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Abstract—Systems running these days are huge, complex and 

exist in many versions. Controlling these versions and tracking their 
changes became a very hard process as some versions are created 
using meaningless names or specifications. Many versions of a 
system are created with no clear difference between them. This leads 
to mismatching between a user’s request and the version he gets. In 
this paper, we present a system versions meta-modeling approach that 
produces versions based on system’s features. This model reduced 
the number of steps needed to configure a release and gave each 
version its unique specifications. This approach is applicable for 
systems that use features in its specification. 
 

Keywords—Features, Meta-modeling, Semantic Modeling, SPL, 
VCS, Versioning. 

I. INTRODUCTION 
O legacy system may be used without modifying, 
changing, updating or replacing some part of it. Tracking 

these changes requires system to control them and enable 
storing and retrieving past versions [1]. Version control 
systems (VCSs) [1]-[5] is the best approach to guarantee 
system versioning consistency; since it provides user 
feedbacks and work history for any development or change. 
Without VCSs, the control of systems versioning and 
development is very hard process and errors prone. From the 
very beginning of version control systems the developers 
determine the relations between current versions and the new 
ones created [6]. 

VCSs main goals are to support system developers to work 
concurrently, insuring that their changes are consistent with 
each other and finally, to store any changes in a history 
archive [7]. These systems can be classified based on the 
working techniques [1]-[4], [7]-[9] into two types: Concurrent 
Versioning Control Systems (CVCSs) and Centralized 
Versioning Control Systems (CVCSs). 

Nowadays, systems became more complicated and forked. 
Several versions with several descriptions and details are 
included in each one. For firms, in order to present a new 
version for their product, they build the new name based on 
the latest version name for the product [9]. Like V1.3.1, 
V1.3.2. For end user, having a lot of versions names and 
numbers makes the selection for a suitable version a very hard 
and confused process[10]. Which version to choose? Which 
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features does this version include? What are the relations 
between the versions? and many other questions. 

Laskey in his work [11] reported that version identifier 
(number or name) should be interpretable to reflect some of 
version’s main features and structure. Version’s identifier 
interpretation include understanding the functionality and use 
for each version in order to increase its usability [11]. Another 
challenge, reported in [10], is the vibration effect of change. 
To approve any new change or development for the product, 
the developer should schedule the change process to guarantee 
system consistency during its development [10]. Several other 
challenges were reported in [1], [2], [4], [7], [10], [11]. 

This paper deals with the following challenges: (1) Several 
version identifiers for each product without a clear 
methodology for identifier building, (2) lack of version’s 
identifier interpretations, and (3) lack of change schedule to 
guarantee system consistency during the version 
configuration. 

Enterprise systems in complex organizations support large 
number of different components and are composed of multiple 
units and variant areas of interests; hence, these systems have 
to control all processes, reports, and versions configuration. 
Thus, each unit may have several possible values to cover. 
The sources for these values are different: domain analysis, 
stockholders’ needs, system evolution and so many other 
sources [12]. The ability of a system to be generalized, 
specialized or customized to perform special needs is the base 
for new versions to be created based on system’s main 
features [12].  

One way to deal with system’s units and components and 
identifying them is the use of features that are defined for the 
whole system [13]. System features are defined in a feature 
diagram showing the parent feature and its children using 
relations like OR, AND, INCLUDE, EXCLUDE, and many 
other relations [8], [12], [13].  

Researchers presented feature modeling in three 
approaches: Graph notations based, Text notations based, and 
Mixing graph and text based approaches [12]. These 
approaches are classified based on the technique used to 
capture system’s main features and functionalities. Each 
approach has its strength and weakness points.  

Feature modeling used to describe system’s common and 
variable components [12]. Common features present the 
constant behavior for system components. while variable 
features present the behaviors that change due to problem 
context and use the optional features to present it [8], [12], 
[13]. Using feature modeling increase system reusability and 
efficiency [12], since it shows the main components in a 
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version with user’s specifications. 
• Versions repository: a directory that contains versions that 

have been done previously by the system. A copy or 
pointer for each version (including all its features, 
relations and any other resources) is stored.  

