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Abstract—An image texture analysis and target 

recognition approach of using an improved image texture 
feature coding method (TFCM) and Support Vector Machine 
(SVM) for target detection is presented. With our proposed 
target detection framework, targets of interest can be detected 
accurately. Cascade-Sliding-Window technique was also 
developed for automated target localization. Application to 
mammogram showed that over 88% of normal mammograms 
and 80% of abnormal mammograms can be correctly 
identified. The approach was also successfully applied to 
Synthetic Aperture Radar (SAR) and Ground Penetrating 
Radar (GPR) images for target detection. 
 

Keywords—Image texture analysis, Feature extraction, Target 
detection, Pattern classification  

I. INTRODUCTION 
UTOMATIC Target Recognition (ATR) has many 
applications. One typical application is target detection in 
battlefield, such as the detection of moving people and 

vehicle, land mines, and weapon concealment. Besides 
military applications, one important objective of computer-
aided medical diagnosis in medical practices is to correctly 
detect anomalies in medical images such as mammogram, 
computer tomography, and magnetic resonance imaging.  

A general image analysis-based ATR framework consists of 
target feature extraction, target pattern training, and target 
detection. Among them, feature extraction is considered as a 
very important part. Many research efforts have been 
conducted in this area in recent years, especially for target 
feature extraction by using image texture analysis [1]-[4] for 
target feature extraction as it has been observed that target 
textures are different from cluttered surroundings, which 
means target texture can help a lot on target detection.  
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All texture-based methods can be roughly classified into 
two categories: structural-based approach and statistical-based 
approach. In recent years, the statistical-based approach is 
attracting more research interests [5]-[12]. In current 
statistical-based methods, Texture Feature Coding Method 
(TFCM) is a new texture analysis scheme which transforms an 
original image into a texture feature image whose pixel values 
represent the texture information of the pixel in original 
image. The method has several remarkable advantages 
including accurate representation and record of target texture, 
and computational efficiency [11], [12]. For pattern training 
and target detection, Support Vector Machine (SVM) is a 
powerful tool to use, which is originated from modern 
statistical learning theory [13]. SVM is a kernel-based 
learning algorithm and relies on the borderline training 
samples to define the separation hyperplanes. Its performance 
is better than most other learning algorithms for a wide range 
of applications including automatic target recognition, image 
retrieval, and document analysis.  

In this paper, we combine the TFCM-based feature 
extractors and the SVM-based pattern classifier into a unified 
package for ATR. With this proposed ATR system, the targets 
of interest in an input image can be efficiently detected. There 
are several distinctive advantages of this algorithm. First, a 
new target detection architecture (Texture feature extraction + 
SVM) is proposed, which combines the advantages of both 
TFCM and SVM. Second, the texture feature coding scheme 
in [12] is simplified to improve the computational efficiency. 
Third, two new TFCM-based feature extractors are developed. 
One is based on the principal eigenvector of the co-occurrence 
matrix of the texture feature numbers (TFN) and the other one 
is an augmented and much more efficient version of the one 
given in [12]. For the purpose of comparison, the texture 
feature number (TFN) histogram method for feature extraction 
[12] is also implemented. Fourth, with the extracted features, a 
robust and computationally efficient pattern classifier based 
on SVM is then trained and used for target detection. Fifth, a 
new technique called Cascade Sliding Window (CSW) is 
developed to perform automated target localization.  

We have applied and evaluated the proposed ATR 
framework to different real life scenarios (different data 
sources), including mammogram, Synthetic Aperture Radar 
(SAR), and Ground Penetrating Radar (GPR) images. 

The rest of this paper is arranged as follows. Section 2 
summarizes all the technical methods, including the TFCM 
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concept, three feature extractors (feature descriptors, TFN 
histogram, and principal eigenvector of the texture feature co-
occurrence matrix), SVM classification method, and the CSW 
method for automatic target localization. Experimental results 
in mammograms, SAR images, and GPR images, are reported 
in Section 3 to demonstrate the efficiency of our proposed 
approach. Concluding remarks are given in Section 4. 

