
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1012

Abstract—Systems running these days are huge, complex and

exist in many versions. Controlling these versions and tracking their
changes became a very hard process as some versions are created
using meaningless names or specifications. Many versions of a
system are created with no clear difference between them. This leads
to mismatching between a user’s request and the version he gets. In
this paper, we present a system versions meta-modeling approach that
produces versions based on system’s features. This model reduced
the number of steps needed to configure a release and gave each
version its unique specifications. This approach is applicable for
systems that use features in its specification.

Keywords—Features, Meta-modeling, Semantic Modeling, SPL,
VCS, Versioning.

I. INTRODUCTION
O legacy system may be used without modifying,
changing, updating or replacing some part of it. Tracking

these changes requires system to control them and enable
storing and retrieving past versions [1]. Version control
systems (VCSs) [1]-[5] is the best approach to guarantee
system versioning consistency; since it provides user
feedbacks and work history for any development or change.
Without VCSs, the control of systems versioning and
development is very hard process and errors prone. From the
very beginning of version control systems the developers
determine the relations between current versions and the new
ones created [6].

VCSs main goals are to support system developers to work
concurrently, insuring that their changes are consistent with
each other and finally, to store any changes in a history
archive [7]. These systems can be classified based on the
working techniques [1]-[4], [7]-[9] into two types: Concurrent
Versioning Control Systems (CVCSs) and Centralized
Versioning Control Systems (CVCSs).

Nowadays, systems became more complicated and forked.
Several versions with several descriptions and details are
included in each one. For firms, in order to present a new
version for their product, they build the new name based on
the latest version name for the product [9]. Like V1.3.1,
V1.3.2. For end user, having a lot of versions names and
numbers makes the selection for a suitable version a very hard
and confused process[10]. Which version to choose? Which

Ola A. Younis is a lecturer of computer science working with the Bio-
inspired Systems Research Laboratory, Philadelphia University, Amman,
Jordan, (e-mail: oyounis@philadelphia.edu.jo).

Prof. Said Ghoul is the leader of the Bio-inspired Systems Research
Laboratory, Philadelphia University, Amman, Jordan, (e-mail:
sghoul@philadelphia.edu.jo).

features does this version include? What are the relations
between the versions? and many other questions.

Laskey in his work [11] reported that version identifier
(number or name) should be interpretable to reflect some of
version’s main features and structure. Version’s identifier
interpretation include understanding the functionality and use
for each version in order to increase its usability [11]. Another
challenge, reported in [10], is the vibration effect of change.
To approve any new change or development for the product,
the developer should schedule the change process to guarantee
system consistency during its development [10]. Several other
challenges were reported in [1], [2], [4], [7], [10], [11].

This paper deals with the following challenges: (1) Several
version identifiers for each product without a clear
methodology for identifier building, (2) lack of version’s
identifier interpretations, and (3) lack of change schedule to
guarantee system consistency during the version
configuration.

Enterprise systems in complex organizations support large
number of different components and are composed of multiple
units and variant areas of interests; hence, these systems have
to control all processes, reports, and versions configuration.
Thus, each unit may have several possible values to cover.
The sources for these values are different: domain analysis,
stockholders’ needs, system evolution and so many other
sources [12]. The ability of a system to be generalized,
specialized or customized to perform special needs is the base
for new versions to be created based on system’s main
features [12].

One way to deal with system’s units and components and
identifying them is the use of features that are defined for the
whole system [13]. System features are defined in a feature
diagram showing the parent feature and its children using
relations like OR, AND, INCLUDE, EXCLUDE, and many
other relations [8], [12], [13].

Researchers presented feature modeling in three
approaches: Graph notations based, Text notations based, and
Mixing graph and text based approaches [12]. These
approaches are classified based on the technique used to
capture system’s main features and functionalities. Each
approach has its strength and weakness points.

Feature modeling used to describe system’s common and
variable components [12]. Common features present the
constant behavior for system components. while variable
features present the behaviors that change due to problem
context and use the optional features to present it [8], [12],
[13]. Using feature modeling increase system reusability and
efficiency [12], since it shows the main components in a

Ola A. Younis, Said Ghoul

Systems Versioning: A Features-Based Meta-Modeling
Approach

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1013

fe
Th
th
re
fe
[1
[5
be

on
de
co
re
(c
of
in
co
m
th
ar
Th
po

cr
pr
pr
m
w
w
ve
on

m
by
ob
fe
w
fe

pr
re
ve
us
co
ve
is
pr
ch

ve
so
se
of

II

a

eature hierarch
his will enhan

han choosing c
elation betwee
eature modelin
13], synchroni
5], [8], [12], it
enefits.

