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Target Detection with Improved Image Texture
Feature Coding Method and Support Vector
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Abstract—An image texture analysis and target
recognition approach of using an improved image texture
feature coding method (TFCM) and Support Vector Machine
(SVM) for target detection is presented. With our proposed
target detection framework, targets of interest can be detected
accurately. Cascade-Sliding-Window technique was also
developed for automated target localization. Application to
mammogram showed that over 88% of normal mammograms
and 80% of abnormal mammograms can be correctly
identified. The approach was also successfully applied to
Synthetic Aperture Radar (SAR) and Ground Penetrating
Radar (GPR) images for target detection.

Keywords—Image texture analysis, Feature extraction, Target
detection, Pattern classification

1. INTRODUCTION

UTOMATIC Target Recognition (ATR) has many

applications. One typical application is target detection in

battlefield, such as the detection of moving people and
vehicle, land mines, and weapon concealment. Besides
military applications, one important objective of computer-
aided medical diagnosis in medical practices is to correctly
detect anomalies in medical images such as mammogram,
computer tomography, and magnetic resonance imaging.

A general image analysis-based ATR framework consists of
target feature extraction, target pattern training, and target
detection. Among them, feature extraction is considered as a
very important part. Many research efforts have been
conducted in this area in recent years, especially for target
feature extraction by using image texture analysis [1]-[4] for
target feature extraction as it has been observed that target
textures are different from cluttered surroundings, which
means target texture can help a lot on target detection.
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All texture-based methods can be roughly classified into
two categories: structural-based approach and statistical-based
approach. In recent years, the statistical-based approach is
attracting more research interests [5]-[12]. In current
statistical-based methods, Texture Feature Coding Method
(TFCM) is a new texture analysis scheme which transforms an
original image into a texture feature image whose pixel values
represent the texture information of the pixel in original
image. The method has several remarkable advantages
including accurate representation and record of target texture,
and computational efficiency [11], [12]. For pattern training
and target detection, Support Vector Machine (SVM) is a
powerful tool to use, which is originated from modern
statistical learning theory [13]. SVM is a kernel-based
learning algorithm and relies on the borderline training
samples to define the separation hyperplanes. Its performance
is better than most other learning algorithms for a wide range
of applications including automatic target recognition, image
retrieval, and document analysis.

In this paper, we combine the TFCM-based feature
extractors and the SVM-based pattern classifier into a unified
package for ATR. With this proposed ATR system, the targets
of interest in an input image can be efficiently detected. There
are several distinctive advantages of this algorithm. First, a
new target detection architecture (Texture feature extraction +
SVM) is proposed, which combines the advantages of both
TFCM and SVM. Second, the texture feature coding scheme
in [12] is simplified to improve the computational efficiency.
Third, two new TFCM-based feature extractors are developed.
One is based on the principal eigenvector of the co-occurrence
matrix of the texture feature numbers (TFN) and the other one
is an augmented and much more efficient version of the one
given in [12]. For the purpose of comparison, the texture
feature number (TFN) histogram method for feature extraction
[12] is also implemented. Fourth, with the extracted features, a
robust and computationally efficient pattern classifier based
on SVM is then trained and used for target detection. Fifth, a
new technique called Cascade Sliding Window (CSW) is
developed to perform automated target localization.

We have applied and evaluated the proposed ATR
framework to different real life scenarios (different data
sources), including mammogram, Synthetic Aperture Radar
(SAR), and Ground Penetrating Radar (GPR) images.

The rest of this paper is arranged as follows. Section 2
summarizes all the technical methods, including the TFCM
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concept, three feature extractors (feature descriptors, TFN
histogram, and principal eigenvector of the texture feature co-
occurrence matrix), SVM classification method, and the CSW
method for automatic target localization. Experimental results
in mammograms, SAR images, and GPR images, are reported
in Section 3 to demonstrate the efficiency of our proposed
approach. Concluding remarks are given in Section 4.

II. ALGORITHM DESCRIPTION

A. Texture Feature Coding Method (TFCM)

For target detection in cluttered and complex environment,
texture feature is considered as the major or only possible
feature for target detection. Among the texture-based
methods, texture feature coding method is well known for its
efficiency. The concept of the TFCM [12] is derived from the
gray-level co-occurrence matrix [14] and texture spectrum
method [15]. In our proposed ATR approach, a simplified
version of TFCM is developed to save more computation
time. For better understanding, some key concepts of TFCM
are briefly described as follows.

