
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:12, No:10, 2018

1422


Abstract—Lack of motivation and interest is a serious obstacle to

students’ learning computing skills. A need exists for a knowledge
base on effective pedagogy and curricula to teach computer
programming. This paper presents results from research evaluating a
six-year project designed to teach complex concepts in computer
programming collaboratively, while supporting students to continue
developing their computer thinking and related coding skills
individually. Utilizing a quasi-experimental, mixed methods design,
the pedagogical approaches and methods were assessed in two
contrasting groups of students with different socioeconomic status,
gender, and age composition. Analyses of quantitative data from
Likert-scale surveys and an evaluation rubric, combined with
qualitative data from reflective writing exercises and semi-structured
interviews yielded convincing evidence of the project’s success at
both teaching and inspiring students.

Keywords—Computational thinking, computing education,
computer programming curriculum, logic, teaching methods.

I. INTRODUCTION

HE need to develop computational thinking (CT) among
students is not a new idea. First introduced by Wing [1],

and now viewed as the core of STEM disciplines [2], CT has
become an essential skill. Cuny et al. [3] define CT as “the
thought processes involved in formulating problems and their
solutions so that the solutions are represented in a form that
can be effectively carried out by an information-processing
agent” [3]. Leu et al. [4] go beyond a set of skills and view CT
more broadly, as “new literacies,” or “skills, strategies, and
dispositions necessary to successfully use and adapt to the
rapidly changing information and communication technologies
and contexts”.

A historical analysis of the arguments behind literacy
programs yields similar perspectives to those arguing in favor
of teaching coding: they are beneficial for education,
intellectual development, national defense, civic participation,
economic productivity, and individual success [5]. However,
authors have identified challenges associated with teaching
necessary and beneficial coding skills and CT. Specifically,
age [6], gender [7], and structured social settings [8] are
important variables influencing the development of CT and,

Almudena Konrad Associate Professor of Computer Science, Mills

College, Oakland, CA, 94613, USA (phone: 510 430 2210, e-mail
akonrad@mills.edu).

Tomás Galguera Professor of Education Abbie Valley Professorship in
Education, Mills College, Oakland, CA, 94613, USA (phone: 510 430 3174,
e-mail tomasgs@mills.edu).

by implication, programming among students. This paper
considers the computational skills associated with the nature
and development of CT as well as programming skills and
strategies among children and youth. In addition,
computational skills associated with computer programming
and its strategies, and how these relate to background
variables such as age, gender, and contextual variables are
used as a framework for empirical research. This paper also
presents conclusions reached regarding curriculum and
pedagogy for the development of CT and, specifically, coding
skills.

Research has shown that the greatest cognitive gain using
educational technology is through simulations and games,
rather than traditional programming instruction. This is
especially true for female students, and when students have a
choice running the games, rather than when teachers
controlled the games [9].

Building upon Cuny et al.’s [3] influential definition of CT,
the National Science Foundation and the College Board have
identified seven “big ideas” in computer science [8]:
1. Computing is a creative human activity;
2. Abstraction reduces information and detail to focus on

concepts relevant to understanding and solving problems;
3. Data and information facilitate the creation of knowledge;
4. Algorithms are tools for developing and expressing

solutions to computational problems;
5. Programming is a creative process that produces

computational artifacts;
6. Digital devices, systems, and the networks that

interconnect them enable and foster computational
approaches to solving problems; and

7. Computing enables innovation in other fields, including
science, social science, humanities, arts, medicine,
engineering, and business.

These ideas stress the centrality of abstraction in CT
curricula, helping students generalize from specific
experiences and deal with complexity [8]. Curricula and
materials that introduce students to CT, often allow them first
to use and familiarize themselves with the digital environment,
inviting them to change it, and finally create new artifacts and
related uses [10]. In general, the use of video gaming in
curricula and pedagogy for CT development among children
has been identified as a potentially powerful instructional
approach [11]. Similarly, modeling and simulation that require
students to abstract patterns out of observations, develop rules,
and apply rules to solve problems represent effective ways to

Almudena Konrad, Tomás Galguera

Teaching Computer Programming to Diverse
Students: A Comparative, Mixed-Methods,

Classroom Research Study

T

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:12, No:10, 2018

1423

engage students [12]. Despite these advances in understanding
on how best to teach programming to students, it remains true
that students utilize most digital devices as consumers, not
creators of content or code [26].

