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Abstract—In the queueing theory, it is assumed that customer 

arrivals correspond to a Poisson process and service time has the 
exponential distribution. Using these assumptions, the behaviour of 
the queueing system can be described by means of Markov chains 
and it is possible to derive the characteristics of the system. In the 
paper, these theoretical approaches are presented on several types of 
systems and it is also shown how to compute the characteristics in a 
situation when these assumptions are not satisfied 

 
Keywords—Queueing theory, Poisson process, Markov chains.  

I. INTRODUCTION 
HE fundamentals of the queueing theory were laid by the 
Danish mathematician A. K. Erlang, who worked for a 

telecommunication company in Copenhagen and in 1909 
described an application of the probabilistic theory in 
telephony. Further development of the theory is mainly 
associated with the Russian mathematician 
A. N. Kolmogorov. The classification of queueing systems, as 
we use it today, was introduced in the 1950’s by English 
mathematician D. G. Kendall. Today, the queueing theory 
belongs to the classic part of logistics and it is described in 
several monographs such as [1], [2], [3], [4], [5], [6], [8], [9]. 
Generally, at random moments, customers (demands) enter 
the system and require servicing. Service options may be 
limited, e.g.  the number of service lines (or channel 
operator). If at least one serving line is empty, the demand 
arriving at the system is immediately processed. However, the 
service time is also random in nature because performance 
requirements may vary. If all service lines are busy, then the 
requirements (customers) must wait for their turn in a queue 
for the processing of previous requests. However, not all 
requests are handled or queued for later use immediately. For 
example, a telephone call is not connected because the phone 
number is busy. 

Service lines are frequently arranged in parallel, e.g.  at the 
hairdresser’s, where customers waiting for a haircut are 
served by several stylists, or at a gas station, where motorists 
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are calling at several stands of fuel. However, there are also 
serial configurations of queueing systems. 

II. CLASSIFICATION OF QUEUEING SYSTEMS 
There are many deterministic techniques to solve the 

problem under investigation. These include: 
The queue is usually understood in the usual sense FIFO – 

first in, first out), but a LIFO operation (last in, first out) is 
also possible. Sometimes, LCFS (last come, first served) is 
used to refer to a LIFO strategy [7].  
Besides the FIFO and LIFO services, we may also encounter 
services consisting in requirements being randomly selected 
from the queue by the service system (SIRO - selection in 
random order) and service managed by priority requirements 
(PRI - Priority). 

The queue length may be limited, after achieving a certain 
(predefined) number of requests in a queue, subsequent 
requirements are rejected such as the number of reservations 
for a library book currently checked out or unlimited, this 
virtually means that the limiting number is prohibitive.  

The requirements in the queue may have limited or 
unlimited patience. In the case of infinite patience, requests 
are waiting for their turn in a queue while in a system with 
limited patience whether a request enters the queue depends to 
a large extent on the queue length. The queue length is 
sometimes also referred to as system capacity denoting the 
maximum number of requests that may be present in the 
system. 

In 1951, Kendall proposed a classification based on three 
main aspects in the form A/B/C, where 
A  characterises the probability distribution of the random 

period (interval) between the subsequent requirement 
arrivals,  

B  characterises the probability distribution of the service 
time of a requirement, 

C  is the number of parallel service lines (or channels), if this 
number is "unrestricted" (i.e. very large), C is usually 
expressed as infinity (∞). 

As already mentioned, the system can be characterised by a 
larger number of features so that the Kendall classification 
was further extended to 
   A/B/C/D/E/F, 
with the symbols D, E, and F having the following meaning: 
D  an integer indicating the maximum number of requests in 

the system (i.e. the capacity of the system). Unless 
explicitly restricted, expressed by ∞, 

E  an integer indicating the maximum number of requests in 
the input stream (or in resource requirements). If it is 
unlimited, ∞ is used, 
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F  the queue type (FIFO/LIFO/SIRO/PRI).     
Parameter A can have the following values: 

M  intervals between the arrivals of requests are mutually 
stochastically independent and have an exponential 
distribution, which means that the input stream is a 
Poisson (Markov) process; for details, see below, 

Ek Erlang distribution with parameters λ and k, 
Kn χ2 distribution with n degrees of freedom, 
N normal (Gaussian) distribution, 
U uniform distribution, 
G general case, the time between the arrivals of requests is 

given by its distribution function, 
D intervals between the arrivals of demands are constant 

