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Target Trajectory Design of Parametrically Excited

Inverted Pendulum for Efficient Bipedal Walking
Toyoyuki Honjo, Takeshi Hayashi, Akinori Nagano and Zhi-Wei Luo

Abstract—For stable bipedal gait generation on the level floor,
efficient restoring of mechanical energy lost by heel collision at
the ground is necessary. Parametric excitation principle is one of
the solutions. We dealt with the robot’s total center of mass as
an inverted pendulum to consider the total dynamics of the robot.
Parametrically excited walking requires the use of continuous target
trajectory that is close to discontinuous optimal trajectory. In this
paper, we proposed the new target trajectory based on a position
in the walking direction. We surveyed relations between walking
performance and the parameters that form the target trajectory via
numerical simulations. As a result, it was found that our target
trajectory has the similar characteristics of a parametrically excited
inverted pendulum.

Keywords—Dynamic Bipedal Walking, Parametric Excitation, Tar-
get Trajectory Design.

I. INTRODUCTION

EFFICIENT walking strategies have been studied in the

field of bipedal locomotion. As one of the most energy-

efficient walking approaches, passive dynamic walking has

been proposed by McGeer [1]. In passive dynamic walking, a

biped robot continuously and stably walks down a gentle slope

without any actuators or mechanical inputs when the robot is

placed on a suitable initial condition. The loss of mechanical

energy is caused by the collision between the edge of swing-

leg and the walking surface. In this walking approach, me-

chanical energy is restored by transporting potential energy to

kinetic energy while descending the slope. However, bipedal

walking on the level floor has no propulsion generated by

gravity and can not transport potential energy to kinetic energy.

Therefore, mechanical energy must be restored through some

mechanical inputs to realize bipedal walking on the level floor.

Goswami et al. proposed energy tracking control in which

the hip and ankle torque were designed to make the energy

level constant in a sustainable gait and showed that the energy

tracking control made a stable limit cycle [2]. Asano et al.

proposed a so-called virtual passive dynamic walking [3]. The

hip and ankle torque were designed based on virtual gravity.

Asano et al. also applied virtual passive dynamic walking

approach to a biped robot with semicircular feet whose center

is located on the legs [4]-[5]. They have shown that the rolling

of semicircular feet has an effect similar to ankle torque.
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Hence, the robot can restore the energy dissipated at the impact

by using only hip torque and generate a sustainable gait.

One of other approaches for restoring mechanical energy

is parametric excitation. Asano et al. applied a parametric

excitation principle to a biped robot with telescopical actuator

in its legs to change the position of the leg’s mass center

[6]-[8]. Harata et al. proposed to apply parametric excitation

to a biped robot with knee joint and semicircular feet [9]-

[11]. They showed that bending and extending the knee have

an effect similar to telescopic-leg and the robot generated a

sustainable gait. We proposed parametrically excited walking

of an inverted pendulum to consider the dynamics of support-

leg [12]. We dealt with the robot’s total center of mass as

an inverted pendulum and controlled the trajectory of mass

center to be closer to optimal trajectory of a parametrically

excited inverted pendulum. For efficient parametrically excited

walking, Banno et al. and Harata et al. applied a target

trajectory that was represented by a combination of spline

functions to a bipedal robot [13]-[14]. In these methods, target

trajectories were designed as a time function. However, the

dynamics of gait is complex and it is hard to predict the

behavior of stable dynamical gait. Therefore, it is difficult to

actuate the knee joint or telescopical mechanics at the arbitrary

timing.

For efficient bipedal walking, the target trajectory as a

function of spatial coordinates is required to actuate the

knee joint or telescopical mechanics at the arbitrary timing.

Therefore, we proposed a new target trajectory based on a

position relative to the walking direction. This target trajectory

was represented by a product of two sigmoid functions. This

method requires no information of the walking behavior to set

parameters of the target trajectory. The proposed trajectory

enables the robot to actuate the knee joint of its swing-leg

at the desired timing even if the walking speed or walking

stride changes. In this paper, we examined the relationships

between the performance of the system and the effect of

parameters that determine the shape of the target trajectory

via numerical walking simulations. As a result, we found that

there is an optimal parameter set for efficient parametrically

excited walking with knee joint actuation.