In their review of research on the teaching and development
of CT, Kafai and Burke identify three shifts in how youth
learn CT: from coding to applications, from tools to
communities, and from creating from scratch to remix. They
also point to the need to provide youth with “access to
participation and collaboration in communities of
programming” [26]. Regardless of how one views coding, the
expansion of technology in everyday life and preoccupation
with preparing a skilled working force [13] demands attention
to the development of CT. This paper presents results from
one such effort, addressing pertinent implications for research
and practice.

II. METHODOLOGY

This study followed a mixed-methods, quasi-experimental
design that allowed for a measurement of dimensions of the
phenomena studied while including the voices of the
participants. The latter also function as useful illustrations for
the particular pedagogies and materials used. Furthermore, in
utilizing a pre- post-test, quasi-experimental design [14], this
study aims to identify specific ways in specific pedagogical or
curricular approaches influenced students’ understanding of
and skills associated with programming for game creation.
The choice of mixed-methods design, however, does not
represent a particular methodological or philosophical position
[15].

A. Context of the Study

The curricula and teaching methods assessed in this paper
were developed between 2011 and 2016, for students enrolled
in KidsLogic [16], a summer and winter computer
programming camp for children and teens. The main goals of
these experiential camps were to teach fundamentals of
computer programming, logic, and problem-solving
techniques, to inspire young students to engage in computer
programming, and to identify factors that contribute to the
success of this learning process. The program evolved by
examining and reflecting on students’ learning and modifying
methods and curricula accordingly. A comprehensive formal
assessment was done during the summer of 2016 on a small
group of students.

During the six years, KidsLogic developed a total of five
different curricula: Lego Robotics Programming [17], Alice
Computer Programming [18], Processing Computer
Programming [19], Arduino Robotics [20] and Python [21].
Lego Robotics and Alice camps were for children ages eight
to 12 years, with beginner, intermediate and advanced lessons.
Camps relying on Processing, Arduino, and Python were for
children up to 15 years old. Both camps included materials
designed to be inclusive of children with different
backgrounds and learning abilities in groups of between 10
and 16 students. Each section had at least one instructor and a
teacher assistant with a background in computer

programming.
Fig. 1 shows the total enrollment for each of the winter and

summer programs offered in the six-year period. Most
students who enrolled in KidsLogic summer camps were boys;
recruiting girls has been a challenge, despite purposefully
recruiting girls and providing incentives, including reduced or
free tuition. Over the six years, 28 percent of all students have
returned to the camp at least once. Of these, four girls have
attended six or more sessions; two boys have attended six
sessions.

Fig. 1 KidsLogic Yearly Enrollment

In the summer of 2016, the opportunity arose to teach a

programming course to first-generation students entering a
women’s liberal arts college. Although this was the first time
that the curriculum would be taught to older students from
different backgrounds from those of KidsLogic camps, it
provided a setting for assessing the curricula and pedagogy
with a different student group. Further, given the challenges in
recruiting female students for the KidsLogic camp, the
prospect of teaching programming to an all-female group of
students mostly of ethnic and linguistic minority backgrounds
offered the opportunity to test the educative power of the
Python-based tasks and compare outcomes with those of the
summer camp.

Research has shown that simply providing access to
computers will not bridge the digital divide between
privileged and non-privileged students. Rather, it is working
collaboratively and creatively, especially engaged in
programming, what makes a difference for students [25].
Teaching collaborative programming tasks and materials to
first-generation, female, mostly minority students offered an
excellent opportunity to replicate this research.

