
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1750

Abstract—In distributed resource allocation a set of agents must 
assign their resources to a set of tasks. This problem arises in many 
real-world domains such as distributed sensor networks, disaster 
rescue, hospital scheduling and others. Despite the variety of 
approaches proposed for distributed resource allocation, a systematic 
formalization of the problem, explaining the different sources of 
difficulties, and a formal explanation of the strengths and limitations 
of key approaches is missing. We take a step towards this goal by 
using a formalization of distributed resource allocation that 
represents both dynamic and distributed aspects of the problem. In 
this paper we present a new idea for target tracking in sensor 
networks and compare it with previous approaches. The central 
contribution of the paper is a generalized mapping from distributed 
resource allocation to DDCSP. This mapping is proven to correctly 
perform resource allocation problems of specific difficulty. This 
theoretical result is verified in practice by a simulation on a real-
world distributed sensor network. 

Keywords—Distributed CSP, Target Tracking, Sensor Network 

I. INTRODUCTION

ISTRIBUTED resource allocation is a general problem in 
which a set of agents must intelligently assign their 

resources to a set of tasks such that all tasks are performed 
with respect to certain criteria. This problem arises in many 
real-world domains such as distributed sensor networks [3], 
disaster rescue [2], hospital scheduling [1], and others. 
However, despite the variety of approaches proposed for 
distributed resource allocation, a systematic formalization of 
the problem, explaining the different sources of difficulties, 
and a formal explanation of the strengths and limitations of 
key approaches is missing. 

We use a formalization of distributed resource allocation 
that is expressive enough to represent both dynamic and 
distributed aspects of the problem [6]. These two aspects 
present some key difficulties. First, a distributed situation 
results in agents obtaining only local information, but facing 
global ambiguity — an agent may know the results of its local 
operations but it may not know the global task and hence may 
not know what operations others should perform. Second, the 
situation is dynamic so a solution to the resource allocation 
problem at one time may become unsuccessful when the 

R.Mostafaei Author, is with the Computer Engineering Department, 
Islamic Azad University Khoy,Iran (e-mail mostafaevn@iaukhoy.ac.ir) 

A.Habiboghli Author, is with the Computer Engineering Department, 
Islamic Azad University Khoy,Iran (e-mail:  habiboghli@iaukhoy.ac.ir) 

M.R.Meybodi Author is with the Computer Engineering Department, 
Amirkabir University of Technology, Iran, (e-mail: meybodi@ce.aut.ac.ir). 

underlying tasks have changed. So the agents must 
continuously monitor the quality of the solution and must 
have a way to express such changes in the problem. Given 
these parameters of ambiguity and dynamism, we will 
remember four classes of difficulties of the problem [6]. In 
order to address the resource allocation problem, the paper 
also defines the notion of Dynamic Distributed Constraint 
Satisfaction Problem (DDCSP). 

In this paper, for solving some of problems discussed 
above, we propose a new DCSP based approach. Since this 
approach reduces the number of operations of each agent, we 
improve previous approaches and furthermore, increase the 
number of targets to be tracked; and our proposed approach is 
more fault tolerant than others. The central contribution of the 
paper is as follows: In section II domains and motivations are 
discussed, in section III we briefly explain distributed 
constraint satisfaction problems, in section IV generalized 
mapping of DCSP to sensor networks are introduced, in 
section V we explain our proposed approach for target 
tracking and section VI contain our experimental results and 
finally conclusion is introduced in last section.  

II. DOMAINS AND MOTIVATIONS

Among the domains that motivate this work, the first is a 
distributed sensor domain. This domain consists of multiple 
stationary sensors, each controlled by an independent agent, 
and targets moving through their sensing range (Figure 1.a 
and Figure 1.b illustrate the real hardware and simulator 
screen, respectively). Each sensor is equipped with a Doppler 
radar with together three sectors. An agent may activate at 
most one sector of a sensor at a given time or switch the 
sensor off. While all of the sensor agents must act as a team to 
cooperatively track the targets, there are some key difficulties 
in such tracking. 