Several appr
n system’s fea
evelopment ph
onfiguration a
eported a new
class model) w
f the system. T
nheritance con
ollection of ty

main problems
he connections
re very impor
he second pr
ossible values

In the work
reative progra
resented. Thi
rogramming l

main problems
was missing. S
were not specif
ery hard, sinc
nly and not on

An Object-O
models’ concep
y Sarinho an
bject-oriented
eature model

with model rep
eature and obje

Based on th
roposes, som
esearch in this
ersions config
sed in build
ombination o
ersions based
given to each

roposed meta-
hallenges are t

This paper i
ersioning fea
ome enhancem
ection III. Sec
f this work.

I. A VERSIONIN

This section
configuratio

hy and enable
nce the config
components in
en them [12]
ng is its cont
ization betwee
ts powerful se

roaches presen
atures. Some o
hase for the sy
and versioning
w way for m
with the conce
This mixing w
ncepts. Featur
ype definition
. The first on
s between mu
rtant to insure
oblem is the
 that may be u
presented by

amming langu
is language
language (rub
. Firstly, the c
econdly, the r
fied. And fina
e the version

n features.
Oriented featu
pts with objec
nd Apolinario

feature mode
and feature

ported in [16]
ect model, wh
he weaknesse

me enhanceme
s domain: (1)
guration. (2)
ding any sys
f versioning
on user-defin

h version base
-model suppo
targeted by th
is organized
ture-based m
ments. These
ction IV prese

NG FEATURES-
presents a ve

on features-ba

e the develope
guration proce
ndividually w
], [13]. Other
tribution in s
en modeling a
mantics [12],

nted the versio
of these appro
ystem, while o
g concepts. C

mixing the str
eptual compon
was done base
re concepts w
s and features

ne is that CLA
ultiple features
e consistency
weak represe

used in the fea
Gunther and

uage called R
was built o

by). RBFEAT
classification
relationships
ally, tracking
is defined ba

ure model th
ct-oriented con
 in [16]. Th
el (OOFM) th
modeling pac
is that it did n

hich leads to a
es mentioned
ents to the
A features-ba
A Classifica

stem version
and features

ned features. A
ed on the feat

orts the above
is paper.
as follows: S

meta-model ap
e enhancemen
ents a conclus

-BASED META

ersion feature
ased model,

er to reuse the
ss and make i

without specify
rs benefit for

system specia
and configurat

[13] and man

oning concept
oaches focused
others focused
CLAFER mod
ructural comp
nents (feature
ed on constrai
were presente
s. CLAFER h
AFER did not
s. These conn

y during the m
entation of fe
ature model.
d Sunkle [15],
RBFEATURE
on top of d
TURES faced
for the used f
between the f
version proce

ased on config

hat combines
ncepts was pr

hey proposed
hat captures b
ckage. The p
not separate b

a complex syst
d above, this
actual state
ased meta-mo

ation of the f
ning model.
s concepts to
And (4) A sem
tures it includ
 two first ver

Section II pre
pproach intro
nts are evalu
sion and persp

A-MODEL APP

s-based meta-
and a ver

m [13].
it easier
ying the
r using
lization
tion [2],
ny other

ts based
d on the
d on the
del [14]
ponents
model)

ints and
ed as a
had two
t define
nections
mixing.
eatures’

, a new
ES was
dynamic
d three
features
features
ess was
guration

feature
resented

a new
both the
problem
between
tem.
s paper

of the
odel for
features

(3) A
o build
mantics

des. The
rsioning

esents a
oducing
ated in

pectives

PROACH
-model,
rsioning

fea
co
ha
qu
som
co

me
mo

•

fea
for
•

dy
dy
“S
the
da
•

fea
vie
eac
or
•

atures-based
mponent, to

aving several
ueue, dynamic
me significan
mplete case st

A. A Version F
The proposed
eta-model and
odel is compo

These meta-fe
Feature Typ
their possib
characterist

Ex: Set.Behav
Set.Scope ={s
This example

ature are eith
r Scope featur

Control F
relationship
relations in
system co
versions.