B. Study Design

This exploratory study relies on mixed methods for data
collection and analyses. On the first day of the camp, students
were asked to complete a 23-item survey that included 14
open-ended, short-answer items and eight, 5-point Likert scale
items. Four of the open-ended items requested background
information, such as reasons for attending the camp, frequency
of and purposes for using digital devices, and favorite
academic subject. The remaining ten open-ended items as well
as the nine Likert scale items (19 total items) assessed

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:12, No:10, 2018

1424

students’ familiarity with CT concepts, skills, and procedures.
At the end of the camp, students completed the 19-item
assessment component of the survey.

In order to evaluate the students’ programming skills, the
students worked on a final project in teams of two, where each
team had to design and implement a Python computer game.
While designing and building their final game, students read
and followed a rubric as a guideline, intended to help them
focus on skills they needed to demonstrate while creating a
game that was original, interactive, designed in graph paper,
and error free. In addition, the code needed to successfully
implement (a) Boolean variables, (b) ‘while’ statements, (c)
‘for’ loops, (d) ‘if-else’ statements, (e) random functions, (f)
new functions, and (g) math operation on variables.

Two focal students who had demonstrated contrasting skills
during the camp were selected from each group for semi-
structured interviews conducted by the researchers. The
purpose of the interviews was to understand the students’
experiences completing tasks, following the curriculum and
methods, and working with related content. Transcriptions of
digital recordings of the interviews were analyzed with other
data.

C. Participants

This study relies on findings drawn from the data gathered
from two separate groups of participants. The first group
consisted of students ranging in ages between eight and 15
years enrolled in a one-week-long (20 hours total) KidsLogic,
Python Computer Programming summer camp. KidsLogic
camp participants came from relatively high socioeconomic
status families, diverse academic skills, and with minimal or
very limited computer programming skills. Data were
gathered from ten KidsLogic students, six boys and four girls;
five boys were returning students.

The second group consisted of students enrolled in a
summer workshop (SW) at a women’s liberal arts college. The
four-week program is specifically designed for incoming,
first-generation students, most of whom are women of color.
This program strives to ease the transition to college, offering
classes in subjects such as English, Sociology, Social Justice
and Technology. The courses emphasize writing,
communication, and mathematical skills as well as providing
students with opportunities to establish support groups, while
familiarizing themselves with the physical and social aspects
of life on a college campus. In the summer of 2016, a total of
20 SW students participated in a three-day (12 hours total)
Python computer programming workshop. This group of
female students experienced the same curriculum and
pedagogy than the KidsLogic group. However, the total
classroom time was 10.5 hours for the SW group and 17.5
hours for the KidsLogic group. Python computer
programming was new to all participants in both groups.

D. Methods

Instruction days for both KidsLogic and SAW participants
were divided in two parts: (1) Read, Type, Execute and Learn,
and (2) Design, Implement, Test and Debug. The first part of

the day emphasized learning new concepts through reading
and typing code. Reading or “tracing code” [23] is an essential
programming skill, requiring at least 50% accuracy in order to
write code with confidence [24]. The second part of the day
allowed students to try out what they had previously learned,
while testing and debugging.

The instructor began by demonstrating to the entire class a
computer game written in Python, projected on a screen. The
chosen computer game for each session contained
purposefully chosen computer skills and concepts. Next,
working in pairs and practicing pair programming, students
transferred the python code from a handout to the PyCharm
IDE (Integrated Development Environment) [22]. Students ran
and played with their games, while practicing reading.
Meanwhile, the instructor and an assistant circulated around
the classroom, making observations, answering questions and
providing help as needed.

Toward the end of the first part of the day, and as a group,
the students and instructor reviewed and explored the code,
writing down new programming concepts, skills learned, and
terminology or definitions. Depending on the difficulty of the
program and the proficiency of students, it was possible for
particular pairs of students to read and type from one to three
programs per day.