First, in order for a target to be tracked accurately, at least 
three agents must concurrently activate overlapping sectors. 
For example, in Figure 2 which corresponds to Figure 1.b, if 
an agent A1 detects a target 1 in its sector 0, it must 
coordinate with neighboring agents, A2 and A4 say, so that 
they activate their respective sectors that overlap with A1’s 
sector 0. Activating a sector is an agent’s operation. Since 
there are three sectors of 120 degrees, each agent has three 
operations. Since target 1 exists in the range of a sector for all 
agents, any combination of operations from three agents or all 
four agents can achieve the task of tracking target 1. 

Second, there is ambiguity in selecting a sector to find a 
target.  

R.Mostafaei, A.Habiboghli, and M.R.Meybodi 

Target Tracking in Sensor Networks: A  
 Distributed Constraint Satisfaction Approach  

D



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1751

Since each sensor agent can detect only the distance and 
speed of a target, an agent that detects a target cannot tell 
other agents which sectors to activate. Assume that there is 
only target 1in Figure 2 and agent A1 detects the target first. 
A1 can tell A4 to activate sector 1.However, A1 cannot tell 
A2 which of the two sectors (sector 1 or sector 2) to activate 
since it only knows that there is a target in its sector 0. That is, 
agents don’t know which task is to be performed. Identifying 
a task to perform depends on the result of other related agents’ 
operations. 

If there are multiple targets, a sensor agent may be required 
to activate more than one sector at the same time. For 
instance, in Figure 2, A4 needs to decide whether to perform 
either a task for target 1 or a task for target 2. Since at most 
one sector can be activated at a given time, A4 should decide 
which task to perform. Thus, the relationship among tasks to 
perform will affect the difficulty of the resource allocation 
problem. 

Third, the situation is dynamic as targets move through the 
sensing range. The dynamic property of the domain makes 
problems even harder. Since target moves over time, after 
agents activate overlapping sectors and track a target, they 
may have to find different overlapping sectors. 

The second domain which motivates our work is Robocup 
Rescue [2] for disaster rescue after an earthquake. Here, 
multiple Fire engines, ambulances and police cars must 
collaborate to save civilians from trapped; burning buildings 
and no centralized control is available to allocate all of the 
resources. For instance, an ambulance must collaborate with a 
fire engine and have a fire extinguished before it can rescue a 
civilian. The tasks are dynamic, e.g., fires grow or shrink and 
also ambiguous e.g., a fire engine could receive a report of a 
fire in an area, but not a specific building on fire. This domain 
thus presents another example of a distributed resource 
allocation problem with many similarities together with the 
distributed sensor network problem. 

The above applications illustrate the difficulty of resource 
allocation among distributed agents in dynamic environment. 
Lack of formalism for dynamic distributed resource allocation 
problem can lead to ad-hoc methods which cannot be easily 
reused. 

III. DYNAMIC DCSP 
A Constraint Satisfaction Problem (CSP) is commonly 

defined by a set of variables, each associated with a finite 
domain, and a set of constraints on the values of the variables. 
A solution is the value assignment for the variables which 
satisfies all the constraints. A distributed CSP is a CSP in 
which variables and constraints are distributed among multiple 
agents. Each variable belongs to an agent. A constraint 
defined only on the variable belonging to a single agent is 
called a local constraint. In contrast, an external constraint 
involves variables of different agents. Solving a DCSP 
requires that agents not only solve their local constraints, but 
also communicate with other agents to satisfy external 
constraints. 

DCSP assumes that the set of constraints are fixed in 
advance [5]. This assumption is problematic when we attempt 
to apply DCSP to domains where features of the environment 
are not known in advance and must be sensed at run-time. For 
example, in distributed sensor networks, agents do not know 
where the targets will appear. This makes it difficult to specify 
the DCSP constraints in advance. Rather, we desire agents to 
sense the environment and then activate or deactivate 
constraints depending on the result of the sensing action. We 
formalize this idea next. 