This paper is organized as follows: Section II explains the

planar kneed biped robot with semicircular feet. Section III

explains the parametric excitation of an inverted pendulum

and verifies the effects of the proposed trajectory via numer-

ical simulations. Section IV verifies the performance of the

proposed parametrically excited walking via numerical walk-

ing simulations and shows those simulation results. Finally,

Section V gives our conclusion.
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II. PLANAR KNEED BIPED ROBOT

Fig. 1. Model of a planar kneed biped robot with semicircular feet

Fig. 2. Configuration at the instant of the double support phase

The biped robot used in this paper is illustrated in Fig.

1. This robot has the knee joint and semicircular feet whose

center is located on the leg. Dynamic biped walking of this

robot consists of two phases. One phase is the single support

phase and another phase is the double support phase. In the

single support phase, the support-leg constantly contacts the

walking surface and rotates around the contact point. The

knee joint of the support-leg is locked in a straight posture

by mechanical constraint. The swing-leg swings and only the

knee joint of the swing-leg is controlled based on our target

trajectory. After bending and stretching the knee joint of the

swing-leg, the knee joint of the swing-leg is also locked in a

straight posture by mechanical constraint. Therefore, this robot

has two or three degrees of freedom during the single support

phase. The lock of the swing-leg’s knee occurs before the heel

of the swing-leg strikes the ground. The single support phase

shifts to the double support phase when a collision occurs at

the ground.

The double support phase is an instantaneous event. During

the double support phase, the support-leg and the swing-leg are

exchanged and the knee joint of the new swing-leg becomes

free. After updating the states, the double support phase shifts

to the single support phase and the next step is generated.

The dynamic equation during the single support phase is

given by

M(θ)θ̈ + h(θ, θ̇) = SuK − JT
KλK ,

where θ = [θ1 θ2 θ3]
T is the generalized coordinate vector, M

is the inertia matrix, h is the vector in which the Coriolis force,

centrifugal force and gravity term are included. JK = [0 1 −1]
is the Jacobian vector and λK ∈ R is the binding force that

keeps the straight posture of the knee joint. SuK is the knee

torque and the detail is explained later.

When the mechanical constraint of the knee joint occurs and

the sole contacts the ground, a completely inelastic collision is

assumed to occur at the knee of the swing-leg and the ground

contact points, respectively. The transition of the angular ve-

locities occurs between before and after the knee constraint or

between before and after the ground contact. Angler velocities

before and after the knee constraint are represented as θ̇
−

and

θ̇
+

. The transition of the angular velocities is given by

M(θ)θ̇
+
= M(θ)θ̇

−

+ JT
KλK ,

where λK is a constraint force that makes θ̇+2 = θ̇+3 . This

force is given by

λK = −
(
JKM−1(θ)JT

K

)
−1

JK θ̇
−

. (1)

From this force, angular velocities after the knee constraint

are given by

θ̇
+
=

(
I −M−1(θ)JT

K

(
JKM−1(θ)JT

K

)
−1

JK

)
θ̇
−

.

(2)

To describe the state transition at the double support

phase, we define generalized coordinates q ∈ R
6 =

[x1 z1 θ1 x2 z2 θ2]
T

. As shown in Fig.2, (xi, zi) (i = 1, 2)
are located on the center of the support-leg’s and swing-leg’s

semicircular feet, respectively. The transition between before

and after the ground impact is given by

M(q)q̇+ = M(q)q̇− + JT
GλG,

where q̇− and q̇+ are velocities before and after the ground

impact. JT
G is a Jacobian matrix that satisfies JGq̇

+ = 0 and

λG is an undetermined multiplier vector that represents the

impulse force. Velocities after the ground impact are given by

q̇+ =

(
I −M−1(q)JT

G

(
JGM

−1(q)JT
G

)
−1

JG

)
q̇−.