Ex: Beh.static
Beh.dynamic
This example

ynamic behav
ynamic data s
Set” example,
e same time.

ata structure m
Global Fea
(shared) f
versions.

Ex: Set.Form
This example

ature are chain
ew feature are
ch version of
CL. And the

Configurati
configuratio

Ex: Features
{Name: S_sta
view.cl<requ
<reject> scop

approach w
simplify the
model versio

c stack and d
nt parts of th
tudy is presen

Features-Base
d versioning
d an asset me

osed by four m

Fig. 1 Meta

features are:
pes: This meta

ble values in th
tics and relatio
vior={static,d
shared, separa
e shows that
er static or dy
re are either sh
Features: Th
ps between
nsure version
onfiguration

c <excludes>
<imply> data

e shows that
vior. And th
structure. This
you can’t hav
And if you c

must be dynam
atures: This m
features betw

m={ch,con}; Se
e shows that
n and continu
e linked list an
“Set” exampl
version’s form
ion Features:
on (release) sp
Configuration

ack
ire> state.cor
pe.shared; }

with an ex
idea. A Set

ons such as:
dynamic queu
his example
nted in [12].

ed Meta-Mod
model includ
eta-model. Th

meta-features a

a-features Mode

a-feature capt
he system. Th
ons.
dynamic};
ated};
the possible v
ynamic. And
hared or separ
his meta-fea

all system’
ns consistency

generation

Beh.dynamic
astr.dynamic
the static be

he dynamic b
s means that
ve dynamic an
choose a dyna

mic.
meta-feature ca
ween all sy

et.View={ll,cl}
the default v

uas. And the d
nd closed list.
le, the version
m is either Ch

This meta-fe
pecification.
n

rrect;

xample, the
is a variable
Static stack,

e. In the foll
are presented

del
des a features
he versioning
as shown in Fi

el

tures all featur
hese features i

values for Be
the possible

rated.
ture capture
s features.
y during aut
from comp

c;

havior exclud
behavior imp

for any vers
nd static beha
amic behavior

aptures the co
ystem comp

l};
values for the

default values
 This means t

n’s view is eith
or Con.

eature capture

“Set”
e class,
, static
owing,
d. The

s-based
g meta-
ig. 1.

res and
include

ehavior
values

es the
These

tomatic
ponents

des the
plies a
sion in
avior at
r, your

ommon
ponents

e form
for the

that for
her LL

es each

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1014

st
an
sc
re

in

th
th
to

ba
ca
fe
w

th
m
Fe
fe
an

Th
3.
ve
co
re
by
us
co

This exampl
ack. In this co
nd the state is
cope. Other fe
elations betwe

The connecti
n Fig. 2.

The Asset m
heir implemen
hat present the
o the end user

B. Configura
After instant

ased meta-mo
an be enabled
eatures. For be

we present the c
The configu

hat was descri
model is create

eatures types
eatures. This s
nd do not spec

Another mo
his model is t
 After definin

ersion, the r
onfiguring a
epository searc
y features mo
ser can take a
onfiguration p

le shows the
onfiguration, w
s correct. Thi
eatures are aut
en “Set” featu
ions between

Fig. 2 Meta-f

meta-model is
nted attribute
e final and rea
as a new vers

Fig. 3 Ass

ation Features
tiating, for a
dels described

d to create sof
est understand
configuration

uration starts
ibed in Fig. 1
ed to produce
, Control, Gl
step creates on
cify any real v
del is created
the assets met
ng all feature

real configura
new versio

ching for a ve
del. If the req
a copy (releas

process will sta

 configuratio
we insure that
is configuratio
tomatically ad
ures.
these meta-fe

features connect

composed by
s, methods a

al component t
ion of the sys

sets Meta-mode

s-Based Mode
system, the tw
d above, the c
ftware release
ding of the co
model in Fig
by defining f
. Then, and in

e features mod
lobal features
nly the struct

values.
d after the f
ta-model that
es and relatio
ation will st

on, a reques
ersion with sp
quested versio
se) of that ve
art.

on process fo
t the view mu
on rejects the
dded according

eatures are de

tions

y class interfac
and implemen
that will be pr
tem (Fig. 3).

el

l
wo version fe
configuration p
es based on sy
onfiguration p
. 4.
features meta
nstance of thi
del that speci
s and Config
ture of these f

features meta-
was reported
ns for the req

tart. Before
st sent to v
pecifications
on was availab
ersion. If not,

or static
ust be cl
 shared
g to the

escribed

ces and
ntations
rovided

eatures-
process
ystem’s
process,

a-model
s meta-
fies the

guration
features

-model.
d in Fig.
quested
starting

versions
defined
ble, the
, a new

Co
wi
de
co
va
im
for
ad
fut

co
app
Fir
•

•

•

Fig.