II. ALGORITHM DESCRIPTION 

A. Texture Feature Coding Method (TFCM) 
For target detection in cluttered and complex environment, 

texture feature is considered as the major or only possible 
feature for target detection. Among the texture-based 
methods, texture feature coding method is well known for its 
efficiency. The concept of the TFCM [12] is derived from the 
gray-level co-occurrence matrix [14] and texture spectrum 
method [15]. In our proposed ATR approach, a simplified 
version of TFCM is developed to save more computation 
time. For better understanding, some key concepts of TFCM 
are briefly described as follows. 

Fig. 1(a) shows a 3x3 window mask over a pixel, in which 
there are eight orientations, 0o, 45o, 90o, 135o, 180o, 225o, 
270o, and 315o. Fig. 1(b) shows a 4-neighbor connectivity of a 
pixel X with four pixels labeled as 1, 3, 5, and 7 which are 
referred as first-order neighboring pixels. The additional four 
pixels labeled as 2, 4, 6, and 8, and located along two diagonal 
lines are referred as second-order neighboring pixels as shown 
in Fig. 1(c).  

 
Fig. 1 First-order and second-order 4-neighbor connectivity 

 
TFCM considers three consecutive pixels along these 

specific directions (called scan lines), and calculates gradient 
changes in gray levels among these three pixels [12]. We 
denote the three consecutive pixels by their spatial coordinates 
at a, b, c, associate its gray level by I(a), I(b) and I(c) 
respectively, and let ∆ be a desired gray level tolerance. There 
are four types of successive gradient changes in gray level 
with their corresponding graphic descriptions given in  

Fig. 2. 
(i) | ( ) ( ) | ,  | ( ) ( ) |I a I b I b I c− ≤ ∆ − ≤ ∆  
(ii)   | ( ) ( ) | ,  | ( ) ( ) |I a I b I b I c− ≤ ∆ − > ∆   or     

 | ( ) ( ) | ,  | ( ) ( ) |I a I b I b I c− > ∆ − ≤ ∆                                      (1) 

(iii)  ( ) ( ) ,  ( ) ( )I a I b I b I c− > ∆ − > ∆   or  
 ( ) ( ) ,  ( ) ( )I b I a I c I b− > ∆ − > ∆  

(iv)  ( ) ( ) ,  ( ) ( )I a I b I c I b− > ∆ − > ∆  or  
 ( ) ( ) ,  ( ) ( )I b I a I b I c− > ∆ − > ∆  

 

 
 

Fig. 2 Types of gray-level graphical structure variations 
 

If we introduce a pair of integers (v, w) to represent the 
gray-level variations of first-order and the second-order 
connectivity respectively, and consider the symmetry between 
first scan line and second scan line of first-order or second 
order connectivity, the number of each connectivity 
combinations can be reduced to 4*(4+1)/2=10, as shown in 
Table 1. In the conventional method [12], Table 1 is coded in 
a discrete way from 1 to 23 according to the definition given 
in [15]. Then, for the pair of integers (v, w) of any image 
pixel, its texture feature number (TFN) can be computed as 

),( yxTFN . 
                   ( , ) ( , ) ( , )TFN x y x y x yα β= ×                         (2) 

where ),( yxα  and ),( yxβ  are the values obtained from Table 
1. According to Eq. (2), the number range is from 1 to 529, 
but only 55 are actually used for texture feature coding. 
Therefore, to save computational cost and memory space, we 
compress the set of 1 to 529 to 0 to 54 values by removing 
unused texture feature numbers.  
 

