
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3508

Abstract—Information hiding, especially watermarking is a

promising technique for the protection of intellectual property rights.
This technology is mainly advanced for multimedia but the same has
not been done for text. Web pages, like other documents, need a
protection against piracy. In this paper, some techniques are
proposed to show how to hide information in web pages using some
features of the markup language used to describe these pages. Most
of the techniques proposed here use the white space to hide
information or some varieties of the language in representing
elements. Experiments on a very small page and analysis of five
thousands web pages show that these techniques have a wide
bandwidth available for information hiding, and they might form a
solid base to develop a robust algorithm for web page watermarking.

Keywords— Digital Watermarking, Information Hiding, Markup
Language, Text watermarking, Software Watermarking.

I. INTRODUCTION

F you find your own property with another person, and you
claim that is yours, no one can believe you, unless you give

proof. Watermarking is a technique used to prove intellectual
property rights over certain content by hiding some
information in it, the information that is hidden in a content is
referred to as the watermark [1] and can contain information
such as the name of the owner, company, and timestamp.
Later, when the ownership is under dispute, it will be easy to
prove the legitimate owner of the document by showing the
watermark.

Digital watermarking can prohibit the unauthorized use,
duplication and distribution of digital documents, but it must
not change the value of the content to keep it useful for the
intended purpose. The watermark must be robust to resist any
attack that tries to remove it or destroy it without changing the
value of the content [2].

Web page designers spend days designing a page, but
unfortunately, when this page is hosted in an internet server, it
can be easily stolen in one moment by one click. A whole site
can be downloaded by tools like Teleport and Webzip and its
content can be used in an unauthorized way and it can be
distributed without referring to its owner. Watermarking can
help in such situation, but until now, there are no good
algorithms developed for web page watermarking.

Some techniques of information hiding using XML

Manuscript received May 20, 2005. This work was supported by the
National Science Foundation of China (NSFC No.60373062), Hunan
Provincial National Science Foundation of China (HPNSFC No.02JJYB012).
Key Foundation of Science and Technology of Minister of Education of China
(No.03092).

Mohamed Lahcen BenSaad and Sun XingMing are with the Department of
Computer Science, Hunan university 410082, China (e-mails:
bml13@hotmail.com and sunnudt@123.com respectively).

(eXtensible Markup Language) are proposed [3], but they are
very few and they don’t exploit very well the features of the
language. This paper gives more other techniques that use the
white space and line break character in many places, and tries
to exploit efficiently the features of the markup language and
its specifications to come with new techniques in order to
make the bandwidth as large as possible. These techniques are
based on changing the source code of the web page without
changing its appearance when it is displayed. We shall see in
details these techniques in section IV, but before we have to
understand HTML, which is described in section II, and some
details on information hiding and watermarking, which are
described in section III. Section V will describe some
experiments and some statistics.

II. HTML AND WEB PAGES
HTML (Hyper-Text Markup Language) is the language that

Web pages are written in. Its syntax is based on a list of
elements that describe the page's format and what is displayed
on the Web page. Web pages are what make up The World
Wide Web, they must conform to the rules of HTML in order
to be displayed correctly in a Web browser. HTML is written
in SGML (Standard Generalized Markup Language), a formal
system designed for building text markup languages [4].

Web pages can be either static or dynamic; Static pages
show the same content each time they are viewed while
dynamic pages have content that can change each time they
are accessed. These pages are typically written in scripting
languages such as PHP, Perl, ASP, or JSP. The scripts in the
pages run functions on the server that return information as
HTML code, so when the page gets to the browser, all the
browser has to do is translate the HTML code [5]. It is
obvious that in both cases the web browser receives the
document in HTML format.

HTML includes element types that represent paragraphs,
hypertext links, lists, tables, images, etc. Each element type
declaration generally describes three parts: a start tag, an end
tag, and a content that appears between these two tags. The
element's name appears in the start tag (written <element-
name>) and the end tag (written </element-name>). Some
element types allow authors to omit end tags and few of them
also allow the start tags to be omitted. Some element types
have no content. Elements may have associated properties,
called attributes, which may have values (by default, or set by
authors or scripts). Attribute/value pairs appear before the
final ">" of an element's start tag in any order [6].