Configuration
onfiguration fe
ith the assets m
fines version
de for these i

alues foe
mplementation

r the system b
dd the new d
ture use.

C. Features- B
In this sectio
nfiguration s
proach can be
rstly, let us de

Version spe
defined spe
requests a
previous ve
already has
system repl
Requested
from the sy
Version co

. 4 Configuratio

n generation
features (that w
meta-model to
’s interfaces a
implementatio
all feature

s, which prod
based on user
derivative ver

Based Framew
on, we presen
steps based
e applied to an
efine some use
ecifications: t
ecifications f
version from

ersion with s
s been config
lies with a cop
Version: the

ystem.
onfiguration:

on features-base

(version inst
were defined i
o create assets
and implemen
ons. This mea
s, relations
duce (as a re
r’s pre-defined
rsion to vers

work
nt an approac

on pre-defin
ny type of fea
ed concepts:
this term refe
for requested
m the system
same specific
gured by the

py of that vers
version that

the process

ed model

tantiation) tak
in the previou
s model. This
ntations and

ans specifying
s interfaces
esult) a new v
d features. Ne
sions reposito

ch that captur
ned features
ature-based sy

ers to the use
version. Th

m, if there w
cations (the v
e system), th
sion.
t user is requ

s of building

kes the
us step)

model
creates

g a real
and

version
ext, we
ory for

res the
. This
ystems.

er pre-
he user
were a
version

hen the

uesting

g new

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1015

version with user’s specifications.
• Versions repository: a directory that contains versions that

have been done previously by the system. A copy or
pointer for each version (including all its features,
relations and any other resources) is stored.

Fig. 5 presents a pseudo code model of the full approach for
any request from the users.

Fig. 5 Features-based framework

Based on this approach and features-based model presented

in the previous section, each version holds a meaningful
semantics based on the features it includes. This step will
enhance version systems and simplify the process of change
tracking and versions classifications.

III. EVALUATION AND PERSPECTIVES
In this section, we introduce the implementation issues of

the proposed approach, its application areas, and its technical
comparison with others relevant works.

A. Implementation Issues
Any environment that may use our model needs a strong

object-oriented and feature oriented programming languages.
All mentioned features have to be implemented in classes and
objects environment to be used later in each configuration
version.

Each configuration version is an object instantiation
based of the classes and relations between them that are
defined based on the features and their relations.

B. Application Area
The proposed approach supports software engineering,

reverse engineering, and reengineering tasks by adding the
features to its process and classifying them in a way that will
enhance versioning process.

Big systems that require VCSs, like operating systems,
enterprise systems, multi-agent systems and others may highly
take advantages by using this approach.

C. Comparisons with Similar Works
Since the presented approaches is a modeling technique for

the versioning process, its comparison with others relevant
works [3], [5], [8], [14], [15] will be based on specific
versioning criteria. The selected criteria are:
• Covered steps in software process. The proposed

approach and the work presented in [14], cover the design
and implementation phases. The works [3], [5] covered
the implementation step, while the work [15] covered
only the design phase.

• Mixing feature and versioning concepts. In the presented
work, mixing feature and versioning concepts was
achieved by extending versioning concepts with feature
concepts to produce features-based model. This step was
missed in [3], [5], [15]. Kacper et al. [14] presented two
separated models and concepts for versioning and features
models.

• Supporting approach. The proposed approach supports
configuration’s methodology and a design pattern that is
applicable for any system to create versions based on pre-
defined features. But this step was not covered by any of
the presented researches. Configurations were carried out
individually without any formal way.

• Using reduced number of concepts and having a uniform
semantics. In the introduced approach, we reduced the
number of concepts that may be used in each
configuration process by classifying the features into
global, control and configuration ones and defining their
syntax and semantics. This step is very important in large
systems where versions number is very huge and
configuration’s time is important. This step was missed in
[5, 14] and partially applied in [3, 15].