TABLE I 
COMBINATION CODING OF THE GRAY-LEVEL VARIATIONS (I) 

First scan line 

 (i) (ii) (iii) (iv) 

(i) 1 2 3 5 

(ii) 2 7 11 13 

(iii) 3 11 17 19 

 
 

Second 
scan line 

(iv) 5 13 19 23 

 
Unlike the coding scheme mentioned above, we use 

continuous numbers to code the cases shown in Table 2. With 
the new table, for each gray-level variation (v, w) of an image 
pixel we can directly compute the TFNs, which are listed in 
Table 3. If we ignore the difference between the first order 
and the second order connectivity, we can find the texture 
feature number ( , )TFN x y∆ , of the pixel at location (x,y) 
according to Table 3. In this way, the computation time of 
(a,b) is greatly reduced. That is, a simple table look-up is 
enough to generate the TFNs.  
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TABLE II 

COMBINATION CODING OF THE GRAY-LEVEL VARIATIONS (II) 
First scan line 

 (i) (ii) (iii) (iv) 

(i) 1 2 3 4 

(ii) 2 5 6 7 

(iii) 3 6 8 9 

 
 

Second 
scan line 

(iv) 4 7 9 10 

 
TABLE III 

TEXTURE FEATURE NUMBER GENERATION TABLE BASED ON THE 
NEW CODING SCHEME 

 1 2 3 4 5 6 7 8 9 10 
1 0 1 2 3 4 5 6 7 8 9 
2 1 10 11 12 13 14 15 16 17 18 
3 2 11 19 20 21 22 23 24 25 26 
4 3 12 20 27 28 29 30 31 32 33 
5 4 13 21 28 34 35 36 37 38 39 
6 5 14 22 29 35 40 41 42 43 44 
7 6 15 23 30 36 41 45 46 47 48 
8 7 16 24 31 37 42 46 49 50 51 
9 8 17 25 32 38 43 47 50 52 53 

10 9 18 26 33 39 44 48 51 53 54 

 
It is worth to mention that our new coding scheme has three 

unique properties. First, the ( , )TFN x y∆  is quasi-rotation-
invariant because symmetry is considered during coding. 
Second, since ( , )TFN x y∆

 only takes a value ranging from 0 
to 54, the calculation of a TFCM based co-occurrence matrix 
of an image and some of its corresponding TFCM features 
will take less time. Third, the code value at a given pixel 
represents the coarseness of its neighborhood. The higher the 
code value is, the more gray-level variation its corresponding 
pixel possesses. All the aforementioned properties are very 
important as they capture the essence of the texture around a 
specific pixel. 

Once a TFN feature image is obtained by TFCM, two 
measures based on TFN histogram and TFCM-based Co-
occurrence matrix, can be computed and used to characterize 
its statistics. A TFN histogram is defined as 

         

,
, 54

,0

( )
( )

( )
TFN

TFN
TFNn

N n
p n

N n
∆

∆

∆=

=
∑                                   (3) 

where 
. ( )TFNN n∆

 is the total number of ( , )TFN x y∆  in the 
image taking value n, and ∆ is the gray-level variation 
tolerance given in Eq. (1). The TFN based co-occurrence 
matrix, which is a probability distribution of transitions 
between any pair of arbitrary two TFNs, can be defined as 

             , ,

, ,,

( , )
( , | , )

( , )
d

dl k

N i j
p i j d

N l k
θ

θ

θ ∆
∆

∆

=
∑

                            (4) 

where , , ( , )dN i jθ∆
 is the number of pairs of two pixels at 

spatial locations (x, y) and (w, z) satisfying TFN code level 
I(x,y) = i, I(w,z) =j and d-pixel apart along angular rotation 
θ and 

, ,,
( , )dl k

N l kθ∆∑  is the total number of TFN transitions. 

B. Texture Feature Extraction 
Based on the TFN histogram and TFCM-based Co-

occurrence matrix, two new feature extractors were 
developed. One is named as eigenvector-based feature 
extraction and another one called statistical analysis-based 
method is an augmented and more computationally efficient 
version of the one given in [12]. For comparison, one 
traditional feature extractor, called TFN histogram, was also 
implemented. All the details are discussed as follows. 