III. INFORMATION HIDING

Information hiding is a technology that uses a cover data to

Techniques with Statistics for Web Page
Watermarking

 Mohamed Lahcen BenSaad, and Sun XingMing

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3509

hide secret information in it. This hidden information can be
extracted later when it is needed. Fig. 1 shows the general
model of information hiding [3]. For different kinds of data,
we need different methods of information hiding. For
example, for images, we can use the least significant bits of
pixels in this image to hide information, these changes are
difficult for the naked eye to see them. For text, changing the
location of the punctuations, the choice between synonyms, or
spacing between words are simple ways to add information
without changing the value of the original text.

Fig. 1 General Model of Information Hiding

Watermarking as part of information hiding uses these

model to embed or extract a watermark that can serve the
protection of documents against piracy.

IV. TECHNIQUES FOR WEB PAGE WATERMARKING
We explain here some techniques that can be used to embed

or hide information in HTML files. The proposed techniques
are verified to be compatible with HTML specification
recommended by W3C [6]. Most of the cases have an example
to illustrate how to hide bits.

A. White Space
We can use white space in many ways, by adding or

removing it, we can embed data without changing the
meaning of the original file.

1) Varieties of White Space Characters
The following characters are defined as white space

characters [6]:
 ASCII space ()
 ASCII tab ()
 ASCII form feed ()
We can hide some information using these varieties

alternatively in representing white spaces.

2) Replacing White Space by Its Named Character
“ ”

White space can be indicated by the named white space
character “ ”, this alternative can be used to hide
information as shown in the following example:

Use the code : <P>text text</P> to hide 0
And use : <P>text text</P> to hide 1
If the text is quite long, it will be difficult to see this

changing even when the HTML source code is viewed.

3) White Space Between the Element’s Name and the
First Attribute:

A first place where we can insert a white space in a start
tag having attributes is directly after the element’s name
and before the first attribute, here is an example of this
case:

 0
 1

4) White Space Between Attributes
We can also insert spaces between the attributes of an

element as shown in the following example:
 0
 1

5) White space between tags:
If there are some tags appear in the same line, we can add

a space between any two of them as shown in the following
example:

<td>colomn1</td><td>colomn2</td> 0
<td>colomn1</td> <td>colomn2</td> 1

6) White Space After “=”
The attributes of an element have values affected by the

symbol “=”, if we insert a space after the “=” it will not
change the rendering of the document, we can use this as
shown in the following example:

 0 1

7) White Space Before New Line Character
If we have a new line character in the source code, we can

choose whether to insert or not a white space before it to hide
1 or 0, as shown in the following example(new line character
is unprintable character so we represent it by: nl):

nl 0 nl 1

B. Line Break

1) Varieties of Line Breaks
Single carriage return, single line feed and carriage

return/line feed pairs are considered as a single line
break[6]. We can exploit this feature by using these
varieties alternatively in representing line break to hide
some bits.

2) Adding Line Break After or Before Tags
A line break or more occurring immediately following a

start tag must be ignored, as must a line break occurring
immediately before an end tag. This applies to all HTML
elements without exceptions [6]. This also can be used for
information hiding. The following examples must be
rendered identically:

 i. <P>text</P> ii. <P>text
 </P>

iii. <p>
 text</p>

iv. <p>
 text

 </p>

3) Line Break Between Two consecutive Tags
We can add one or more line break between any two tags

without affecting the rendering of the document. The two
following examples must be rendered in the same way:

cover
data

embedding

stego
data

stego
data

extracting

embedded
dataembedded

data

transmitting

stego keystego key

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3510

i. <td>colomn1</td><td>colomn2</td> 0
ii. <td>colomn1</td>
 <td>colomn2</td> 1

C. Order of Attributes
Elements may have associated properties, called attributes,

which may appear in any order [6]. A technique has been
proposed is to change the appearing order of the elements [3].
We propose here an ascending or descending order according
to the ASCII representation of attributes’ names or their
values as shown in the following example:

i. Ordering according to attributes’ names:
Ascending : 0
Descending: 1

ii. Ordering according to attributes’ values:
Ascending : 0
Descending: 1

D. The Default Value of an Attribute:
Some attributes of some tags have default values [6],

writing or omitting these attributes will not change anything,
so if an attribute is omitted we can add it and set its value to
the default value, here is an example:

 0 1

E. Optional end tags:
Some of the tags have optional end tags, it means that we

can write the end tag or we can remove it, this can be used
also to hide information as shown in the following example:

<td>colmn1</td><td>colomn2</td> 0
<td>colmn1<td>colomn2 1

F. The string delimiters:
Both double quotes and single quotes are accepted as string

delimiters [6], so we can use the first to hide 0 and the second
to hide 1 as follows:

<p align=”center”> 0
<p align=’center’> 1

G. Changing Color Values

1) Using Color Names
A color value may be either a hexadecimal number

(prefixed by a hash mark) or one of the defined sixteen
color names[6]. This difference of color representation can
be used to hide information as follows:

 0
 1

2) Altering Color Values
Altering color values has been proposed for information

hiding in other contents, we can use it also with HTML. A
color value represented as hexadecimal number is
composed of three sub-values: Red, Green and Blue
("#RRGGBB"). We can hide one bit in each sub-value by
altering its least significant bit, for example if we want to
hide the three bits 110 in the value "#A560FF", we have to
change it to "#A561FE".

V. IMPLEMENTATION AND EXPERIMENTS
Following the typology of web pages, we can say that web

pages watermarking can be classified in two types; static
watermarking (permanent) and dynamic watermarking (on-
the-fly). For a static web page, we can watermark it once and
save it, and when this page is being requested, it will be sent
to the browser with the watermark. A dynamic web page is
generated in run-time, so we need to catch it before sending it
and watermark it on-the-fly then send it. In both cases, we can
extract the watermark from the HTML document when it
reaches the client [7], [8].

A. Experiments
We wrote a Java program to try some of the techniques

proposed in this paper. We took, as example page to
watermark, the main Google’s English page. Although this
page is very small (it is one of the smallest and simplest pages
in internet), the result was great and the bandwidth was large
enough for information hiding. We were able to hide a few
times the word “Google” in that very small page, for example
67 bits could be hidden using techniques A.3 and A.4 (space in
start tags), and 56 bits using technique A.5 (space between
two tags).

B. Statistics
In order to have a wide vision about the structure and

format of web pages source code, and to study the possibility
to use these proposed techniques, we have analyzed 5000 web
pages, that is more than 138 MB of HTML code. We
downloaded these pages from internet, the links to these pages
were the results of 10 first links from the result of every query
of 500 Google queries using 500 different key words. To have
different views, we divided at random the pages on 5 samples
each one with 1000 pages. We wrote a Java program to scan
these files, the result of all the samples were almost the same,
which means that these samples are really representing the
studied domain i.e. web pages. Table I gives some general
information about the analyzed pages.

From Table I we see that start tags represent more than 56%
of the analyzed HTML code, it is even larger than the content
(text) itself, this feature gives more chance to the bandwidth to
be larger, because most of the proposed techniques are applied
on start tags. Table II gives us more details about the analyzed
files, the results can be used to know the probability of some
techniques to be applied and how large is the bandwidth.

From Table II we conclude the following:
1. Appearance of attributes: Is the number of the attributes

that appear in a start tag divided by the number of attributes
that can be applied on that tag. We see that only 6% of the
attributes are set by the code, which means that the rest
(94%) are set to their default values (if they have), this
feature gives more chance to technique D to be used.

2. Number of attributes: On average, there are 595 attributes
in one file. This gives the chance to techniques A.3 and A.4
to be used. The bandwidth here is 595 bits.

3. Number of tags having attributes: Statistics show that there
is a good average of start tags that have attributes, it is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3511

useful for techniques using attributes reordering and white
space in start tags. The bandwidth here is 276.

4. Number of color values: Techniques in section G can be
used here, the bandwidth is 3*28=84.

5. Number of the named space character “ ”: This gives
more chance to technique A.2 to be applied. We can hide 29
bits exploiting this feature.

6. Number of extra space in start tags: We can use this space
and rearrange it as we like the start tag.

7. Number of new line characters: It gives chance to
techniques A.7 and B to be used. 280 bits can be hidden
here.

8. Number of omitted optional end tags: It is useful for
applying technique E. We have 11 bits available here.

9. Number of tags appearing in the same line: It is useful to
hide bits using techniques A.5 and B.3 The bandwidth here
is 285.

