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System Identification Based on Stepwise Regression
for Dynamic Market Representation

Alexander Efremov

Abstract—A system for market identification (SMI) is presented.
The resulting representations are multivariable dynamic demand
models. The market specifics are analyzed. Appropriate models and
identification techniques are chosen. Multivariate static and dynamic
models are used to represent the market behavior. The steps of the
first stage of SMI, named data preprocessing, are mentioned. Next,
the second stage, which is the model estimation, is considered in more
details. Stepwise linear regression (SWR) is used to determine the
significant cross-effects and the orders of the model polynomials. The
estimates of the model parameters are obtained by a numerically sta-
ble estimator. Real market data is used to analyze SMI performance.
The main conclusion is related to the applicability of multivariate
dynamic models for representation of market systems.

Keywords—market identification, dynamic models, stepwise re-
gression.

I. INTRODUCTION

AN accurate representation of the relation between the
retailers actions and the sales reaction predetermines

the efficiency of many retailers activities. The estimation
of the future demand is using by the retailers to make
decisions regarding their promotion strategy, shelf-space al-
location, products display, advertisements, coupon systems,
etc. The paper is focused on the identification of market
systems, more precisely supermarket and hypermarket chains.
The specifics of these systems are analyzed in order to choose
appropriate mathematical representations as well as the data
mining techniques, which have to be included in SMI.
The reaction of investigated market systems is naturally
dynamic especially with respect to factors like promotions
and advertisements. In general, the customers performance
is changing in time after applying of promotions. Normally,
the initial reaction (an increase of product sales) is followed
by a decreased demand, due to the process of overstocking,
or loosing of customers interest. Possibly this is one of the
reasons for the increased number of attempts within the last
years to obtain more accurate demand representations by using
of dynamic models [1], [2], [3]. To present the effect of
modeling the dynamic aspect of the market, the accuracy of
static and dynamic models, generated by SMI is observed in
section V-B. The experiment is based on real data, published
in Internet (see subsection V-A).
Usually the hypermarket chains consist of hundred thousands
of products. Furthermore a set of actions is associated with
each product. Hence the overall input-output dimension of
these multiple input multiple output (MIMO) systems is ex-
tremely large. It is impossible to apply manual actions during
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the identification, so the process of obtaining an overall de-
mand model should be performed without human intervention.
This is one of the requirements imposed on SMI.
The problem for single MIMO model estimation becomes
unfeasible when the input-output dimension is huge. Thus
the system should be decomposed into subsystems, which are
considered independently during the identification. For that
reason SMI generates sets of multiple input single output
(MISO) static or dynamic demand models (see section II).
Each set of models represents a particular product category.
Another important specific of the market system is the non-
linear relation between the dependent and the independent
characteristics. Different models are used [4] in order to
account for this non-linearity. One of the most frequently
used models are the linearly parameterized representations
(such as log-log and semi-log models). They are linear with
respect to the parameters but the relation between the depen-
dent characteristic and the factors is in general non-linear.
The transformations, applied to the data are mentionned in
subsection III-C.

II. MARKET MODELS

To make the modeling process feasible, when the input-
output data is related to tremendous number of products, the
system is decomposed into product categories. Let a given
category contains r products and m retailers actions are
associated with these products. MIMO static and dynamic
representations of the relation between the dependent variable
and the available factors are considered below. The MIMO
static regression model is

yk = Bq−1uk + ek, (1)

where uk ∈ Rm, yk ∈ Rr and ek ∈ Rr are vectors containing
the input, output data and the residual respectively at the k-
th time instant. The matrix B ∈ Rr×m contains the model
parameters. The operator q−i introduces a delay of i time
periods (i.e. q−iuk = uk−i ). Usually the time period of the
considered systems is one week. The introduced delay of one
period in (1) is necessary as the market system is naturally
discrete. Therefore the effect of the retailers actions on the
product sales is observed at least one week after the execution
of uk.
One of the simplest dynamic regression models, applied
widely in practice is the Auto-Regressive model with eXoge-
nous input (ARX). The MIMO-ARX model is

A
(
q−1
)
yk = B

(
q−1
)
uk + ek, (2)

where A(q−1) ∈ Rr×r
na

(q−1) and B(q−1) ∈ Rr×m
nb

(q−1)
are polynomial matrices. To simplify the explanation will be
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assumed that all polynomial orders are na,�i = nb,�j = n for
�, i = 1, r and j = 1,m. The polynomial matrices in (2) can
be defined as

A
(
q−1
)
= Ir +A1q

−1 + . . .+Anq
−n,

B
(
q−1
)
= 0r×m +B1q

−1 + . . .+Bnq
−n.