We take the definition of DCSP one step further by 
defining Dynamic DCSP (DDCSP). DDCSP allows 
constraints to be conditional on some predicate P. More 
specifically, a dynamic constraint is given by a tuple (P, C), 
where P is an arbitrary predicate that is continuously 
evaluated by an agent and C is a familiar constraint in DCSP. 
When P is true, C must be satisfied in any DCSP solution. 
When P is false, C may be violated. An important 
consequence of dynamic DCSP is that agents no longer 
terminate when they reach a stable state. They must continue 
to monitor P, waiting to see if it changes. If its value changes, 
they may be required to search for a new solution. Note that a 
solution when P is true is also a solution when P is false, so 

(a) Sensor (left) and target (right) (b) simulator 
(top-down view) 

Fig.1. A distributed sensor domain 

Fig.2. Each sensor (agent) has three sectors. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1752

the deletion of a constraint does not require any extra 
computation. However, the converse does not hold. When a 
constraint is added to the problem, agents may be forced to 
compute a new solution. In this work, we only need to address 
a restricted form of DDCSP i.e. it is only necessary that local 
constraints be dynamic. 

AWC [4] is a sound and complete algorithm for solving 
DCSPs. An agent with local variable Ai, chooses a value vi 
for Ai and sends this value to agents with whom it has 
external constraints. It then waits for and responds to 
messages. When the agent receives a variable value (Aj=vj) 
from another agent, this value is stored in an AgentView.  

Therefore, an AgentView is a set of pairs 
{(Aj,vj),(Ak,vk),…}. Intuitively, the AgentView stores the 
current value of non-local variables. A subset of an 
AgentView is a NoGood if an agent cannot find a value for its 
local variable that satisfies all constraints. For example, an 
agent with variable Ai may find that the set 
{(Aj,vj),(Ak,vk)}is a NoGood because, given these values for 
Aj and Ak it cannot find a value for Ai that satisfies all of its 
constraints. This means that these value assignments cannot be 
part of any solution. In this case, the agent will request that the 
others change their variable value and a search for a solution 
continues. To guarantee completeness, a discovered NoGood 
is stored so that that assignment is not considered in the 
future. 

The most straightforward way to attempt to deal with 
dynamism in DCSP is to consider AWC as a subroutine that is 
invoked anew every time a constraint is added. Unfortunately, 
in many domains such as ours, where the problem is dynamic 
but does not change drastically, starting from scratch may be 
prohibitively inefficient. Another option, and the one that we 
adopt, is for agents to continue their computation even if local 
constraints change asynchronously. The potential problem 
with this approach is that when constraints are removed, a 
stored NoGood may now become part of a solution. We solve 
this problem by requiring agents to store their own variable 
values as part of non-empty NoGoods. For example, if an 
agent with variable Ai finds that a value vi does not satisfy all 
constraints given the AgentView {(Aj,vj),(Ak,vk)}, it will 
store the set {(Ai,vi),(Aj,vj),(Ak,vk)} as a NoGood. With this 
modification to AWC, NoGoods remain “no good” even as 
local constraints change. Let us call this modified algorithm 
Locally-Dynamic AWC (LD-AWC) and the modified 
NoGoods “LD-NoGoods” in order to distinguish them from 
the original AWC NoGoods. 

Lemma I: LD-AWC is sound and complete. 
The soundness of LD-AWC follows from the soundness of 

AWC. The completeness of AWC is guaranteed by the 
recording of NoGoods. A NoGood logically represents a set 
of assignments that leads to a contradiction. We need to show 
that this invariant is maintained in LD-NoGoods. An LD-
NoGood is a superset of some non-empty AWC NoGood and 
since every superset of an AWC NoGood is no good, the 
invariant is true when a LD-NoGood is first recorded. The 
only problem that remains is the possibility that an LD-

NoGood may later become good due to the dynamism of local 
constraints. A LD-NoGood contains a specific value of the 
local variable that is no good but never contains a local 
variable exclusively. Therefore, it logically holds information 
about external constraints only. Since external constraints are 
not allowed to be dynamic in LD-AWC, LD-NoGoods remain 
valid even in the face of dynamic local constraints. Thus the 
completeness of LD-AWC is guaranteed. 