Fig. 1(a) shows a 3x3 window mask over a pixel, in which
there are eight orientations, 0°, 45°, 90°, 135°, 180° 225°
270° and 315°. Fig. 1(b) shows a 4-neighbor connectivity of a
pixel X with four pixels labeled as 1, 3, 5, and 7 which are
referred as first-order neighboring pixels. The additional four
pixels labeled as 2, 4, 6, and 8, and located along two diagonal
lines are referred as second-order neighboring pixels as shown
in Fig. 1(c).
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Fig. 1 First-order and second-order 4-neighbor connectivity

TFCM considers three consecutive pixels along these
specific directions (called scan lines), and calculates gradient
changes in gray levels among these three pixels [12]. We
denote the three consecutive pixels by their spatial coordinates
at a, b, c, associate its gray level by I(a), I(b) and I(c)
respectively, and let A be a desired gray level tolerance. There
are four types of successive gradient changes in gray level
with their corresponding graphic descriptions given in

Fig. 2.
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Fig. 2 Types of gray-level graphical structure variations

If we introduce a pair of integers (v, W) to represent the
gray-level variations of first-order and the second-order
connectivity respectively, and consider the symmetry between
first scan line and second scan line of first-order or second
order connectivity, the number of each connectivity
combinations can be reduced to 4*(4+1)/2=10, as shown in
Table 1. In the conventional method [12], Table 1 is coded in
a discrete way from 1 to 23 according to the definition given
n [15]. Then, for the pair of integers (v, W) of any image
pixel, its texture feature number (TFN) can be computed as
TEN(X,Y).

TEN(X,y) = a(X, y)x S(X,Y) 2
where a(x,y) and B(x,y) are the values obtained from Table
1. According to Eq. (2), the number range is from 1 to 529,
but only 55 are actually used for texture feature coding.
Therefore, to save computational cost and memory space, we
compress the set of 1 to 529 to 0 to 54 values by removing
unused texture feature numbers.

TABLE I
COMBINATION CODING OF THE GRAY-LEVEL VARIATIONS (I)

First scan line

(@ (i) (i) (iv)

Second

scan line () 1 2 3 5
(i) 2 7 11 13
(iif) 3 11 17 19
(iv) 5 13 19 23

Unlike the coding scheme mentioned above, we use
continuous numbers to code the cases shown in Table 2. With
the new table, for each gray-level variation (v, W) of an image
pixel we can directly compute the TFNs, which are listed in
Table 3. If we ignore the difference between the first order
and the second order connectivity, we can find the texture
feature number TEN, (X,y), of the pixel at location (Xy)
according to Table 3. In this way, the computation time of
(a,b) is greatly reduced. That is, a simple table look-up is
enough to generate the TFNs.
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TABLE II
COMBINATION CODING OF THE GRAY-LEVEL VARIATIONS (II)

First scan line

(i) (iii) (iv)

=
=

Second
scan line ® 1 2 3 4
(i1) 2 5 6 7
(iii) 3 6 8 9
(iv) 4 7 9 10
TABLE III
TEXTURE FEATURE NUMBER GENERATION TABLE BASED ON THE
NEW CODING SCHEME
1 2 3 4 5 6 7 8 9 10
1 0 1 2 3 4 5 6 7 8 9
2 1 10 11 12 13 14 15 16 17 18
3 2 11 19 20 21 22 23 24 25 26
4 3 12 20 27 28 29 30 31 32 33
5 4 13 21 28 34 35 36 37 38 39
6 5 14 22 29 35 40 41 42 43 44
7 6 15 23 30 36 41 45 46 47 48
8 7 16 24 31 37 42 46 49 50 51
9 8 17 25 32 38 43 47 50 52 53
10 9 18 26 33 39 44 48 51 53 54

It is worth to mention that our new coding scheme has three
unique properties. First, the TFN,(X,y) is quasi-rotation-

invariant because symmetry is considered during coding.
Second, since TFN,(x,y) only takes a value ranging from 0

to 54, the calculation of a TFCM based co-occurrence matrix
of an image and some of its corresponding TFCM features
will take less time. Third, the code value at a given pixel
represents the coarseness of its neighborhood. The higher the
code value is, the more gray-level variation its corresponding
pixel possesses. All the aforementioned properties are very
important as they capture the essence of the texture around a
specific pixel.