TABLE I. GENERAL INFORMATION ABOUT THE ANALYZED FILES

Samples (Si) Information
S1 S2 S3 S4 S5

All together

Number of files 1000 1000 1000 1000 1000 5000
Total files size (1000 kB) 28.14 26.48 27.28 29.96 26.35 138.20

Average size / file (KB) 28.14 26.48 27.28 29.96 26.35 27.64

Start tags size* (%) 59.51 56.65 54.67 57.73 56.09 56.93
End tags size* (%) 05.95 06.23 05.94 05.96 05.87 05.99

Contents (text) size** (%) 31.79 34.36 36.87 33.46 35.66 34.43

Remark tags size* (%) 02.75 02.76 02.53 02.84 02.38 02.65
 * size = 2+number of characters between ‘<’ and ‘>’ that delimit a tag.
 ** size = number of characters between ‘>’ of a tag and ‘<’ of the next tag.

TABLE II. DETAILS ABOUT THE ANALYZED FILES. IT HELPS US TO SEE WHICH TECHNIQUE HAS MORE CHANCE TO BE USED, AND TO
ASSIGN PRIORITIES TO TECHNIQUES IN USING THEM

Samples (Si) Information
S1 S2 S3 S4 S5

Average

1 Appearance of attributes (%) 6.01 5.96 6.08 5.92 6.08 6.00

2 Number of attributes 624 577 579 650 544 595

3 Number of tags that have attributes 288 271 268 298 254 276

4 Number of color values 028 027 029 029 029 028

5 Number of named space char “ ” 026 026 033 030 032 029

6 Number of extra space in start tags 085 058 054 051 096 069

7 Number of new line character 288 278 276 304 255 280

8 Number of omitted optional end tag 012 009 010 011 011 011

9 Number of tags appear in the same line 289 280 282 311 264 285

Table II gives us a good statistic about the bandwidth

available for some techniques, we can say that the total
bandwidth available for all techniques is more than 1500 bits
per file, it is big enough to hid a good amount of information.

VI. CONCLUSION
This paper proposes many techniques for information

hiding using HTML, and it shows that these techniques have a
good chance to be applied. The techniques can form a very
good base to develop an algorithm for web page
watermarking. A future works may focus more on a
watermarking algorithm using the techniques presented here,
and try to find other new techniques by digging deeply in
HTML specifications to find more features to exploit.
Moreover, the most important thing is to increase the
robustness of the watermark, and try to adapt these techniques
for using them with other markup languages like XML.

REFERENCES
[1] J. Nagra, C. Thomborson, and C. Collberg, “A functional taxonomy for

software watermarking,” In M. J. Oudshoorn, Twenty-Fifth Australasian
Computer Science Conference (ACSC2002), Melbourne, Australia,
2002. ACS.

[2] Radu Sion, Mikhail Atallah, and Sunil Prabhakar, “Rights protection for
relational data,” SIGMOD Conference 2003: 98-109.

[3] Shingo Inoue, Kyoko Makino, Ichiro Murase, Osamu Takizawa,
Tsutomu Matsumoto, and Hiroshi Nakagawa, “A proposal on
information hiding methods using XML,” 1st Workshop on NLP and
XML, Nov.2001.

[4] Rick Darnell, HTML Unleashed, Sams.net Publishing, August 1997.
Available: http://www.webreference.com/dlab/books/html/. Chapter 3.

[5] The Sharpened.net Computer and Internet Glossary. Available:
http://www.sharpened.net/glossary/, (last visit: May 20, 2005).

[6] W3C Recommendation, HTML Specification 4.01. Available:
http://www.w3.org/TR/1999/REC-html401-19991224/, (May 20, 2005).

[7] D. Curran, N.J. Hurley, and M. O. Cinneide, “Securing Java through
software watermarking,” In Proceedings of the 2nd international
conference on Principles and practice of programming in Java, pages
311-324, 2003.

[8] Christian Collberg and Clark Thomborson, "Software watermarking:
models and dynamic embeddings," In Proceedings of Symposium on
Principles of Programming Languages, POPL'99, pages 311-324, 1999.