(they are deterministic in nature). 
Parameter B can have the same values as the parameter A, 

but referring to a random requirement service time. 
Since most of the queueing systems assume that the 

requirements in the input stream can be characterised by a 
Poisson (Markov) process, it will be further described. A 
Poisson process is a stream of events that satisfies the 
following properties: 
1.  Stationarity (homogeneity over time) - number of events in 

equally long time intervals is the same.  
2.  Regularity - the probability of more than one event 

occurring during an interval of a sufficiently small length 
∆t is negligibly small. This means that, in this interval 
(t, t+∆t), either exactly one event occurs with probability 
λ ∆t or no event will occur with a probability of 1–λ ∆t. In 
other words, in a Poisson process, a system may only pass 
to the next "higher" state or remain in the same condition. 

3.  Independence of increases - the number of events that 
occur in one time interval does not depend on the number 
of events in other intervals, 

III. THE M/M/1/∞/∞/FIFO SYSTEM 
Consider first the situation at the input separately from the 

service process and introduce the random variable number of 
requests that enter the system during the interval 〈t0, t0+∆t〉 
where ∆t ∈ (0, ∞). Due to the stationarity of the Poisson 
process, the number of requests does not depend on the choice 
of the initial time t0 and important is only the length of the 
interval ∆t in question. 

Let pk(t) denote the probability that, at time t, just k  
requirements are in the system. The regularity of the 
Poisson process implies that the probability that, at time 
t+∆t, k requirements will be in the system is equal to the 
probability that, at time t, k–1 requirements were in the 
system and, during ∆t, one requirement arrived with a 
probability of λ ∆t or, at time t, k requirements were in the 
system and, during ∆t, with probability 1–λ ∆t, no new 
requirement came. From the rules for calculating the 
probabilities of the conjunction and disjunction of 
independent events, we get the equation: 

 pk(t+∆t) = pk–1(t). λ ∆t + pk(t).(1–λ ∆t), k = 1,2, … (1) 

The probability that, at time t+∆t, no requirement is in the 
system is given by the probability that there was not any and 

neither had any come during the interval ∆t: 

 p0(t+∆t) = p0(t).(1–λ ∆t)  (2) 

After some simplification of equations (1) and (2), we get 
equations (3) and (4). 
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Let us now calculate the limit for ∆t → 0 in equations (3) and 
(4): 
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The expressions on the left-hand sides of the previous two 

equations are derivatives of the functions pk(t) and p0(t) at t 
denoted by pk’(t) and p0’(t), with the limit having no effect on 
the right-hand sides of the equations. Hence, we obtain 
recurrence equations (5), (6) 

 ..,.2,1),()()(' 1 =−= − ktptptp kkk λλ  (5) 

 )()(' 00 tptp λ−=  (6) 
These recurrence equations form a system infinitely many 

first-order ordinary differential equations. To solve this 
system, we need to know the initial conditions. However, it is 
clear that, at time 0, no requirements are in the system, and 
therefore 

 ..,.2,1,0)0( == kp k  (7) 
 1)0(0 =p  (8) 

 
From the theory of ordinary differential equations, it is 

known that the solution to the system of equations (5) and (6) 
with initial conditions (7) and (8) is a system of functions 

 ( ) ..,.2,1,0,
!

)( == − k
k
tetp

k
t

k
λλ  (9) 

Specially, for k=0, we get 
 tetp λ−=)(0  (10) 

From equation (9) we can see that, in the M/M/1 system, 
the random number of requests that enter the system during a 
time interval of length t has a Poisson distribution with 
parameter λ t. 

The mean of this random variable is λ t and, specifically for 
t=1, the mean value of the random number of requests that 
enter the system per unit of time is equal to λ. We say that λ is 
the mean intensity of the input or shortly the input intensity 
and it expresses the average number of requests that enter the 
system per unit time. 

Further we show that the random interval between the 
arrivals of requests has an exponential distribution. Denote 
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this random variable by T. Then the probability that, after a 
requirement, no further requirement for the entire time 
interval t had entered the system is equal to p0(t) and, 
therefore, by equation (10) 

         tetptTP λ−==> )()( 0  (11) 

From here we obtain the distribution function F(t) of the 
exponential distribution with parameter λ. 

      tetTPtTPtF λ−−=>−=≤= 1)(1)()(  (12) 

The mean value of the random variable T representing the 
average time between two consecutive requests is 

 E(T)=1/λ  (13) 

Analogously, we can now examine the service process. We 
assume that the random variable service time of one 
requirement (service time for short) has an exponential 
distribution. Denote by μ the distribution of this parameter, 
generally μ ≠ λ. The mean value of the random service time 
TO is 

 E(TO)=1/μ  (14) 

and the parameter μ  indicates the mean number of requests 
served per time unit of channel work time, briefly mean 
service intensity or service intensity. 