Once a TFN feature image is obtained by TFCM, two
measures based on TFN histogram and TFCM-based Co-
occurrence matrix, can be computed and used to characterize
its statistics. A TFN histogram is defined as

N (n)
pTFN,A(n):MTFNi’A
n=0 NTFN,A(n) (3)
where N ,(n) is the total number of TFN,(x,y) in the

image taking value n, and Ais the gray-level variation
tolerance given in Eq. (1). The TFN based co-occurrence
matrix, which is a probability distribution of transitions
between any pair of arbitrary two TFNs, can be defined as

. Ny, J)
(0, j1d,0) = —naso (4)
O W

where N j) is the number of pairs of two pixels at

A,d,g(ir
spatial locations (X, y) and (w, z) satisfying TFN code level
Ix,y) =i, I(w,2) =j and d-pixel apart along angular rotation
6 and zl N ,(1,k) is the total number of TFN transitions.

B. Texture Feature Extraction

Based on the TFN histogram and TFCM-based Co-
occurrence matrix, two new feature extractors were
developed. One is named as eigenvector-based feature
extraction and another one called statistical analysis-based
method is an augmented and more computationally efficient
version of the one given in [12]. For comparison, one
traditional feature extractor, called TFN histogram, was also
implemented. All the details are discussed as follows.

e TFN histogram

The TFN histogram introduced by [12] has 55 dimensions
to each image or region of interest, and can be used directly as
feature descriptors independently as it contains rich texture
information of the image or the region of interest. The
definition of TFN histogram is given in Eq. (3). An example
of TFN histogram on a mammogram image is given in Fig. 3.
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Fig. 3 TFN histogram of a mammogram image

e Statistical Texture Feature Descriptors

In order to capture the essence of texture information of an
image, a set of texture feature descriptors was developed to
represent the kernel texture information of the image or the
region of interest. Here we introduce eleven descriptors. Some
of them (1 to 8) were already discussed in [12], [16], the other
three (9-11) are specially designed by us.

The first two feature descriptors are derived from the TFN
histogram of an image.

1. Mean convergence
54.1n . n)—
MC = ‘ p,(N) ﬂA‘ (5)
n=0 O,
where u,, o, are the mean and variance of the histogram,
respectively. p, is defined in Eq. (4).

2. Code variance
54

var=>"(n-p,) p,(n) (©)

n=0
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The remaining feature descriptors are based on the TFN co-
occurrence matrix. Here we fix d =1 and use the average of
four matrices (corresponding to =0, 8=45", §=90" and

6 =135"). That is,
P :(P(d =1,0=0")+P(d =1,0=45)+P(d =1,0=90")+Pd =1,0=13%))
where P(d,#) is the TFN co-occurrence matrix with respect

to d and &.Based on P, ,, we define the following features
3. Code entropy

54 54

CE = ZZ Paa (s D)logp,q (i, ) ™
4. Uniformity o
54 54
UN =ZO‘,Z;, Pag (i ) (®)
5. First-order eIeme;n difference moment (FDM)
FDM =ii\i—i\pA,d(i,j) ©)
6. Second-order elenl{gnjtiodifference moment (SDM)
SDM = 3 31— )" P ) (10)
7. First-order inverse Iezloejr;:ent difference moment (FIDM)

54 54

FIDM = zz

i=0 ]—ﬂ ‘ - J‘
8. Second-order inverse element difference moment (SIDM)

) 7 Paa D) (12)

SDM=> > ———

|0101+(|

Paa i J) an

The following three features are the region-based features
of the co-occurrence matrix.

9.to 11. Energy Distributions of Co-occurrence Matrix
54 54

SBI=3" > Pl ) (13)
i=44 j=44
54 54
SB2="Y"p,,(i, )~ SBI (14)
i=34 j=34
54 54 1
sB3=3"3"p, (i, j)— SBI—SB2 (15)
i=14 j=14

The summation regions (SB1, SB2, and SB3) are depicted
in Fig. 4. In this way, the energy distributions of texture for
different regions are being considered and added into the
feature vector. Compared with the feature vector without
energy distribution component, the feature vector with energy
distribution can provide an additional 5% -10% increase in
target recognition rate according to our tests.

0 54

SB3 14

SB2

34

SB1
54 44

Fig. 4 Summation regions of different subband probabilities.