 
• TFN histogram 

The TFN histogram introduced by [12] has 55 dimensions 
to each image or region of interest, and can be used directly as 
feature descriptors independently as it contains rich texture 
information of the image or the region of interest. The 
definition of TFN histogram is given in Eq. (3). An example 
of TFN histogram on a mammogram image is given in Fig. 3. 

  
           (a) Original image                    (b) TFN feature image 

 
(c) TFN histogram 

Fig. 3 TFN histogram of a mammogram image 
 

• Statistical Texture Feature Descriptors 
In order to capture the essence of texture information of an 

image, a set of texture feature descriptors was developed to 
represent the kernel texture information of the image or the 
region of interest. Here we introduce eleven descriptors. Some 
of them (1 to 8) were already discussed in [12], [16], the other 
three (9-11) are specially designed by us.  

The first two feature descriptors are derived from the TFN 
histogram of an image. 

 
1. Mean convergence     

                ∑
= ∆

∆∆ −⋅
=

54

0

)(

n

npn
MC

σ
µ                                 (5) 

where µ∆ , σ ∆  are the mean and variance of the histogram, 
respectively. p∆  is defined in Eq. (4). 
2. Code variance      
                    ( ) )(

54

0

2 npnVar
n

∆
=

∆∑ ⋅−= µ                                 (6) 
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The remaining feature descriptors are based on the TFN co-
occurrence matrix. Here we fix 1d =  and use the average of 
four matrices (corresponding to 0θ = , 45θ = o , 90θ = o  and 

135θ = o ). That is,  

( ))135,1()90,1()45,1()0,1(
4
1 0000

, ==+==+==+===∆ θθθθ dPdPdPdPP d
 

where ( , )P d θ  is the TFN co-occurrence matrix with respect 
to d  and θ . Based on ,dP∆ , we define the following features 
3. Code entropy    

           ),(log),( ,

54

0

54

0
, jipjipCE d

i j
d ∆

= =
∆∑∑=                             (7) 

4. Uniformity      
                 ∑∑

= =
∆=

54

0

54

0

2
, ),(

i j
d jipUN                                          (8) 

5. First-order element difference moment (FDM) 
               ∑∑

= =
∆−=

54

0

54

0
, ),(

i j
d jipjiFDM                              (9) 

6. Second-order element difference moment (SDM) 
                   ∑∑

= =
∆−=

54

0

54

0
,

2 ),()(
i j

d jipjiSDM                           (10) 

7. First-order inverse element difference moment (FIDM) 
                ∑∑

= =
∆−+

=
54

0

54

0
, ),(

1
1

i j
d jip

ji
FIDM                           (11) 

8. Second-order inverse element difference moment (SIDM) 
                 ∑∑

= =
∆−+

=
54

0

54

0
,2 ),(

)(1
1

i j
d jip

ji
SIDM                    (12) 

 
The following three features are the region-based features 

of the co-occurrence matrix.  
 
9. to 11. Energy Distributions of Co-occurrence Matrix 
                      ∑ ∑

= =
∆=

54

44

54

44
, ),(1

i j
d jipSB                                   (13) 

                1),(2
54

34

54

34
, SBjipSB

i j
d −= ∑ ∑

= =
∆

                           (14) 

             21),(3
54

14

54

14
, SBSBjipSB

i j
d −−= ∑ ∑

= =
∆

                       (15) 

The summation regions (SB1, SB2, and SB3) are depicted 
in Fig. 4. In this way, the energy distributions of texture for 
different regions are being considered and added into the 
feature vector. Compared with the feature vector without 
energy distribution component, the feature vector with energy 
distribution can provide an additional 5% -10% increase in 
target recognition rate according to our tests.  