(3)

In addition, the support-leg and swing-leg are exchanged each

other.
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Fig. 3. Model of an inverted pendulum

Fig. 4. Optimal trajectory of a parametrically excited inverted pendulum

III. PARAMETRIC EXCITATION OF AN INVERTED

PENDULUM

In this section, firstly we explain the parametric excitation

of an inverted pendulum and our target trajectory. Then, we

verify the relationships between the performance of an inverted

pendulum and the effect of parameters of proposed target

trajectory via numerical simulations.

A. Optimal trajectory of a parametrically excited inverted

pendulum

The simple example of parametric excitation is a swing at

a park. When we play on a swing, we bend and stretch our

knee to increase the amplitude of the swing. In this situation,

we control the position of mass center using our knee.

In some walking approaches, parametric excitation principle

has been applied to the swing-leg of a biped robot [6]-

[14]. We dealt with the dynamics of the biped robot as an

inverted pendulum to consider the effect of the support-leg and

proposed the parametric excitation of an inverted pendulum

[12]. Fig. 3 shows the inverted pendulum that we dealt with in

this paper. The optimal trajectory of a parametrically excited

Fig. 5. Target trajectories at three values of α when β1 = −0.05 and
β2 = 0.15

Fig. 6. Target trajectories at three values of β1 when α = 50 and β2 = 0.15

Fig. 7. Target trajectories at three values of β2 when α = 50 and β1 =
−0.05

inverted pendulum shows Fig. 4. This optimal trajectory is

derived by following equations:

K = 1
2ml2θ̇2

L = ml2θ̇

L̇ = mgl sin θ

(4)

where K is kinetic energy, L is angular momentum, m, l are

the mass and length of an inverted pendulum, g is gravity

acceleration and θ is the angle of an inverted pendulum which

has positive value when the angle is clockwise from vertical

line. It is assumed that the length of pendulum l can be

changed instantaneously. However, in reality, the length can

not be changed instantaneously. Therefore, continuous target
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trajectories that is close to the discontinuous optimal trajectory

have been studied. In this paper, we proposed the target

trajectory based on a position in the locomotive direction.

Proposed target trajectory is represented by a product of two

sigmoid functions and described as the following form:

ld(x) = l0 +
A

1 + e−α(x−β1)
×

1

1 + eα(x−β2)
(5)

l̇d(x) =
αAẋ

(
e−α(x−β1) − eα(x−β2)

)
[
1 + eα(β1−β2) + e−α(x−β1) + eα(x−β2)

]2 (6)

where l0 is the initial length of the pendulum, A, α, β1 and

β2 are parameters that determine the shape of target trajectory.

A is the amplitude of trajectory, α is the magnitude of lift

and descent pace, β1 and β2 are positions of lift and descent.

From eq.(6), this trajectory has the maximum value when x is
β1+β2

2 . However, when α is small or the interval from β1 to

β2 is short, this maximum value of eq.(5) is smaller than A.

Therefore, we introduced the new amplitude Â to normalize

this function.

Â = A
(
1 + 2eα

(β1−β2)
2 + eα(β1−β2)

)
(7)

The target trajectory is rewritten as

ld(x) = l0 +
Â

1 + e−α(x−β1)
×

1

1 + eα(x−β2)
. (8)

Several examples of our target trajectory are illustrated in Fig.

5-7.

When α is larger, this target trajectory gets closer to the op-

timal trajectory. However, larger α may decrease the stability

or efficiency. Therefore, we verified the relation between the

effect of these parameters and performances of the system.

B. Simulations of an inverted pendulum

We controlled an inverted pendulum that was illustrated in

Fig. 3 to verify the validity of our proposed target trajectory.

Dynamic equation of the inverted pendulum is described as

the following form:

M(q)q̈ + h(q, q̇) = Su, (9)

where M ∈ R
2×2 is the inertia matrix, h ∈ R

2 is the vector in

which the Coriolis force, centrifugal force and gravity term are

included, q = [l θ]T is the generalized coordinate vector, Su ∈
R

2 = [1 0]Tu is the control input vector. The initial condition

is given by q0 = [l0 θ0]
T (θ0 < 0) and the termination

condition is given by qT = [lT θT ]
T (lT = l0, θT = |θ0|).