As a result of the above operators, each image or the region
of interest in the database can be represented by an 11 x 1
feature vector. Since some features usually have large
magnitudes and the others have small magnitudes, we scale
different feature elements such that each feature contributes
equally to the classifier

e Principal eigenvector of the TFN based co-occurrence
matrix

The 55x55 TFN co-occurrence matrix called P can be
computed via Eq. (4) to an image or the region of interest.
After performing eigenvalue decomposition on R=PP" | we
found that, in most cases, the largest eigenvalue of R is larger
than 85% of the sum of all the other eigenvalues of R. This
means the 55 dimensional principal eigenvector of a TFN co-
occurrence matrix, corresponding to its largest eigenvalue,
may also well represent the texture properties of the image. It
can either be feature vector independently or combined with
the histogram feature vector. In one of our studies, we cascade
the TFN histogram vector and the principal eigenvector to
form a new 110 dimensional feature vector. With this newly
developed feature set, we can achieve a good classification
result in some conditions (See Section 3), which has, in return,
validated our reasoning logic.

C. Support Vector Machine (SVM) for Classification

According to the references [17], [18], SVM parameters are
computed by solving a quadratic programming problem with
linear equality and inequality constraints; rather than by
solving a non-convex, unconstrained optimization problem.
The flexibility of kernel functions allows the SVM to search a
wide variety of hypothesis spaces. The geometrical
interpretation of support vector classification can be thought
as the optimal separation on feature surface. A simple
example of 2-D data classification with three different classes
using SVM is shown in Fig. 5, wherein the optimal
boundaries are found between each pair of classes. The
advantages of SVM include:

e It is a quadratic learning algorithm; hence, there are
no local optima. It can also be formed as linear
programming for simplicity.

e Statistical theory gives bounds on the expected
performance of a support machine.

e Performance is better than most other learning
algorithms for a wide range of applications including

automatic  target recognition, and document
classification
o Although  originally designed for 2-class

classification, SVMs have been effectively extended
to multi-class classification applications. Algorithms,
such as One-against-one, DAG, one-against-all, and
C&S, have been successfully applied to multi-target
recognition.

e There is no over-training problem as compared to
conventional learning classifiers such as neural net or
fuzzy logic.
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Fig. 5 SVM classification results of three classes

The TFCM-SVM training and testing procedures based on
the statistical feature descriptors are briefly summarized
below:

1. Prepare M training images with known ground truth,
which means we have already known which image is
background image and which image is target image
and the target type. Associate each image with an
integer class label, for example, 0, 1, 2, ..., M.

2. Perform TFCM on each image to obtain a feature
image with its element being TFN numbers.
Calculate a TFN histogram for each feature image.

4. Calculate a TFCM co-occurrence matrix for the same

feature image

5. Calculate the 11 texture feature descriptors using
Egs. (5) to (15) to represent the image being
processed

6. Form all the image feature vectors into a 11xM
matrix, regarded as the input matrix. Align their class
labels to a 1xM row output vector.

7. Use the input and output pair to train the SVM. The
result is stored in a set of vectors and matrices.

In the testing stage, the first six steps are still applicable to a
testing image. Compared with the training stage the difference
is the trained support vector machine is used to output a label
vector for a testing image at the last step (Step 7). Note that
the TFCM-SVM procedures, either based on TFN histogram
or principal eigenvector, have the similar steps as statistical
feature descriptor-based method.

(98]

D. Automatic Target Localization and Detection

In order to localize and detect a target automatically, a
Cascade Sliding Window (CSW) technique was developed.
The key idea of the technique is to segment the whole image
by a NxN pixel window and train the TFCM-SVM by using
both the background/normal regions and the target regions. N
is a predetermined value. In our experiments, the value of N is
twice the size of the possible targets. To test a new image, the
N x N pixel window moves around the image and feeds the
segmented image into the TFCM_SVM for classification. The
flowchart diagram of CSW is illustrated in Fig. 6.

Image of interest

+

Cascade sliding window of size

NXN Window segmented
normal image

'

TFN  histogram  and  TFCM
cigen-vector  feature  vector

NxN Window segmented
abnormal image

NxN segmentation
extraction

! !