To derive the characteristics of the system, it is more 
convenient to describe the system activity by a graph of 
system transitions. The nodes of the graph represent the states 
and the directed edges the transitions from one state to 
another, and these edges are assigned the probability of the 
transition from one state to another. State Sn for fixed 
t∈〈0, ∞), or more exactly Sn(t),  is a random variable and 
indicates that, at time t, n requests are in the system. If exactly 
n requirements, n ≥ 1, are in a system of type 
M/M/1/∞/∞/FIFO, then one of them is operating in a single 
line system (service channel) with the remaining n−1 waiting 
in the queue. The transitions between states which differ by 
the number of requirements in a system can be thought of as a 
birth-and-death process with the birth request representing an 
entry into the system and the death-request corresponding to a 
request leaving the system after finishing its operation. For 
the given input assumptions, the Poisson stream of requests 
with a parameter λ and an exponential distribution of service 
time with parameter μ, the queueing system behaviour may be 
described by Markov processes. 
Due to the regularity, only those transition probabilities 
P(Si → Sj) make sense for which either i=j or i and j differ by 
1. For example, the transition probability P(S0 → S0) 
corresponds to the probability of the event that, during the 
time interval of length ∆t, no requirement enters the system, 
the transition probability P(Sk → Sk−1), k≥1, is the probability 
of the event that, during the time interval of length ∆t, no 
requirement enters the system and, at the same time, one 
request will be served and leaves the system, the transition 
probability P(Sk → Sk), k≥1, is equal to the probability of the 

event that, during the time interval of length ∆t, no 
requirement enters the system and also no requirement leaves 
the system or, during this interval, one requirement enters, 
one requirement will be served, and  one requirement leaves 
the system. 

From the regularity property and the method of calculating 
the total probability resulting from the partial probabilities of 
conjunction and disjunction of independent events, neglecting 
the powers of the interval length ∆t higher than one, we get 
the following transition probabilities:  

 P(S0 → S0) = 1−λ ∆t (15) 
 P(S0 → S1) = λ ∆t  (16) 
P(Sk → Sk−1) = (1−λ ∆t) μ ∆t = μ ∆t− λ μ ∆t2 Υ μ ∆t (17) 
 P(Sk → Sk) = (1−λ ∆t) (1−μ ∆t) + λ ∆t μ ∆t =  
 =1−μ ∆t− λ ∆t + 2λ μ ∆t2 Υ 1−(λ+μ) ∆t (18) 
 P(Sk → Sk+1) = λ ∆t (1−μ ∆t) = λ ∆t − λ μ ∆t2 Υ λ ∆t (19) 

Equations (17), (18) and (19) are satisfied for k = 1,2, … 
A graph of the M/M/1/∞/∞/FIFO system transitions is shown 
in Figure 1. For simplicity, nodes are indicated only by 
numbers rather than symbols Si. Instead of the general 
denotations of the transition probabilities, we will write the 
expressions as determined by equations (15) − (19). 
Using the transition probabilities between states we can 
determine the probabilities pk(t) indicating that, at time t, 
exactly k requirements are in the system, however, with 
entries and services not separated 

 p0(t+∆t) = P(S0 → S0) + P(S1 → S0) =  
 = p0(t).(1–λ ∆t) + p1(t).μ ∆t (20)
  

pk(t+∆t) = P(S k−1 → Sk) + P(Sk → Sk) + P(S k+1 → Sk) =  
= pk−1(t). λ ∆t + pk(t).[1−(λ+μ) ∆t] + pk+1(t). μ ∆t, k = 1,2,... (21)
  
After simplifying equations (20) and (21), we obtain 
equations (22) and (23) 
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Let us now calculate the limit for ∆t → 0 in equations (22) 
and (23). We get: 
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The expressions on the left-hand sides of the previous two 
equations are derivatives of the functions p0(t) and pk(t) at 
point t, i.e. p0’(t) and pk’(t) with the limit having no effect on 
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their right-hand sides. Hence, we get recurrence equations 
(24), (25) as follows: 