IV. GENERALIZED MAPPING

In this section, we map the Class 3 Resource Allocation 
Problem, which subsumes Class 1 and 2, onto DDCSP [6]. 
Our goal is to provide a general mapping so that any resource 
allocation problem can be solved in a distributed manner by a 
set of agents by applying this mapping. Our mapping of the 
Resource Allocation Problem is motivated by the following 
idea. The goal in DCSP is for agents to choose values for their 
variable so all constraints are satisfied. Similarly, the goal in 
resource allocation is for the agents to choose operations so all 
tasks are performed. Therefore, in our first attempt we map 
variables to agents and values of variables to operations of 
agents. So for example, if an agent Ai has three operations it 
can perform, }),,({ 321

iii OOO  then the variable corresponding to 
this agent will have three values in its domain. However, this 
simple mapping attempt fails because an operation of an agent 
may not always succeed. Therefore, in our second attempt, we 
define two values for every operation, one for success and the 
other for failure. In our example, this would result in six 
values. 

 It turns out that even this mapping is inadequate for the 
Class 2 and 3 Resource Allocation Problem. This is because 
an operation can be required for more than one task. We 
desire agents to be able to not only choose which operation to 
perform, but also to choose for which task they will perform 
the operation. For example in Figure 2, Agent A3 is required 
to active the same sector for both targets 1 and 2. We want A3 
to be able to distinguish between the two targets, so that it 
does not unnecessarily require A2 to activate sector 2 when 
target 2 is present. So, for each of the values defined so far, 
we will define new values corresponding to each task that an 
operation may serve. 

V. PROPOSED IDEA IN TARGET TRACKING

As discussed in section II, if each sensor is controlled by 
many agents, for tracking one target, all of related sensors 
should be cooperate and coordinated. This point causes many 
problems. For example, each agent may know the results of its 
local operations but it may not know the global task and may 
not know what operations others should perform. Since the 
situation is dynamic, so a solution to the resource allocation 
problem at one time may become unsuccessful when the 
underlying tasks have changed because the targets are mobile, 
however, fault tolerance degree of this system is low. For 
more clarity, suppose the sensor network of figure2, if A1 and 
A4 fail simultaneously, the network cannot work well and 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1753

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
Number of Sensors

Tr
ac

ke
d 

Ta
rg

et
s

Proposed Method

Previous Method

perform its tasks correctly because for tracking one target, at 
least three agents should cooperate for activating of 
corresponding sectors. 

By attempting the problems discussed above, as we can see 
in figure3, we propose the framework that differ from others 
and solve these problems (it is like the previous frame work in 
some cases). This framework is based on DCSP, too; but 
prevents the occurrence of previous DCSP based problems.  

Our proposed method performs as follow: 
Agents (sensors) are variables; domain of each variable 
contains all of sensed targets by each sensor and distance of 
them with corresponding sensors because as mentioned in 
section II, each sensor can detect the speed and distance of 
targets. Constraints are divided in two groups: internal 
constraints and external constraints. Just like previous 
approach since internal constraints are dynamic, specify them 
with tuple (P, C) in which C is a familiar constraint in DCSP 
and explain the target that should be selected and has the 
smallest distance from corresponding sensor. P is arbitrary 
predicate and checked at each time to ensure that selected 
target be in the domain of agent. Since targets are mobile 
therefore they can exit from sensors domain. In this case, P 
should set to False, thereby, constraint C automatically is not 
satisfied and then selected target delete from sensors domain. 
External constraints specify that selected target by one of 
sensors can be selected by others again. The solution is that all 
of targets should be tracked successfully. 

For solving resource allocation problem we use 
backtracking and constraint propagation together as follows: 
For each variable which satisfies its internal constraint (C), 
choose targets that have smallest distance from corresponding 
sensor and check at any that P be true. So constraint 
propagation is used for satisfying external constraint, it means 
that each agent should send the message, which contains the 
name and distance of selected target, for other neighboring 
agents. On the other hand, neighboring agents receive this 
message and compare the distance of selected target with its 
domains, if this parameter is low, it omit from there domains 
and try next. Denote that each sensor only can track one target 

at each time. If all of targets are tracked successfully solution 
is found and task is performed successfully. Otherwise, 
backtracking to the previous state occurs and other target from 
domain will be selected and this routine will be repeated 
again. 