The goal for the second part of day was for students to build
their own computer game. In pairs, students practiced the four
steps involved in creating a new Python game:
1. Design the scene of a game and its elements on graph

paper;
2. Write simple algorithms to solve problems whenever

needed;
3. Implement the game in the PyCharm IDE using the

Python language;
4. Test the game, debugging the program to make it error

free.
When problems arose, students referred to their designs on

chart paper for reference, identifying problems and possible
solutions under the guidance of the instructor and assistant.
Students presented their finished programs to the instructor for
verification only when they were confident it worked as
designed.

During assessment days, the instructor provided a total of
seven Python games as examples, each one emphasizing
particular concepts, such as variables, print statements,
function calls, if-else statements, while statements, RGB (Red
Green Blue) colors, simple array, function creation, Boolean
variables, for-loops, and event driven programming. During
the entire camp, the instructor repeated these concepts and
explanations, emphasizing ways in which students had
implemented these differently. The main goal was to learn
through meaningful practice, while remaining engaged and
enjoying the tasks.

At the end of assessment days, and utilizing paired
programming, students collaborated to develop final Python
computer game projects. Five teams from the KidsLogic camp
and 10 from the SW presented their final project to their
classmates. They were required to submit the game design on

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:12, No:10, 2018

1425

graph paper, written algorithms used, and the game as a digital
file. A 12-criterion rubric was used to assess their work.

III. RESULTS
What follows is a summary of results emerging from the

surveys, the semi-structured interviews with the eight focal
students (four each from KidsLogic and SAW), and the
evaluation of the students’ final projects. Results are presented
in order of relevance and magnitude.

A. Survey Responses

As mentioned, the Python Computing Programming
Assessment Instrument survey contained a combination of
eight Likert-scale items and 14 short-answer items, yielding
quantitative and qualitative data, respectively. The
combination of item types made it possible to test the internal
validity of the instrument, whereas the pre- and post-test

design allowed assessment of learning resulting from the
summer camp and the workshop for first generation college
students.

Student t-tests were performed on the pre- and post-test
self-evaluations for key concepts, with statistically significant
differences emerging in both the KidsLogic and SW groups.
Tables I and II contain the scores for each of the matched pairs
of pre- and post-test scores in each group, respectively. As can
be seen, the improvements in self-assessed knowledge of the
nine vocabulary words were statistically significant (p ≤ 0.05)
for all but Variable. There were also differences as to the
specific words for which each group developed a greater
understanding. KidsLogic students’ growth in understanding
was greatest regarding Algorithm, Print Statement, Boolean
variable, and Loop Statement. In contrast, SW students’
understanding grew most with Computer Function, Random
Function, Conditional Statement, and Interactive Program.

TABLE I

KIDSLOGIC PRE- POST-TEST PAIRED SAMPLES STUDENT T-TEST

Pre-Post Pairs Mean Diff. Std. Dev. Diff. Std. Error Mean Diff. t df Sig. (2-tailed)

Algorithm -1.55 0.19 0.06 3.40 10 0.0068

Variable -0.82 0.50 0.15 2.17 10 0.0552

Print Statement -2.09 0.28 0.09 4.80 10 0.0007

Boolean Variable -2.45 0.47 0.17 7.22 10 0.0001

Loop Statement -3.09 0.42 0.15 8.40 10 0.0001

Computer Function -1.09 0.12 0.04 4.35 10 0.0014

Random Function -1.82 0.19 0.06 4.10 10 0.0021

Cond Statement -2.45 0.03 0.01 5.18 10 0.0004

Interactive Program -1.64 0.30 0.09 3.62 10 0.0047

TABLE II

SW PRE- POST-TEST PAIRED SAMPLES STUDENT T-TEST

Pre-Post Pairs Mean Diff. Std. Dev. Diff. Std. Error Mean Diff. t df Sig. (2-tailed)