 

0 

54 

0 54 

   14               34 

SB3

SB2 

SB1 

 
 
 
14 
 
 
34 
 
44 

 

Fig. 4 Summation regions of different subband probabilities. 
 

As a result of the above operators, each image or the region 
of interest in the database can be represented by an 11 x 1 
feature vector. Since some features usually have large 
magnitudes and the others have small magnitudes, we scale 
different feature elements such that each feature contributes 
equally to the classifier  
 
• Principal eigenvector of the TFN based co-occurrence 

matrix 
The 55x55 TFN co-occurrence matrix called P can be 

computed via Eq. (4) to an image or the region of interest. 
After performing eigenvalue decomposition on R= TPP , we 
found that, in most cases, the largest eigenvalue of R is larger 
than 85% of the sum of all the other eigenvalues of R. This 
means the 55 dimensional principal eigenvector of a TFN co-
occurrence matrix, corresponding to its largest eigenvalue, 
may also well represent the texture properties of the image. It 
can either be feature vector independently or combined with 
the histogram feature vector. In one of our studies, we cascade 
the TFN histogram vector and the principal eigenvector to 
form a new 110 dimensional feature vector. With this newly 
developed feature set, we can achieve a good classification 
result in some conditions (See Section 3), which has, in return, 
validated our reasoning logic. 
 

C. Support Vector Machine (SVM) for Classification 
According to the references [17], [18], SVM parameters are 

computed by solving a quadratic programming problem with 
linear equality and inequality constraints; rather than by 
solving a non-convex, unconstrained optimization problem. 
The flexibility of kernel functions allows the SVM to search a 
wide variety of hypothesis spaces. The geometrical 
interpretation of support vector classification can be thought 
as the optimal separation on feature surface. A simple 
example of 2-D data classification with three different classes 
using SVM is shown in Fig. 5, wherein the optimal 
boundaries are found between each pair of classes. The 
advantages of SVM include: 

• It is a quadratic learning algorithm; hence, there are 
no local optima. It can also be formed as linear 
programming for simplicity. 

• Statistical theory gives bounds on the expected 
performance of a support machine. 

• Performance is better than most other learning 
algorithms for a wide range of applications including 
automatic target recognition, and document 
classification 

• Although originally designed for 2-class 
classification, SVMs have been effectively extended 
to multi-class classification applications. Algorithms, 
such as One-against-one, DAG, one-against-all, and 
C&S, have been successfully applied to multi-target 
recognition.  

• There is no over-training problem as compared to 
conventional learning classifiers such as neural net or 
fuzzy logic. 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

776

 

 

 
Fig. 5 SVM classification results of three classes 

 
The TFCM-SVM training and testing procedures based on 

the statistical feature descriptors are briefly summarized 
below:  

1.   Prepare M training images with known ground truth, 
which means we have already known which image is 
background image and which image is target image 
and the target type. Associate each image with an 
integer class label, for example, 0, 1, 2, …, M.  

2. Perform TFCM on each image to obtain a feature 
image with its element being TFN numbers. 

3. Calculate a TFN histogram for each feature image. 
4. Calculate a TFCM co-occurrence matrix for the same 

feature image 
5. Calculate the 11 texture feature descriptors using 

Eqs. (5) to (15) to represent the image being 
processed 

6. Form all the image feature vectors into a 11xM 
matrix, regarded as the input matrix. Align their class 
labels to a 1xM row output vector.  

7. Use the input and output pair to train the SVM. The 
result is stored in a set of vectors and matrices.  

In the testing stage, the first six steps are still applicable to a 
testing image. Compared with the training stage the difference 
is the trained support vector machine is used to output a label 
vector for a testing image at the last step (Step 7). Note that 
the TFCM-SVM procedures, either based on TFN histogram 
or principal eigenvector, have the similar steps as statistical 
feature descriptor-based method.  