 )()()(' 100 tptptp μλ +−=   (24) 
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These recurrence equations are a system of infinitely many 
first-order ordinary differential equations. To solve them, we 
need to know the initial conditions given by the state of a 
system at time t0=0. If there are k0 requirements in a system at 
time t0=0, then the initial conditions are given by (26) and 
(27) 

 1)0(
0

=kp  (26) 

 0,1,0)0( kkkpk ≠≥=  (27) 
In the sequel, we will assume that λ < μ, i.e. λ/μ < 1. Denote 

the ratio λ/μ  by the symbol ψ. We call it the intensity of the 
system load. Condition (28)  

 1<=
μ
λψ  (28) 

is a necessary and sufficient condition for not the queue not to 
grow beyond all bounds. This condition also ensures that, 
after a sufficiently long period from the time the queueing 
system is opened, its situation stabilizes, i.e., there are limits 

 K,1,0,)(lim ==
∞→

kptp kk
t

, (29) 

and then after a sufficiently long period from the opening of 
the queueing system, the probabilities pk(t) can be seen as 
constant, i.e. 

 pk(t) = pk = const (30) 

Since the derivatives of constants are zero and by equations 
(24) and (25), we obtain an infinite system of linear algebraic 
equations determined by (31) and (32). 

 100 pp μλ +−=  (31) 
 ..,.2,1,)(0 11 =++−= +− kppp kkk μμλλ  (32)  

It is clear that (33) is satisfied 
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Expressing p1 from equation (31), we get 
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and, from (32), we express pk for k ≥ 2. For k=1, we get from 
(32)  
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and, generally for k=1,2, …, equation (36) is satisfied 

 0pp k
k ψ=  (36) 

Now p0 remains to be determined. To do this, we use 
equations (33) and (36). 
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Since the sum in (37) is a geometric series with the quotient 

ψ, the first element ψ 
0=1 and the sum 

ψ−1
1 , we get  

1
1

1
0 =

−ψ
p  from (37), and thus 

 ψ−= 10p   (38) 
Using (38), equation (36) can be expressed as 

 ,...2,1),1( =−= kp k
k ψψ  (39) 

These equations make it possible to derive other important 
characteristics of the M/M/1/∞/∞/FIFO system, which 
include: 

1. Mean number of jobs in the system: 
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2. Mean number of jobs in the queue (mean queue length): 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

63

 

 

s

sss

k
k

k
k

k
kff

n

nnpn

ppkpknNE

ψ
ψ

ψψ
ψ

ψψ
ψ

ψ

ψψ

=
−

=−
−

==−−−
−

=

=−=−−−=−−=

=−=−== ∑∑∑
∞

=

∞

=

∞

=

11
)]1(1[

1

)]1(1[)1(

)1()(

2
0

111

 (41) 

3. Mean time spent by a job in the system: 
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4. Mean waiting time of a job in the queue: 
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5. Mean service time: 

 
μ
1)( =OTE  (44) 

6. Service channel idle time 

 K0 = p0 = 1−ψ (45) 

7. Service channel load  

 K1 = 1− p0 = 1−(1−ψ) = ψ  (46) 

The equations (40)-(43) show that, in the system M/M/1/∞ 
/∞/FIFO, λ = μ or ψ  = 1 cannot be true because this would 
result in the parameters growing beyond all limits. 

IV. SIMULATION  OF QUEUEING SYSTEM PROCESSES   
In practice, some assumptions may not be satisfied, which 

means that the formulas we derived are not entirely accurate. 
However, queueing systems can also be studied by Monte 
Carlo simulations generating random numbers representing 
the requirement entry moments and service times. 
   If these random variables are to be governed by a certain 
probability distribution, then it must be provided.  
There are many methods of doing this such as the elimination 
method and inverse function method. The elimination method 
may be used to generate the values of continuous random 
variables whose probability density f is bounded in an interval 
〈a, b〉 and zero outside this interval. This method is based on 
generating random points with coordinates (x, y) with uniform 
distribution in the rectangle 〈a, b〉 ×  〈0, c〉 where c is the 
maximum value of the probability density f in the interval 
〈a, b〉. 
   A point generated is only taken to be a value of a random 
variable with the given distribution if y ≤ f(x) otherwise it is 
eliminated from further calculations. When using the inverse 
function method, we first determine the probability 
distribution function F from the density function f using 
equation (47). 