Algorithm -0.74 0.15 0.04 3.24 18 0.0045

Variable -0.58 0.18 0.04 1.93 18 0.0689

Print Statement -1.68 0.69 0.16 4.16 18 0.0006

Boolean Variable -1.42 0.99 0.23 4.75 18 0.0002

Loop Statement -2.00 0.23 0.05 5.85 18 0.0001

Computer Function -1.63 0.09 0.02 6.37 18 0.0001

Random Function -2.79 0.34 0.07 12.45 18 0.0001

Cond Statement -2.05 0.56 0.13 5.93 18 0.0001

Interactive Program -1.63 0.41 0.09 6.68 18 0.0001

Students’ responses to the nine open-ended items that were
included in the Python Computer Assessment Survey allowed
for triangulation and a test of internal validity of the
quantitative pre-post results. A crucial survey item, ‘What
steps would you follow to create a digital game?’ was
especially useful to determine the extent to which students’
CT grew during the duration of the KidsLogic summer camp
and the SW workshop. From the KidsLogic group, all 10
students were unable to produce correct responses for the
digital game question in the initial assessment. Yet, in the
post-test responses, all students produced correct answers.
Further, the short-answer responses students wrote commonly
mention needing to find a solution, creating an algorithm,
implementing the solution on Python, and testing and
debugging it. These are all accepted and recommended

programming steps. In contrast, only six of the 19 SAW
students (31%) mentioned these steps in their last day
evaluation survey responses.

Logic, an essential concept in computer programming, was
another concept that the students were asked to describe in a
short answer survey item. Initially, only a few KidsLogic
students and no SW students wrote a correct definition. The
responses for both groups improved by the end of the camp.
Many students defined logic as the way computers think and
were able to write a logical if-else statement.

B. Interview Responses

All eight students selected for the interviews were not only
willing to describe their experiences, but also spoke candidly
about their observations as KidsLogic or SW students. Their

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:12, No:10, 2018

1426

statements indicated a general enjoyment of the tasks they
were asked to complete as well as the steps they followed.
Students in both groups mentioned specific ways in which the
camp had been beneficial, although SW students also
mentioned initial apprehension and resistance to the idea of
attending a coding workshop. The following are examples of
such sentiments:

I never had a formal class in programming. I am
learning a lot [...] This is a cool opportunity. I think
coding is cool [Female KidsLogic student]

Everything I have learned about programming has
been through this camp. I got to freely work on my own
ideas but we also got help. Now I can make a simple
console game. All I learned was new. (Male KidsLogic
student)

Before this workshop I didn’t know how much work
goes into making simple images, or making something
moving. The coding is amazing! So much work goes into
it. I learned to be patient. I like that we had so many
helpers, and even helpers are trying to figure out things.
This is new to me. I don’t do computer stuff; all has been
challenging. Coding seemed so complex! This is all
completely new to me. All new language for me, but we
are getting the hang of it (Female SW student).

I am not technology oriented; this is my first exposure
to programming. I was not interested in computers in
high school” (Female SW student)
Both groups found debugging to be the most challenging

step in the process; however, they also mentioned
experiencing satisfaction when they were able to figure out the
problem. As such, students not only learned specific skills and
information specific to Python but also problem solving
strategies in general. Moreover, working with a classmate
seemed to have contributed to the participants’ resiliency and
social skills as well. The following quote illustrates several of
these outcomes:

When you have a problem with a person, you talk it
out and get some type of agreement. With computers you
try to fix it, you look at the history to see what is what
you did to cause the problem. With a person, you
confront the person. With technology, you look at the
history. For programming, I do research and ask people.
Humans keep learning and adding information. But
computers don’t. In this camp, I learned the Boolean
statements, True or False, like a flag, I never heard about
it before (Female KidsLogic student)
Python proved to be an accessible and sufficiently flexible

programming language for both age groups. Also, the students
reported finding the paired work helpful in that they were able
to take turns trying out skills and strategies, but even more
importantly, a second pair of eyes helped them avoid mistakes
and spot keystroke errors. Students also appreciated the
impromptu explanations and mini-lectures used when the
instructor addressed a common problem or misconception.