D. Automatic Target Localization and Detection 
In order to localize and detect a target automatically, a 

Cascade Sliding Window (CSW) technique was developed. 
The key idea of the technique is to segment the whole image 
by a N N×  pixel window and train the TFCM-SVM by using 
both the background/normal regions and the target regions. N 
is a predetermined value. In our experiments, the value of N is 
twice the size of the possible targets. To test a new image, the 
N N×  pixel window moves around the image and feeds the 
segmented image into the TFCM_SVM for classification. The 
flowchart diagram of CSW is illustrated in Fig. 6.  

 

Training  

Testing 

Image of interest

TFN histogram and TFCM 
eigen-vector feature vector
extraction 

Cascade sliding window of size 
NxN segmentation 

SVM classification 

NxN Window segmented 
normal image  

NxN Window segmented 
abnormal image  

TFN histogram and TFCM 
eigen-vector feature vector
extraction 

SVM classifier training 

Classification parameters 

Normal/Abnormal?
A 

N 
Mark the windowed image with 
the white frame 

Image done? 
N 

Y End

 

Training  

Testing 

Image of interest

TFN histogram and TFCM 
eigen-vector feature vector
extraction 

Cascade sliding window of size 
NxN segmentation 

SVM classification 

NxN Window segmented 
normal image  

NxN Window segmented 
abnormal image  

TFN histogram and TFCM 
eigen-vector feature vector
extraction 

SVM classifier training 

Classification parameters 

Normal/Abnormal?
A 

N 
Mark the windowed image with 
the white frame 

Image done? 
N 

Y End
 

Fig. 6 Flow chart of the TFCM-SVM-CSW algorithm 

III. EXPERIMENTAL RESULTS 

A. Mammogram Inspection 
Our first case study was focused on mammogram inspection 

by using TFCM-SVM method. The database is the 
MiniMammographic Database provided by the 
Mammographic Image Analysis Society (MIAS). In our study, 
59 normal mammogram images and 55 abnormal images 
containing different abnormalities were segmented from the 
database (totally 114 images). The abnormal regions were 
classified into the following 5 abnormal categories:  

• 13 in architectural distortions (ARCH),  
• 10 in asymmetry tissues (ASYM),  
• 12 in circumscribed masses (CRIC),  
• 11 in speculate masses (SPEC),   
• 9 in other/ill-defined masses (MISC). 
In our tests, we ran the TFCM method first to some 

randomly selected images from the above five categories as 
shown in Fig. 7, and  some selected normal images as shown 
in Fig. 8. All normal images are 128x128 in size whereas the 
image size for the abnormal images varies as the area of the 
abnormal region differs from one case to another. After 
obtaining the features of all selected images, we used SVM 
with RBF (Radial Basis Functions) kernel to perform target 
classification.  

The cross validation method, also known as leave-one-out 
scheme, was used for training and testing. In this method, the 
decision rule is first obtained by using all but one of the 
samples in the data set, and the sample which is left out is then 
used to test the performance of the decision rule. This 
procedure is repeated for all the samples in the data set. For 
example, if there are I normal data and K abnormal data, then 
I+K classification results can be obtained by this method. 
From these we can obtain an estimate of the overall accuracy 
of the classification scheme. The results of our tests were 
summarized in from Table 4. It can be seen that the TFCM-
SVM with eigenvector has the best performance. Note that the 
leave-one-out is only suitable for off-line training and testing. 
The result by using CSW to a large image (1024x1024) which 
contains multiple abnormal regions is given in Fig.  9 to 
demonstrate the efficiency of our approach on automatic 
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target detection and classification in online stage, wherein the 
yellow ellipsis is known as ground truth and the red rectangles 
are the detected targets. 

The performance of SVM is affected by two parameters, 
namely the kernel parameter γ  and the regularization 
parameter C . For a given regularization parameter C , larger 
kernel parameter γ  leads to smaller training error. The trade-
off is the generalization capability of the SVM will be 
reduced. If γ  becomes too small, the two classes would be 
too close to each other, and the performance will also be 
degraded. In short, there is an optimal combination of the two 
SVM parameters, which can be obtained through trial-and-
error. Some studies on parameter tuning with feature 
descriptor-based TFCM-SVM method are given in Table 5 
and Table 6. 