The first term in B(q−1) is a zero matrix to account for
the one week delay, as discussed earlier. One way to per-
form the modeling process is to estimate simultaneously the
parameters of all polynomials in A(q−1) and B(q−1). The
models are linear with respect to the parameters. Therefore
the parameters can be easily separated from the regressors and
their optimal estimates to be determined analytically. There
are two ways to obtain such presentation from the above
MIMO models. One way is all parameters to be gathered
in a matrix. As yk is a vector, the regressors should be
collected in a vector as well [5]. The main disadvantage of
this representation is that the explanation of each component of
yk is obtained by the same set of factors and the polynomials
degrees should be na,�i = na and nb,�j = nb. Hence non-
significant independent characteristics and unnecessarily high
model orders would be used to represent some components of
yk. The mentioned requirement about the model structure is
not practically grounded. The other way to present the MIMO
system is to combine the model parameters in a vector, but
the regressors to be collected in a matrix [6]. Here the above
disadvantage is avoided. The set of factors representing each
dependent variable and the polynomials degrees can vary. This
makes the second approach more suitable for identification of
MIMO linear systems.
In practice, the number of products in a single category may
grow to few thousands [7], which is in fact the dimension of
yk. On the other hand, the vector uk has a few or several times
larger dimension than yk. This is the reason to decompose
each product category into MISO systems. To obtain their
representations, the models (1) and (2) are divided into r
MISO models of the form

y�,k = B�.

(
q−1
)
uk + e�,k (3)

for static and

A�.

(
q−1
)
yk = B�.

(
q−1
)
uk + e�,k (4)

for dynamic models. A�.(q
−1) and B�.(q

−1) are the �-th
rows of A(q−1) and B(q−1). Let p is the total number of
parameters/factors in the last two models and N is the number
of observations. The models (3) and (4) can be presented
in a universal form by collecting the regressors in a vector
ϕ�,k ∈ Rp and the parameters in a vector θ� ∈ Rp. At the
k-th time instant (k = 1, N ) for (3) and (4) holds

y�,k = ϕT
�,kθ� + e�,k. (5)

The intercept is omitted, because of the preprocessing tech-
nique, discussed in subsection III-E. To simplify the next
expressions the index � of the current MISO model will be
skipped. As it is seen from (3), the factors of a MISO static
model are the p own and cross products retailers actions uj,k−1

(for j = 1,m, p = m), applied in the beginning of each time

period. For dynamic models of type (4) from order n, the
regressors are the previous negative own and cross product
dependent variables −yi,k−d (for i = 1, r), and the previous
actions uj,k−d (for j = 1,m). The time shift is d = 1, n.
Hence the total number of factors in (4) is p = n(m + r).
Note that SWR algorithm determines a subset of significant
factors and the real number of factors p′ is in general less than
or equal to m for model (3) and p′ ≤ n(m+r) for model (4).
Regardless of the models type (static or dynamic), the repre-
sentation (5) for the whole data sample can be written as

y = Φθ + e. (6)

The vectors y, e ∈ RN and the data matrix Φ ∈ RN×p are

y = [y1 . . . yN ]
T
, e = [e1 . . . eN ]

T
, Φ = [ϕ1 . . . ϕN ]

T
.

This notation is used in the next sections, to present the imple-
mented numerically stable estimator and the SWR procedure.

III. DATA PREPROCESSING

The appropriate data preparation before the modeling stage
may increase significantly the models accuracy. The prepro-
cessing techniques used in SMI are discussed below.

A. Short Sample Window and Uninformative Factors

The first restriction imposed on the data is connected with
the length of the sample window. All products, which are on
the market for a period, less than Nmin (the parameter Nmin

is assigned before to run SMI) are not included in the demand
model. An important property of the signals is the persistency
of excitation. If for instance a given factor is constant or almost
constant for the observation interval, it is not appropriate for
modeling. A persistency of excitation check is applied to all
available factors. The inappropriate factors are removed.

B. Missing and Unrealistic Records

It is normal the data samples to contain missing records.
Furthermore, as the multivariable models account for cross-
products relations, all observations associated with a category
has to be aligned with respect to the weekly data points.
Usually the first/last week of appearance of the products on
the market is different. Hence an additional source of missing
data is the alignment of the observations.
First step in the discussing preprocessing technique is to
determine the baseline prices and sales. These processes are
derived from the available prices and sales. To obtain the
baseline price pb,k for a given product at the k-th time
instant, a weighted moving average is applied to the price pk.
The resulting process pf,k = 1

Nα,k

∑c
i=−c αk+ipk+i (where

Nα,k =
∑c

i=−c αk+i) is used in the recursive rule

pb,k =

{
pk, for |pf,k − pk| < |pf,k − pb,k−1|,
max (pk, pb,k−1) , otherwise.

The weights αk are formed such that the spikes in the price
(mostly due to promotions) are penalized with a lower weight.
The baseline sales sb,k are determined by using of the
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weighted moving average sf,k = 1
Nβ,k

∑c
i=−c βk+isk+i. The

weights βk are formed in a similar way as αk, but with respect
to the spikes in the sales. The process sf,k is used in the rule

sb,k =

{
sk, for |sf,k − sk| < |sf,k − sb,k−1|,
min (sf,k, sb,k−1) , otherwise.

