sound speed in liquid, 0 0* /( )p t  , and 

0 1,J J  are the Bessel functions of the first kind of the zero 

and first order, respectively. The details of calculations can be 
found elsewhere [6]. 

III. NUMERICAL RESULTS 

Dispersion equation (13) was studied numerically with 
account for the temperature dependence of rheological 

parameters, according to relations (3), (4), (6), (7), which were 
written in dimensionless form as follows:  
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Plots of non-dimensional sound speed / Re{ }c Ω k and 

attenuation Im{ }k   versus frequency Ω  and temperature 
*T  were obtained for different values of reduced polymer 

concentration. The values of the system parameters chosen for 
simulations are collected in the Table I; they correspond to 
aluminium thin-walled tube filled with solution of polymer 

with 6~ 10M [9]. The non-dimensional values of activation 
energies correspond to 12 /sE kJ mol , 16 /pE kJ mol ; 

the studied temperature range is equal approximately to 60K. 
The Spriggs distribution parameter   was chosen equal to 2 
(Rouse distribution). 

 
TABLE I 

TUBE AND LIQUID PARAMETER VALUES AT T0 = 293K 

Symbol Quantity Value 

E Young module  71010N/m2 
 relative shell half-width 0.05
 Poisson module 0.34 

p0 
equilibrium pressure 10

5
Pa 

s solvent viscosity 0.1 Pas 

0f  liquid density 10
3
kg/m

3 

s  tube material density 2.7103kg/m
3
 

R middle surface tube radius 0.01 m 

fc  sound speed in liquid 1500 m/s 

km 
Martin constant  0.4 

E p  dimensionless activation energy of the solution 6.6 

Es  dimensionless activation energy of the solvent 4.9 

 A dimensionless molecular parameter 500

1  dimensionless thermal expansion coefficient 0.29 

 

Results of simulations are presented on Figs. 1-4. The 
studied non-dimensional frequency range for the chosen 
parameter values corresponds approximately to dimensional 

frequency 31 10f Hz  , / 2f   . The plots on Fig. 1 

were calculated for three pure viscous liquids with Newtonian 
viscosity equal to viscosity of polymeric solution ( )p   

with different reduced concentration of polymer and the same 
activation energy pE (it means that the data presented on Fig. 

1 don’t account for the liquid viscoelasticity). The curves 
1, 1'; 2, 2 '; 3, 3'   correspond to 2, 4, 6  , respectively. One 

can see that sound speed in the waveguide for more 
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concentrated solution is less than for low concentrated one; the 
speed of the wave grows with temperature. This result relates 
to the viscosity-controlled dispersion range, and is explained 
by viscosity reduction with *T . As it follows from Fig. 1, 
temperature effect on sound speed is more essential at low 
frequencies and for more viscous liquids.  

 

 

Fig. 1 Sound speed in the waveguide versus temperature - Newtonian 
liquid with viscosity of the solution. Solid line - 0.5Ω  , dashed 

line - 1Ω   
 

However, the temperature may have a different impact on 
the sound speed in the case, when the liquid possesses 
viscoelastic properties. The plots on the Fig. 2 correspond to 
the same variants as the plots on the Fig. 1 with only one 
difference – they account for the liquid viscoelasticity.  

 

 

Fig. 2 Sound speed versus temperature - viscoelastic liquid. Solid line 
- 0.5Ω  , dashed line - 1Ω   

 
It follows from the data that in this case the temperature 

dependence of the sound speed may be changed not only 
quantitatively but even qualitatively, which is revealed in a 
speed decrease with *T  for sufficiently high concentration of 
polymer. The effect is frequency dependent – as it follows 
from comparison of the lines 3 and 3' , the speed reduction 
with temperature at the frequency 0.5Ω   is more 
pronounced than at 1Ω  .  

In order to explain this result, the plots, characterizing 
sound dispersion in a low frequency range, were calculated for 
the same values of *T and  as the curves on the Fig. 2. They 

are presented on the Fig. 3; the lines 1, 2  correspond to 6  , 

1', 2 ' - to 2  . For the plots 1, 1' * 1T  , for 2, 2' - 
* 1.2T  .  

 

 

Fig. 3 Sound dispersion in the waveguide – temperature and 
concentration effect 

 
As it follows from Fig. 3, sound dispersion in a waveguide 

with viscoelastic liquid can change its sign from positive to 
negative in a certain frequency range (curve 1), which results 
in an “overshoot”, characteristic for oscillatory flows of high-
molecular liquids [7]. This frequency range is located near the 
frequency of viscoelastic transition 1~ 1/r  ; the effect takes 

place at sufficiently large values of molecular mass and 
concentration of polymer. The temperature increase yields 
decrease of both liquid viscosity and relaxation times; as a 
result, the “overshoot” disappears (curve 2). Because the curve 
2 is located below the curve 1 in the vicinity of the 
“overshoot”, the temperature dependence of the sound speed 
on the Fig. 2 demonstrates unexpected reduction of c with 

*T (plots 3, 3' ). Note that at small polymer concentration 

(plots 1, 1' ) the “overshoot” on the dispersion curves is absent, 

and the temperature increase leads, as expected, to the sound 
speed increase.  

Sound attenuation in the waveguide versus frequency is 
illustrated by the Fig. 4. The plots 1, 1', 3 correspond to  

* 1T  , the plots 2, 2 ', 4 - to * 1.2T  . For the lines 

1, 1', 2, 2 ' 6  ; for 3, 4 - 2  . The plots 1', 2 ' were 

calculated for the same parameter values as the graphs 1, 2, 
but without account for the liquid viscoelasticity – it means, 
for pure Newtonian liquid with p  . One can see that 

attenuation of sound in a tube with viscoelastic liquid in the 
frequency range r  is less from that one for equivalent 

Newtonian liquid. It grows with polymer concentration, while 
the temperature increase yields the attenuation reduction. For 
all frequencies the sound attenuation in a tube with 
viscoelastic liquid stands below the attenuation in an 
equivalent waveguide with pure viscous liquid, possessing the 
same low-frequency viscosity. 
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Fig. 4 Attenuation of sound in the waveguide – temperature and 
concentration effect 

IV. CONCLUSION 

Temperature has essential effect on sound propagation in a 
thin-walled tube with viscoelastic liquid. The study has 
revealed an unexpected sound speed reduction in the 
frequency range close to characteristic frequency of 
viscoelastic transition. The phenomenon is explained by 
existence of an “overshoot” on the sound dispersion curve for 
the waveguide with sufficiently concentrated high-molecular 
polymeric solution. Beyond this frequency range the rise of 
temperature leads to sound speed growth. Attenuation of 
sound decreases with temperature in the whole studied 
frequency range. 
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