In Table 5, we fixed C as 100, and showed the results with 
310γ −= , 410γ −= , and 510γ −= , respectively. The cross 

validation method was used in the training and test. It can be 
seen that the best classification result was obtained with 

410γ −= . In this case, the algorithm yields 90% correct 
detection for normal data and 80% correct classification for 
abnormal data. The overall correct detection rate is 85%. We 
then fixed γ  as 410γ −=  and varied the value of C to repeat 
the test. The results are shown in Table 6, in which the best 
performance is obtained at 410C =  and 410γ −= . Although the 

classification performance of normal data is slightly reduced, 
the performance on abnormal data is improved, and the 
overall correct classification rate increases to 87%. 

 
B.  Target Detection in Airborne SAR Images 
In this study, we applied the TFCM-SVM method to SAR 

images for target detection. The image we used is shown in 
Fig. 10. The unclassified raw image (size 765x765) was 
supplied by the U.S. Army. The image shown in Fig. 10 is 
filtered by a 5x5 median filter [4] to eliminate some noise 
spikes. A median filter is a rank filter which, for a given 
vector of data points, first sorts the points from smallest to 
largest, and then picks the median value as the filter output.  

We selected 9 regions of background and 10 regions of 
target in the experiment. Each region has a size of 64 x 64 
pixels. These chosen regions are shown in Fig. 11and Fig. 12. 

The cross validation method was used again. That is, each 
time we used all but one sample for training, then tested with 
the remaining ones. The procedure was then repeated for all 
samples. The results were summarized in Table 7, where the 
value of ∆  was chosen as 3 in texture feature coding. Table 7 
also shows that the eigenvector approach can achieve 100% 
accuracy for background data and 90% accuracy on target 
detection.  

 

 

 
CRIC (001) 

 
ASYM (097) 

 
ARCH (117) 

 
SPEC (181) 

 
MISC (134) 

Fig. 7 Five abnormal images (each begins with their label and image number in the library) 

 
Fig. 8 Five normal images 

TABLE IV 

 PERFORMANCE OF TFCM-SVM TO MAMMOGRAM IMAGES WITH 100=C  AND 1=γ  
Feature Type Training data:  

Correct Rate 
Testing data: 

Correct Detection Rate of 
Normal Data 

Testing data: 
Correct Detection Rate of Abnormal 

Data 
 

Feature Descriptors 85% 50/59=85% 40/55=73% 
Histogram 84% 49/59=83% 42/55=76% 

Eigenvector 89% 50/59=85% 35/55=64% 
Histogram and Eigenvector 92% 52/59=88% 44/59=80% 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

778

 

 

 
Fig.  9 Anomaly detection and localization in mammograms with CSW 

TABLE V  
PERFORMANCE OF TFCM-SVM WITH 100C =  

γ  Training data: 
Correct Rate 

Testing data: 
Correct Detection Rate 

of Normal Data 

Testing data: 
Correct Detection Rate 

of Abnormal Data 

Testing data: 
Overall Correct 
Detection Rate 

1 3E −  
1 4E −  
1 5E −  

94 % 
89 % 
84% 

47/59=80% 
53/59=90% 
53/59=90% 

39/55=71% 
44/55=80% 
39/55=71% 

86/114=75% 
97/114=85% 
92/114=81% 

TABLE VI 

 PERFORMANCE OF TFCM-SVM WITH  410γ −=  

C  Training data: 
Correct Rate 

Testing data: 
Correct Detection Rate 

of Normal Data 

Testing data: 
Correct Detection Rate 

of Abnormal Data 

Testing data: 
Overall Correct 
Detection Rate 

1 3E  93% 52/59=88% 45/55=82% 97/114=85% 
1 4E  97% 52/59=88% 47/55=85% 99/114=87% 
1 5E  100% 52/59=88% 44/55=80% 96/114=84% 