TEN histogram and  TFCM SVM classifier training

cigen-vector  feature  vector
Classification parameters

extraction

Training

l

Mark the windowed image with

the white frame

Testing

Fig. 6 Flow chart of the TFCM-SVM-CSW algorithm

1. EXPERIMENTAL RESULTS

A. Mammogram Inspection

Our first case study was focused on mammogram inspection
by using TFCM-SVM method. The database is the
MiniMammographic Database provided by  the
Mammographic Image Analysis Society (MIAS). In our study,
59 normal mammogram images and 55 abnormal images
containing different abnormalities were segmented from the
database (totally 114 images). The abnormal regions were
classified into the following 5 abnormal categories:

e 13 in architectural distortions (ARCH),

10 in asymmetry tissues (ASYM),

12 in circumscribed masses (CRIC),
11 in speculate masses (SPEC),

9 in other/ill-defined masses (MISC).

In our tests, we ran the TFCM method first to some
randomly selected images from the above five categories as
shown in Fig. 7, and some selected normal images as shown
in Fig. 8. All normal images are 128x128 in size whereas the
image size for the abnormal images varies as the area of the
abnormal region differs from one case to another. After
obtaining the features of all selected images, we used SVM
with RBF (Radial Basis Functions) kernel to perform target
classification.

The cross validation method, also known as leave-one-out
scheme, was used for training and testing. In this method, the
decision rule is first obtained by using all but one of the
samples in the data set, and the sample which is left out is then
used to test the performance of the decision rule. This
procedure is repeated for all the samples in the data set. For
example, if there are | normal data and K abnormal data, then
I+K' classification results can be obtained by this method.
From these we can obtain an estimate of the overall accuracy
of the classification scheme. The results of our tests were
summarized in from Table 4. It can be seen that the TFCM-
SVM with eigenvector has the best performance. Note that the
leave-one-out is only suitable for off-line training and testing.
The result by using CSW to a large image (1024x1024) which
contains multiple abnormal regions is given in Fig. 9 to
demonstrate the efficiency of our approach on automatic
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target detection and classification in online stage, wherein the
yellow ellipsis is known as ground truth and the red rectangles
are the detected targets.

The performance of SVM is affected by two parameters,
namely the kernel parameter » and the regularization
parameter C . For a given regularization parameter C, larger
kernel parameter y leads to smaller training error. The trade-
off is the generalization capability of the SVM will be
reduced. If y becomes too small, the two classes would be
too close to each other, and the performance will also be
degraded. In short, there is an optimal combination of the two
SVM parameters, which can be obtained through trial-and-
error. Some studies on parameter tuning with feature
descriptor-based TFCM-SVM method are given in Table 5
and Table 6.

In Table 5, we fixed C as 100, and showed the results with
y=10", y=10", and =107, respectively. The cross
validation method was used in the training and test. It can be
seen that the best classification result was obtained with
y=10". In this case, the algorithm yields 90% correct
detection for normal data and 80% correct classification for
abnormal data. The overall correct detection rate is 85%. We
then fixed y as y =10~ and varied the value of C to repeat
the test. The results are shown in Table 6, in which the best

performance is obtained at C =10* and y =107*. Although the

/

——
CRIC (001)

ASYM (097)

mias_006.bmp mias_007.BMP

ARCH (117)

mias_00&5 . BMP

classification performance of normal data is slightly reduced,
the performance on abnormal data is improved, and the
overall correct classification rate increases to 87%.

B. Target Detection in Airborne SAR Images

In this study, we applied the TFCM-SVM method to SAR
images for target detection. The image we used is shown in
Fig. 10. The unclassified raw image (size 765x765) was
supplied by the U.S. Army. The image shown in Fig. 10 is
filtered by a 5x5 median filter [4] to eliminate some noise
spikes. A median filter is a rank filter which, for a given
vector of data points, first sorts the points from smallest to
largest, and then picks the median value as the filter output.

We selected 9 regions of background and 10 regions of
target in the experiment. Each region has a size of 64 x 64
pixels. These chosen regions are shown in Fig. 11and Fig. 12.

The cross validation method was used again. That is, each
time we used all but one sample for training, then tested with
the remaining ones. The procedure was then repeated for all
samples. The results were summarized in Table 7, where the

value of A was chosen as 3 in texture feature coding. Table 7
also shows that the eigenvector approach can achieve 100%
accuracy for background data and 90% accuracy on target
detection.