[What helps is] that you have a driver and an observer,
the fact that you are not always typing, and you get ideas
from other people. More people working together means

more possibilities. Too many people then you don’t get
anything done. But two people, I like that. It is always a
good idea to work with a partner, even if you disagree.
You get to know the person based on the ideas they have.
(Female KidsLogic student)

Working with a partner is more helpful, we try to solve
the problem together. Two brains work better than one.
[Coding] is really precise. I have done HTML before, and
this was a struggle. On my own, it didn’t work, but now
with this group I feel better. It is very rewarding; we try
to go deeper together. I like that the professor stops the
class for a few minutes to give short mini lessons. It is
helpful. I knew about RGB colors, but the rest was new.
The beginning of troubleshooting was frustrating. It is
not as frustrating now. I keep debugging and I get
something out of it, and I want to do more (Female SW
student)
One of the SW first-generation student was a bilingual

Latina immigrant who, though cautious and hesitant at first,
found the workshop quite useful in a variety of ways. An
unexpected result was that this student enrolled in a fall
semester computer sciences course, immediately after the
workshop. This was also true of five other students who
enrolled in the course as well. Below is the immigrant
student’s quote (translated from Spanish):

I am from Mexico and have lived in the USA for five
years. This class has changed my opinion about
computers. Before, I didn’t like them. Now I know that
programming can achieve a variety of things like
building video games. One can also build things for big
companies. I have learned about RGB and am able to put
images in video games. I can make the images move. I
didn’t know anything about programming! I learned from
making mistakes and this opened my mind. To find
errors is frustrating. I now understand that computer
programming is not that bad. I want to take more of these
classes. I would have like the workshop to run longer
(Female SW student).

C. Final Project

The evaluation of final projects yielded generally
satisfactory results, with scores ranging from a low of 12 to a
high of 19 (out of 20 possible). KidsLogic teams’ mean score
was 15.4 (SD=2.7), whereas SW teams’ mean score was 15
(SD=2.0). The team with the highest score (19) was a SW
team, with a KidsLogic with two 15-year-old girls scoring 18,
or second highest. The former had no previous programming
skills, while the latter had enrolled in 10 previous KidsLogic
camp sessions, neither had previous experience with Python.

III. CONCLUSION

The six-year project reported in this paper has succeeded at
creating pedagogy and curricula that (1) inspire and motivate
youth of different backgrounds and interests to develop CT;
(2) teach fundamentals of computer programming to youth,
and especially young women; and (3) learn from the process
on how to engage students in collaboration and learning. The

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:12, No:10, 2018

1427

program succeeded at motivating students to continue learning
programming and developing their CT beyond the workshop.
This is particularly remarkable given that students in both
groups were required to attend the course either by their
parents or college counselors. As such, it is not possible to
generalize the results from this study to contexts in which
students choose to enroll in the course. Beyond the evidence
captured by the multiple data gathering methods described in
this paper, the strongest evidence of the effectiveness of the
pedagogy and curricula are the spontaneous behaviors
exhibited by a large portion of the students in each group after
their respective courses. Several KidsLogic former students
have joined or started computer and robotics clubs at their
respective schools. And more than one-fourth of all SW
students enrolled in introductory computer science courses at
their university.

The t-tests results are evidence that the content and
pedagogy led to growth in understanding important computer
programming concepts in both groups of students.
Furthermore, students were able to define and understand the
steps involved in designing and building computer programs.
Even students who were unable to clearly and precisely name
the steps, they were still able to follow the steps during
practice hours. Similarly, at the end of the camp, most students
were not able to fully understand, much less define, computing
logic as a central element of programming and CT.
Nevertheless, all students were able to write a logic statement,
having learned to read logic statements by constantly tracing
code provided by the instructors.

Generally speaking, students were motivated to learn by
providing them with interesting working pieces of code, and
by working backwards, from a finished product, toward an
understanding the code in a collaborative setting. Students
were very motivated to understand what parts of the code were
responsible for certain actions in the game. This curiosity was
the catalyst for learning, while the enjoyment of the tasks
provided motivation. KidsLogic curriculum was created with
an effort to present programs and games to students in
accessible and engaging ways. At the end, both groups of
students created fun games without even thinking about the
complexity and logic in their code.