• Enhancing Software product Line (SPL) area. This step
has a nature relation with the previous one. SPLs will be
enhanced by features-based configuration model that has
been defined using strong syntax and semantics and using
reduced number of concepts to produce system versions.

IV. CONCLUSIONS
In this paper, we presented a features-based model and

approach for the configuration process. We classified the
features that may be used in any system based on their
functionalities into Global, Control, and configuration
features. These features capture all possible versions based on
the relations and derivative features that result from
combining them together in system version or release. The
process of configuring new versions, based on user-defined

V_Speci >> version specification
R_Vers >> Requested version
V_Config >> version configuration
V_Repo >> versions repository.

V_Speci null;
R_Vers null;
V_Config null;

For each user_requirements for any version

V_Speci {feat1, feat2, ….,featn};
 Create Features Meta-Model;
 Create Assets Meta-Model;
 Create Features Model;

Check V_Repo
If(Version(V_Speci)) exists Then

R_Vers Copy of Version(V_Speci).Config;
Else

 Check feat.control;
 V_Config feat.control. derivative;
 End If
 For each feat in V_Speci
 Check feat.global;
 V_Config feat.global. derivative;
 End
 Foreach feat in V_Speci
 Check feat.derivative.control;
 V_Config feat.derivative.control. derivative;
 End

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1016

features (specifications), is automatically carried out.

REFERENCES
[1] Ba, M.L., A. Talel, and S. Pierre, Uncertain version control in open

collaborative editing of tree-structured documents, in Proceedings of the
2013 ACM symposium on Document engineering. 2013, ACM:
Florence, Italy.

[2] Bauml, J. and P. Brada. Automated Versioning in OSGi: A Mechanism
for Component Software Consistency Guarantee. in Software
Engineering and Advanced Applications, 2009. SEAA '09. 35th
Euromicro Conference on. 2009.

[3] Gomez, V.U., S. Ducasse, and T. D'Hondt, Visually characterizing
source code changes. Science of Computer Programming, 2013(0).

[4] Jiang, Z., How to give away software with successive versions. Decision
Support Systems, 2010. 49(4): p. 430-441.

[5] Lindkvist, C., A. Stasis, and J. Whyte, Configuration Management in
Complex Engineering Projects. Procedia CIRP, 2013. 11(0): p. 173-176.

[6] Rochkind, M.J., The source code control system. IEEE Transactions on
Software Engineering, 1975. 1(4): p. 364–370.

[7] Sink, E., Version Control by Example, ed. B. Finney. July 2011:
Pyrenean Gold Press.

[8] Buchmann, T., A. Dotor, and B. Westfechtel, MOD2-SCM: A model-
driven product line for software configuration management systems.
Information and Software Technology, 2013. 55(3): p. 630-650.

[9] Jannik, L., et al., Supporting simultaneous versions for software
evolution assessment. Science of computer programming 2011. 76(12):
p. 1177-1193.

[10] Marc Novakouski, G.L., William A,nderson and Jeff Davenpor, Best
Practices for Artifact Versioning in Service-Oriented Systems in SEI
Administrative Agent T. Research, and System Solutions Program,
Editor. 2012, Carnegie Mellon University.

[11] Laskey, K. Considerations for SOA Versioning. in Enterprise
Distributed Object Computing Conference Workshops, 2008 12th. 2008.

[12] Ola Younis, S. Ghoul, and M. Al Omari, Systems variability modeling:
A Textual model mixing class and feature concepts. International
Journal of Computer Science & Information Technology (IJCSIT),
2013. 5(5): p. 127-139.

[13] Don, B., Feature models, grammars, and propositional formulas, in
Proceedings of the 9th international conference on Software Product
Lines. 2005, Springer-Verlag: Rennes, France.

[14] Kacper, B., Clafer: a unifed language for class and feature modeling.
2010.

[15] Sunkle, S.G.S., rbFeatures: Feature-oriented programming with Ruby.
Science of Computer Programming, 2012. 77: p. 152-173.

[16] V. T Sarinho, A.L.A.E.S.d.A., OOFM - A feature modeling approach to
implement MPLs and DSPLs, in EEE 13th International Conference on
Information Reuse and Integration (IRI). 2012, IEEE.