Fig. 5 presents a pseudo code model of the full approach for 
any request from the users. 

 

 
Fig. 5 Features-based framework 

 
Based on this approach and features-based model presented 

in the previous section, each version holds a meaningful 
semantics based on the features it includes. This step will 
enhance version systems and simplify the process of change 
tracking and versions classifications. 

III. EVALUATION AND PERSPECTIVES 
In this section, we introduce the implementation issues of 

the proposed approach, its application areas, and its technical 
comparison with others relevant works. 

A. Implementation Issues 
Any environment that may use our model needs a strong 

object-oriented and feature oriented programming languages. 
All mentioned features have to be implemented in classes and 
objects environment to be used later in each configuration 
version. 

Each configuration version is an object instantiation 
based of the classes and relations between them that are 
defined based on the features and their relations. 

B. Application Area 
The proposed approach supports software engineering, 

reverse engineering, and reengineering tasks by adding the 
features to its process and classifying them in a way that will 
enhance versioning process. 

Big systems that require VCSs, like operating systems, 
enterprise systems, multi-agent systems and others may highly 
take advantages by using this approach. 

C. Comparisons with Similar Works 
Since the presented approaches is a modeling technique for 

the versioning process, its comparison with others relevant 
works [3], [5], [8], [14], [15] will be based on specific 
versioning criteria. The selected criteria are:  
• Covered steps in software process. The proposed 

approach and the work presented in [14], cover the design 
and implementation phases. The works [3], [5] covered 
the implementation step, while the work [15] covered 
only the design phase. 

• Mixing feature and versioning concepts. In the presented 
work, mixing feature and versioning concepts was 
achieved by extending versioning concepts with feature 
concepts to produce features-based model. This step was 
missed in [3], [5], [15]. Kacper et al. [14] presented two 
separated models and concepts for versioning and features 
models. 

• Supporting approach. The proposed approach supports 
configuration’s methodology and a design pattern that is 
applicable for any system to create versions based on pre-
defined features. But this step was not covered by any of 
the presented researches. Configurations were carried out 
individually without any formal way. 

• Using reduced number of concepts and having a uniform 
semantics. In the introduced approach, we reduced the 
number of concepts that may be used in each 
configuration process by classifying the features into 
global, control and configuration ones and defining their 
syntax and semantics. This step is very important in large 
systems where versions number is very huge and 
configuration’s time is important. This step was missed in 
[5, 14] and partially applied in [3, 15]. 

• Enhancing Software product Line (SPL) area. This step 
has a nature relation with the previous one. SPLs will be 
enhanced by features-based configuration model that has 
been defined using strong syntax and semantics and using 
reduced number of concepts to produce system versions. 

IV. CONCLUSIONS 
In this paper, we presented a features-based model and 

approach for the configuration process. We classified the 
features that may be used in any system based on their 
functionalities into Global, Control, and configuration 
features. These features capture all possible versions based on 
the relations and derivative features that result from 
combining them together in system version or release. The 
process of configuring new versions, based on user-defined 

V_Speci >> version specification 
R_Vers >> Requested version 
V_Config >> version configuration 
V_Repo >> versions repository. 
 
V_Speci  null; 
R_Vers  null; 
V_Config  null; 
 
For each user_requirements for any version 
 

V_Speci  {feat1, feat2, ….,featn}; 
     Create Features Meta-Model; 
     Create Assets Meta-Model; 
     Create Features Model; 
      

Check V_Repo 
If( Version(V_Speci)) exists Then  

R_Vers Copy of Version(V_Speci).Config; 
Else 

         Check feat.control; 
         V_Config feat.control. derivative;  
     End If 
     For each feat in V_Speci 
       Check feat.global; 
      V_Config feat.global. derivative;  
    End 
    Foreach feat in V_Speci 
       Check feat.derivative.control; 
       V_Config feat.derivative.control. derivative;  
   End 
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features (specifications), is automatically carried out. 
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