VI. EXPERIMENTAL RESULTS

In this point of the paper we compare two DCSP based 
methods, previous method and our proposed method. Both of 
methods are evaluated in a sensor network with 10 and 500 
nodes respectively. We have considered two parameters for 
this comparison, number of tracked targets and fault tolerance 
rate. As we can see in figure 4, the number of tracked targets 
in our proposed methods is more than previous method; the 
reason is that in our method the number of operations of each 
agent is reduced. Therefore, average number of tracked targets 
in a sensor network with 10 nodes is about 5.5 targets for 
proposed method and 2.9 targets to other. 

Also, we generalized our simulation to a sensor network 
with 500 nodes. As we can see in figure.6, the average 
number of tracked targets for proposed method is about 250 
targets. However, this rate for it is about 130 targets, it means 
that proposed method is twice better than previous method. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Number of Sensors

Fa
ul

t T
ol

er
an

ce
 P

er
ce

nt
ag

e

Proposed Method

Previous Method

Fig.3. each sensor (agent) contributed from only one sector 

Agent A1 Agent A2 

Agent A3 

Target 1 

Target 3 

Target 2 

Target 4 Fig.4. Number of tracked targets in 
sensor network with 10 nodes 

Fig.5. Fault Tolerance in sensor 
network with 10 nodes 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1754

0

100

200

300

400

500

600

Number of Sensors

Tr
ac

ke
d 

Ta
rg

et
Proposed Method
Previous Method

0 10050 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Sensors

Fa
ul

t T
ol

er
an

ce
 P

er
ce

nt
ag

e

Proposed Method

Previous Method

0 10050 150 200 250 300 350 400 450 500

This is the fact that in many applications fault tolerance of 
the systems is important parameter and even is emergence. It 
means that the system should be able to perform its tasks 
despite occurring hardware or software faults. We compare 
both of methods from this perspective. As figure5 shows, fault 
tolerance rate of proposed method is more than previous 
method because any of agents for performing tracking task 
has less dependency to other agents. Experimental results 
show that in a sensor network with 10 nodes, fault tolerance 
percentage for proposed method is about 70% and 39% for 
previous method. In a sensor network with 500 nodes, as we 
can see in figure7, this rate is about 66% for proposed method 
and about 52% for previous method. 

VII. CONCLUSION

In this paper we use a formalization of distributed resource 
allocation that is expressive enough to represent both dynamic 
and distributed aspects of the problem and compare two 
different methods. The second method is our proposed method 
for improving target tracking task. As mentioned above, since 
proposed method does not require to is cooperated of many 
agents, response time of the system really is reduced and 
tracking task performs faster than others. Also we have not 
any problem for tracking mobile targets because this task can 
perform easily with checking the condition P of internal 
constraint at each time. Failing one or more agent causes weak 

performance of the network since other sound agents can not 
work properly; this is the next problem of previous method. 
However, we improve this weakness of previous method in 
proposed method. Since proposed method is only controlled 
by its agent, failing one sensor does not affect working of 
others. So our proposed method is fault tolerant. 

REFERENCES 

[1]. K.Decker and J. Li. Coordinated hospital patient scheduling. In ICMAS,
1998. 

[2]. Hiroaki Kitano. Robocup rescue: A grand challenge for multi-agent 
systems. In CMAS, 2000. 

[3]. Sanders. Ecm challenge problem, http://www.sanders.com/ants/ecm.htm. 
2001. 

[4]. M. Yokoo and K. Hirayama. Distributed constraint satisfaction algorithm 
for complex local problems. In ICMAS, July 1998. 

[5]. C. Frei and B. Faltings. Resource allocation in networks using abstraction 
and constraint satisfaction techniques. In Proc of Constraint 
Programming, 1999. 

[6]. Pragnesh Jay Modi et all. Dynamic Distributed Resource Allocation: A 
Distributed Constraint Satisfaction Approach. University of Southern 
California, 2003.

Fig.6. Number of tracked targets in 
sensor network with 500 nodes 

Fig.7. Fault Tolerance in sensor 
network with 500 nodes 