We evaluate the performance of the system using two

performance indicators. One is the increment of mechanical

energy ∆E = ET − E0. Another is the specific resistance µ.

The specific resistance is the indicator of locomotive energy

efficiency. The specific resistance µ is defined by

µ =

∫ T
−

0+

(∣∣∣l̇u∣∣∣) dt.

Mgg∆Xg

, (10)

where T− is the step time, Mg is the total mass of the

system, g is the gravity acceleration and ∆Xg is the moving

distance of mass center during one step. Numerator of eq. (10)

shows the actuator’s work and the specific resistance µ shows

the amount of energy that the system requires to move unit

distance when the mass of the system is unit weight. Therefore,

the locomotive system is efficient when µ is small. Physical

parameters of this inverted pendulum are listed in Table I.

Fig. 8. The value of target trajectory and the length of the inverted pendulum
when α = 80, β1 = −0.005 and β2 = 0.15

Fig. 9 shows simulation results. Fig. 9 (a), (c) and (e) show

the values of ∆E when we changed the value of β1 from

−0.10 to 0.05 with some sets of α and β2. We obtained

the following equation from the dynamic equation eq. (9) to

analyze these results.

lθ̈ = −2l̇θ̇ + gsinθ (11)

From this equation, expanding the length of pendulum has

an effect of decelerating the angular velocity. In addition,

shortening the length of pendulum has an effect of accelerating

the angular velocity. Therefore, the first term of the right side

of eq. (11) has the effect of excitation. The first term of right

side has a non-zero value while the length of the pendulum

is varied. From Fig. 5-7, the interval between extending and

shortening the length of the pendulum became wide when α

was small or the distance from β1 to β2 was long. From Fig. 9,

the inclement of mechanical energy ∆E became large when α

was small or β2 was large. From these results, proposed target

trajectory has the similar characteristics of the parametrically

excited inverted pendulum.

From Fig. 9 (c) and (e), the increment of mechanical energy

peaked around β1 = 0. These results match the theory of the

optimal trajectory. Fig. 8 shows the target trajectory and the

length of the inverted pendulum when β1 = −0.005, β2 =
0.15 and α = 80. From this figure, the inverted pendulum

accurately followed the target trajectory. However, from Fig.

9 (a), the increment of mechanical energy ∆E peaked when

TABLE I
PHYSICAL PARAMETERS USED IN THE SIMULATION

parameter value unit parameter value unit

m 1.0 [Kg] A 0.01 [m]

l0 1.00 [m] α 40 - 80 [-]

θ0 -0.30 [rad] β1 -0.10 ～ 0.05 [m]

β2 0.10 ～ 0.15 [m]



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:11, 2011

2179

(a) ∆E at α = 40 (b) µ at α = 40

(c) ∆E at α = 60 (d) µ at α = 60

(e) ∆E at α = 80 (f) µ at α = 80

Fig. 9. Mechanical energy inclement ∆E and the specific resistance µ with respect to β1 with six values of β2

β1 was larger than zero. When α was small or the distance

from β1 to β2 was long, Â that was described by eq. (7)

had large value. Therefore, the actual rising position became

smaller than β1 and the actual falling position became larger

than β2. It is suggested that this effect of the normalization

contributed to the increment of mechanical energy.

Fig. 9 (b), (d) and (f) show the values of µ when we change

the value of β1 from −0.10 to 0.05 with some sets of α and

β2. The shorter the distance from β1 to β2 became, the smaller

µ became. However, from Fig. 9 (d) and (f), energy efficiency

became greatly worse because the length of pendulum rapidly

expanded and shortened when α became large and the distance

from β1 to β2 became very short. In addition, the inclement of

β2 improved the energy efficiency. Therefore, it is suggested

that gentle expanding and shortening the length of pendulum

contributes to the inclement of mechanical energy and energy

efficiency.

IV. WALKING SIMULATIONS

In this section, we verify the effect of our target trajectory

for bipedal walking via numerical simulations.