 ∫
∞−

=
x

dttfxF )()(            (47) 

We generate a random number r with uniform distribution 
on the interval 〈0,1〉 that we consider to be the value of the 
distribution function at a yet unknown point x, i.e. F(x) = r. 
The point x here is obtained by the inverse function (48): 

 x = F−1(r)  (48) 

During the simulation experiments it is necessary to decide 
how to express the dynamic properties of the model, i.e., what 
strategy should be chosen time recording. There are two 
options - a fixed-time-step method and a variable-time-step 
method. In the first case, after each fixed interval of time, 
changes are monitored. In the variable-time-step method, 
bounds of time steps are given by just those moments when 
there is a change in the system such as a new requirement 
entering the system or requirement service being terminated 
and the requirement leaving the system. 
 
Example:  

Consider a queuing system with two service lines, 
unlimited source of patient requirements, the FIFO queue type 
and variable time step given in Table 1 
Total waiting time for handling 15 requirements from Table 1 
is 33 minutes. Hence, we statistically estimate the mean time 
of waiting requests in the queue 

 .min2,2
15
33)( ==fTE  

 
Now, we will determine from Table 1 the time intervals in 

which the number of requests does not change. The result is 
given in Table 2 
We can see that, for 2+4=6 minutes from the total 70 minutes, 
there is no requirement in the system, hence, we estimate the 
probability p0. 

0857,0
70
6

0 ==p  

Similarly, we estimate p1 , … , p5. 
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27
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The mean number of requirements in the system is: 

1,20143,0.51143,0.4

2,0.33857,0.22,0.1857,0.0)(
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The mean number of requirements in the queue (mean queue 
length) is: 
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V. CONCLUSIONS   
In this paper, an approach to modelling a queuing system 
based on the use of Markov processes was shown and, for 
M/M/1/∞/∞/FIFO, its characteristics have been derived in 
detail.  
This approach can also be used for other systems such as 
M/M/1/1/∞ and M/M/n/n/∞. Since the assumptions that the 
input stream of requirements is a Poisson process and the 
service time has an exponential distribution may not be 
satisfied in practice, a simulation approach to solving the 
problem is shown. 
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Fig. 1 Graph of M/M/1 / ∞ / ∞ / FIFO system transitions 

 
 

TABLE  I 
SIMULATION OF QUEUEING SYSTEM  
1st service line 2nd service line Time entry 

requirement
[hh:min] 

Service 
time 
[min] 

start 
[hh:min]

end 
[hh:min]

start 
[hh:min]

end 
[hh:min]

Idle 
time 
of 

lines 
[min]

Waitin
g time 

for 
service 
[min] 

09:00 3 09:00 09:03     
09:05 9 09:05 09:14   2  
09:10 9   09:10 09:19   
09:11 9 09:14 09:23    3 
09:14 9   09:19 09:28  5 
09:24 6 09:24 09:30     
09:34 9 09:34 09:43   4  
09:37 9   09:37 09:46   
09:38 3 09:43 09:46    5 
09:41 9 09:46 09:55    5 
09:42 6   09:46 09:52  4 
09:52 9   09:52 10:01   
09:53 6 09:55 10:01    2 
09:56 9 10:01 10:10    5 
09:57 9   10:01 10:10  4 

 
  

0 

P(S0→S0) 

P(S0→S1) 

P(S1→S0) 
1 2 

P(S1→S2) 

P(S2→S1) 

P(S1→S1) P(S2→S2)

... k−1

P(Sk−1→S k−1) P(Sk→S k) P(Sk+1→S k+1)
P(Sk−1→S k)

P(Sk→S k−1)
k k+1 

P(Sk→S k+1) 

P(Sk+1→S k) 
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TABLE  II 

SIMULATION RESULTS 
Time during which the number of requirements in the queuing system equals [min] Time interval 

0 1 2 3 4 5 
09:00 – 09:03  3     
09:03 – 09:05 2      
09:05 – 09:10  5     
09:10 – 09:11   1    
09:11 – 09:19    8   
09:19 – 09:23   4    
09:23 – 09:24  1     
09:24 – 09:28   4    
09:28 – 09:30  2     
09:30 – 09:34 4      
09:34 – 09:37  3     
09:37 – 09:38   1    
09:38 – 09:41    3   
09:41 – 09:42     1  
09:42 – 09:43      1 
09:43 – 09:46     3  
09:46 – 09:53   7    
09:53 – 09:55    2   
09:55 – 09:56   1    
09:56 – 09:57    1   
09:57 – 10:01     4  
10:01 – 10:10   9    

 
 
 
 
 
 