SPEC (181) MISC (134)

Fig. 7 Five abnormal images (each begins with their label and image number in the library)

mias_010.EMP

Fig. 8 Five normal images

TABLE IV

PERFORMANCE OF TFCM-SVM TO MAMMOGRAM IMAGES with € =100 anp 7 =1

Feature Type Training data: Testing data: Testing data:
Correct Rate Correct Detection Rate of Correct Detection Rate of Abnormal
Normal Data Data
Feature Descriptors 85% 50/59=85% 40/55=73%
Histogram 84% 49/59=83% 42/55=76%
Eigenvector 89% 50/59=85% 35/55=64%
Histogram and Eigenvector 92% 52/59=88% 44/59=80%
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TABLE V

PERFORMANCE OF TFCM-SVM WITH C =100

M0 20 ;0 30 400

V4 Training data: Testing data: Testing data: Testing data:
Correct Rate Correct Detection Rate  Correct Detection Rate Overall Correct
of Normal Data of Abnormal Data Detection Rate
1E-3 94 % 47/59=80% 39/55=71% 86/114=75%
1IE—4 89 % 53/59=90% 44/55=80% 97/114=85%
IE—5 84% 53/59=90% 39/55=71% 92/114=81%

TABLE VI

PERFORMANCE OF TFCM-SVM WITH y = 107

C Training data:

Correct Rate

Testing data:
Correct Detection Rate
of Abnormal Data

Testing data:
Correct Detection Rate
of Normal Data

Testing data:
Overall Correct
Detection Rate

45/55=82%

97/114=85%

1E3 93% 52/59=88%
1E4 97% 52/59=88% 47/55=85% 99/114=87%
1E5 100% 52/59=88% 44/55=80% 96/114=84%

(a) Raw image

Fig. 10 A SAR image

(b) Median filtered image

Fig. 11 Background data set
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Fig. 12 Target data set

TABLE VII
PERFORMANCE OF TFCM-SVM IN SAR IMAGE WITH C =100 AND y =1

Feature Type Training Correct Correct Correct Detection
Rate Detection Rate Rate of Abnormal
of Normal (Target) Data
(Background)
Data
Feature Descriptors 90% 6/9=67% 9/10=90%
Histogram 87% 5/9=56% 9/10=90%
Eigenvector 100% 9/9=100% 9/10=90%
Histogram and Eigenvector 100% 8/9=89% 8/10=80%
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Fig. 13 Experimental setup: (a) the sandbox (b) Ground penetration radar (c) ground truth of the buried mines and other objects
(obtained from Department of Electronics & Information Processing, Vrije University)

C. Mine Detection in Ground Penetrating Radar Images

Besides mammogram classification, the CSW technique
described earlier was also applied to mine detection. The
GPR minefield image data were obtained from the
Department of Electronics & Information Processing of
Vrije University. The acquisition was performed in dry clay

mixed with small rocks. The GPR settings for this scan were
10 averages per A-scan, 25 ps sampling interval, 512
samples, 1 GHz antenna, and 1 ns pulse width. An area of
dx = 50 cm by dy = 196 cm was scanned with a scanning
step of 1 cm in each direction. The surface was not flattened
before the scan. There were irregularities with a maximum
of 20 cm between the highest and the lowest point. The
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antenna head was placed at 5 cm above the highest point,
and the scan was done horizontally. The experimental setup
and the ground truth diagram are shown in Fig. 13 .

Three C-scan images of Dry-clay field with two mines
buried 5 cm under the ground and one image without mines
are shown in Fig. 14. Similarly, we mark the abnormal
region with a yellow ellipsis as ground truth and red frames
as detected mine by TFCM-SVM-CSW method. The results
are shown in Fig. 15, which indicates that our algorithm can
successfully detect those two mines captured from different
layers in a dry clay field. Further improvement is still
needed for more accurate target location. Due to the limited
available data, we could not generate statistical results for
GPR data. However, the target detection and location
algorithm can correctly detect and localize all the targets in

the iailable imai. ' r
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IV CONCLUSION

A novel and computationally efficient framework using
texture feature coding-based descriptors and support vector

machines for target detection is presented. Our contributions
can be summarized as follows. First, a new automatic target
detection structure which consists of TFCM-based feature
extraction, support vector machines, and Cascade-Sliding-
Window is designed. Second, the original texture feature
coding scheme is simplified and improved to save
computational cost. Third, two new TFCM-based feature
extraction methods have been developed. Fourth, the
efficient pattern training and classification method (SVM
method) is proposed and integrated into our ATR system.
Finally, Cascade-Sliding-Window approach is developed for
automated target localization. Preliminary tests on
mammogram show over 88% of normal mammograms and
80% of abnormal mammograms are correctly identified
without parameter tuning. The test results in SAR and GPR
images are also satisfactory
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