The biped robot was described in previous section. This

robot has only knee actuation. Therefore, we applied our

proposed target trajectory to the relative knee angle θK =
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(a) α = 40 (b) α = 50 (c) α = 60

(d) α = 70 (e) α = 80

Fig. 10. Mechanical energy incrementation ∆E with respect to β1 with five values of β2

(a) α = 40 (b) α = 50 (c) α = 60

(d) α = 70 (e) α = 80

Fig. 11. The specific resistance µ with respect to β1 with five values of β2

(a) α = 50 and β1 = −0.01 (b) α = 60 and β1 = −0.015 (c) α = 70 and β1 = −0.025 (d) α = 80 and β1 = −0.03

Fig. 12. Center of mass trajectory corresponding to four parameter sets when β2 = 0.12

−(θ2−θ3). The angular trajectory of knee joint is represented

by

θKd(x) =
Â

1 + e−α(x−β1)
×

1

1 + eα(x−β2)
. (12)

We evaluated two walking performances of this robot when

the parameters α, β1 and β2 were varied. Two walking per-

formances are the restored energy and the specific resistance

during one step. Physical parameters of this robot are listed

in Table II.

Fig. 10-11 show simulation results. Fig. 10 shows the values

of ∆E when we changed the value of β1 from −0.03 to 0.02
with some sets of α and β2. From Fig. 10, the increment of



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:11, 2011

2181

(a) Angular position (b) Angular velocity

(c) Mechanical energy (d) The edge position of swing-leg

(e) Center of mass

Fig. 13. Results of bipedal walking when α = 68, β1 = −0.02 and β2 = 0.12

mechanical energy peaked around β1 = 0. These results match

the theory of the optimal trajectory and simulation results of an

inverted pendulum. The larger the values of α and β2 became,

the greater the restored energy became.

Fig. 11 shows the values of µ when we changed the value

of β1 from −0.03 to 0.02 with some sets of α and β2. From

Fig. 11, the specific resistance µ reached a minimum value

around β1 = 0. The larger the values of β2 became, the smaller

TABLE II
PHYSICAL PARAMETERS USED IN THE WALKING SIMULATION

parameter value unit parameter value unit

L 1.0 [m] R 0.4 [m]

b1 0.35 [m] m1 5.0 [Kg]

L2 0.5 [m] m2 1.0 [Kg]

L3 0.5 [m] m3 4.0 [Kg]

a2 0.25 [m] mH 8.0 [Kg]

a3 0.25 [m] A 1.0 [rad]

the specific resistance µ became. In addition, there was the

value of α that made the energy efficiency the highest. When

α = 68, β1 = −0.02 and β2 = 0.12, the most efficient walking

was achieved. Fig. 12 shows the trajectory of mass center with

respect to four parameter sets. The trajectories were similar to

each other and these mass centers move higher around Xg = 0.

Therefore, it is suggested that there is the optimal trajectory

of mass center for efficient walking. In addition, the robot

achieved stable walking with many parameter sets when α was

large. Therefore, we need to select the suitable parameters that

improve energy efficiency or the stability of walking.

Fig. 13 shows the results of walking states. From Fig. 13

(d), it is ovserved that the foot clearance problem was avoided.

The foot clearance problem is the phenomenon that the foot

of the robot passes through the ground during the step. Fig.

14 shows the stable gait conditions during one step.
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Fig. 14. Stick figures of walking when α = 68, β1 = −0.02 and β2 = 0.12

V. CONCLUSION

In this paper, we proposed a new target trajectory that

is described as a function of spatial position for efficient

parametrically excited walking with the knee joint actuation.

Proposed target trajectory is based on a position in the walking

direction. Therefore, the knee joint is bent at the desired

interval when the walking speed or walking stride is varied.

Firstly, we verified that our proposed target trajectory had the

characteristics of a parametrically excited inverted pendulum

via numerical simulations. Secondly, we applied this target

trajectory to the knee joint of a bipedal robot. Then, we verified

the validity of our proposed target trajectory for bipedal

walking. As a result, we found that there was an optimal

parameter set for efficient parametrically excited walking with

knee joint actuation.
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