 

 
(a) Raw image 

 
(b) Median filtered image 

Fig. 10 A SAR image 
 
 
 
 

                
 

                 
Fig. 11 Background data set 
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Fig. 12 Target data set 

TABLE VII 
 PERFORMANCE OF TFCM-SVM IN SAR IMAGE WITH 100=C  AND 1=γ  

Feature Type Training Correct 
Rate 

Correct 
Detection Rate 

of Normal 
(Background) 

Data 

Correct Detection 
Rate of Abnormal 

(Target) Data 
 

Feature Descriptors 90% 6/9=67% 9/10=90% 
Histogram 87% 5/9=56% 9/10=90% 

Eigenvector 100% 9/9=100% 9/10=90% 
Histogram and Eigenvector 100% 8/9=89% 8/10=80% 

 
 

 
                                     (a) 
 

 
                                  (b)  

                                 (c) 
Fig. 13 Experimental setup: (a) the sandbox (b) Ground penetration radar (c) ground truth of the buried mines and other objects  

(obtained from Department of Electronics & Information Processing, Vrije University) 
 

 
C. Mine Detection in Ground Penetrating Radar Images 
Besides mammogram classification, the CSW technique 

described earlier was also applied to mine detection. The 
GPR minefield image data were obtained from the 
Department of Electronics & Information Processing of 
Vrije University. The acquisition was performed in dry clay 

mixed with small rocks. The GPR settings for this scan were 
10 averages per A-scan, 25 ps sampling interval, 512 
samples, 1 GHz antenna, and 1 ns pulse width. An area of 
dx = 50 cm by dy = 196 cm was scanned with a scanning 
step of 1 cm in each direction. The surface was not flattened 
before the scan. There were irregularities with a maximum 
of 20 cm between the highest and the lowest point. The 
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antenna head was placed at 5 cm above the highest point, 
and the scan was done horizontally. The experimental setup 
and the ground truth diagram are shown in Fig. 13 . 

Three C-scan images of Dry-clay field with two mines 
buried 5 cm under the ground and one image without mines 
are shown in Fig. 14. Similarly, we mark the abnormal 
region with a yellow ellipsis as ground truth and red frames 
as detected mine by TFCM-SVM-CSW method. The results 
are shown in Fig. 15, which indicates that our algorithm can 
successfully detect those two mines captured from different 
layers in a dry clay field. Further improvement is still 
needed for more accurate target location. Due to the limited 
available data, we could not generate statistical results for 
GPR data. However, the target detection and location 
algorithm can correctly detect and localize all the targets in 
the available images. 

         
     Normal without mine Layer_1   Layer_2        Layer_3 
Fig. 14 Normal field and three C-scan images captured at different 

layers 

 
                 Layer_1           Layer_2                  Layer_3 

Fig. 15 Detection result with TFCM-SVM-CSW 

IV CONCLUSION 

A novel and computationally efficient framework using 
texture feature coding-based descriptors and support vector 

machines for target detection is presented. Our contributions 
can be summarized as follows. First, a new automatic target 
detection structure which consists of TFCM-based feature 
extraction, support vector machines, and Cascade-Sliding-
Window is designed. Second, the original texture feature 
coding scheme is simplified and improved to save 
computational cost. Third, two new TFCM-based feature 
extraction methods have been developed. Fourth, the 
efficient pattern training and classification method (SVM 
method) is proposed and integrated into our ATR system. 
Finally, Cascade-Sliding-Window approach is developed for 
automated target localization. Preliminary tests on 
mammogram show over 88% of normal mammograms and 
80% of abnormal mammograms are correctly identified 
without parameter tuning. The test results in SAR and GPR 
images are also satisfactory 
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