REFERENCES
[1] Wing, J. (2006). Computational thinking. Communications of the ACM,

49(3), 33–36.
[2] Henderson, P. B., Cortina, T. J., Hazzan, O., and Wing, J. M. (2007).

Computational thinking. In Proceedings of the 38th ACM SIGCSE
Technical Symposium on Computer Science Education, (SIGCSE ’07),
195–196. New York, NY: ACM Press.

[3] Cuny, J., Snyder, L., & Wing, J.M. (2010). Demystifying computational
thinking for non-computer scientists. Unpublished manuscript in
progress, referenced in
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf.

[4] Leu, D. J., Kinzer, C. K., Coiro, J. L., & Cammack, D. W. (2004).
Toward a theory of new literacies emerging from the Internet and other
information and communication technologies. In R. B. Ruddell, & N. J.
Unrau (Eds.) Theoretical models and processes of reading (5th ed.) (pp.
1570-1613). Newark, DE: International Reading Association.

[5] Vee, A. (2017). Coding Literacy: How Computer Programming is
Changing Writing. MIT Press.

[6] Grandell, L., Peltomäki, M.,Back, R. J., & Salakoski, T. (2006, January).

Why complicate things?: introducing programming in high school using
Python. In Proceedings of the 8th Australasian Conference on
Computing Education-Volume 52 (pp. 71-80). Australian Computer
Society, Inc.

[7] Mercier, E. M., Barron, B., & O’Connor, K. M. (2006). Images of self
and others as computer users: The role of gender and experience. Journal
of Computer Assisted Learning, 22, 335–348. San Francisco Unified
School District (n.d.). In Computer Science for All Students in SF.
Retrieved July 1st, from http://www.csinsf.org/curriculum.html.

[8] Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review
of the state of the field. Educational Researcher, 42(1), 38-43.

[9] Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K.,
& Wright, M. (2006). Computer gaming and interactive simulations for
learning: A meta-analysis. Journal of Educational Computing Research,
34(3), 229-243.

[10] Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J.,
Werner, L. (2011). Computational thinking for youth in practice. ACM
Inroads, 2, 32–37.

[11] Holbert, N. R., & Wilensky, U. (2011, April). Racing games for
exploring kinematics: a computational thinking approach.

[12] Blikstein, P. (2010). Connecting the science classroom and tangible
inter- faces: the bifocal modeling framework. In Proceedings of the 9th
International Conference of the Learning Sciences, Chicago, IL, 128–
130.

[13] Berrett, D. (2015). The day the purpose of college changed. The
Chronicle of Higher Education, 26.

[14] Harris, A. D., McGregror, J. C., Perencevich, E. N., Furuno, J. P., Zhu,
J., Peterson, D. E. & Finkelstein, J. (2006) The use and interpretation of
quasi-experimental studies in medical informatics, 13(1), 16–23.

[15] Maxwell, J. A. (2016). Expanding the history and range of mixed
methods research. Journal of Mixed Methods Research, 10(1), 12-27.

[16] KidsLogic http://www.kidslogic.net/.
[17] LEGO Mindstorms https://www.lego.com/en-

us/mindstorms/?domainredir=mindstorms.lego.com.
[18] Alice http://www.alice.org/.
[19] Processing https://processing.org/.
[20] Arduino https://www.arduino.cc/.
[21] Python https://www.python.org/.
[22] PyCharm https://www.jetbrains.com/pycharm/.
[23] Sentance, S. & Csizmadia, A. Educ Inf Technol (2017) 22: 469.

https://doi.org/10.1007/s10639-016-9482-0.
[24] Lister, R. (2011). Concrete and other neo-piagetian forms of reasoning

in the novice programmer. Proceedings of the Thirteenth Australasian
Computing Education Conference - Volume 114, Perth, Australia. 9–18.

[25] Warschauer, Mark; Matuchniak, Tina. New Technology and Digital
Worlds: Analyzing Evidence of Equity in Access, Use, and Outcomes,
Review of Research in Education, v34 n1 p179-225 2010.

[26] Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to
school. Phi Delta Kappan, 95(1), 61-65.