Once pb,k and sb,k are obtained, the unrealistic or missing
records can be approximated. In these cases it is assumed that
the regular actions are applied. More precisely the correspond-
ing price is replaced with pb,k, the sales with sb,k, the discount
is set to zero and it is assumed that no specific ads and displays
are applied on the market.

C. Data Transformation

There are different ways to account for the non-linear
relation between the dependent and the independent charac-
teristics. Different non-linear transformations were applied on
the data and the resulting models accuracy was checked. The
transformation, which maximizes the model precision is the
natural logarithm applied on the products’ prices. The results
in subsection V-B are obtained by using of this transformation.

D. Weight Factor Determination

All values, which are introduced on the place of the un-
realistic or missing records have to be taken with a lower
weight, during the determination of the model parameters.
For this reason a weight factor wk is used. To determine wk,
an additional vector wy ∈ RN and matrix wf ∈ RN×p are
introduced. The k-th element of wy is zero if the dependent yk
before the preprocessing stage is unrealistic or missing (keep
in mind that the index � is omitted and yk ∈ R). Otherwise
wy,k = 1. Similarly the element wf,ki = 0, if the value of
the i-th factor at the k-th time instant is introduced by the
logic, discussed in subsection III-B. Otherwise wf,ki = 1. A
possible way to determine the weight factor by using of wy

and wf is

wk =

(
wy,k

p

p∑
i=1

wf,ki

)2

(7)

If the dependent and all factors at the k-th time instant are
available in the initial dataset, wk = 1. On the other hand,
if yk and/or all factors are not available in the initial dataset,
wk is zero. And finally, if yk is not missing or unrealistic,
but some of the entries of ϕk are added by the procedure,
explained in subsection III-B, wk is between zero and one.
The weight factor decreases with decreasing the number of
reliable values in ϕk. A further penalty of the records, when ϕk

contains values, introduced by the SMI algorithm, is obtained
by raising the expression on the right hand side of (7) on
power 2.

E. Data Normalization

The final data preprocessing in SMI is to normalize all
factors and the dependent variable as

ϕi,k ← ϕi,k − ϕ̄i

σϕi

, for i = 1, p and yk ← yk − ȳ

σy
, (8)

where ϕ̄i and σϕi
are the weighted mean and standard

deviation of the i-th factor and ȳ and σy are the dependent
weighted mean and standard deviation.
After the performance of SWR, the resulting model parameters
have to be denormalized. As a result, the parameter vector of
the final model, which can be used to forecast the demand, has
to be expanded with an additional term, which is the intercept.

IV. MODELING STAGE

A. Parameter Estimation

The weighted least squares (WLS) method is used to esti-
mate the model parameters. The cost function f(θ), minimized
in WLS is the weighted residuals sum of squares. Let w ∈ RN

contains all weights wk and the matrix W = diag(w). Using
the notation introduced in section II, the criterion can be
written as

min
θ

f (θ) = min
θ
||y − Φθ||2W .

The estimate of the parameter vector, which minimizes f (θ)
can be computed as

θ̂ =
(
ΦTWΦ

)−1
ΦTWy. (9)

The covariance matrix is the inverse of the information matrix
ΦTWΦ. The matrix inversion may lead to significant loss of
precision if Φ has linear or almost linear dependent columns.
To decrease the effect of the possible multicollinearity, the
matrix W 1/2Φ is decomposed by the economic Singular Value
Decomposition (SVD)

W 1/2Φ = UΣV T . (10)

The square diagonal matrix Σ contains the singular values σi,
arranged in descending order

σ = σ1 ≥ σ2 ≥ . . . ≥ σp = σ.

To limit the numerical errors due to the inversion, a subset of
only significant σi is chosen and the decomposition becomes

W 1/2Φ = [U1 U2]

[
Σ1 0
0 0

] [
V T
1

V T
2

]
= U1Σ1V

T
1 . (11)

Thus, using SVD, the estimated vector θ̂ becomes

θ̂ = V1Σ
−1
1 UT

1 W 1/2y. (12)

This equation is used in the backward elimination of SWR,
considered in the next section.

B. Stepwise Linear Regression

This method [9] employs series of F -tests to check the
significance of the factors sequentially added to a linear
regression model. In addition the significance of all factors
already in the model is re-examined, once a new factor has
been added. If non-significant factors are detected, they are
removed from the model.
The modeling stage of SMI is connected with repeatedly run
of the SWR procedure. Furthermore SWR is iterative and is
related to an examination of a set of models. To increase
the efficiency of SWR, the covariance matrix is partitioned
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into sub-matrices and a technique for inversion by partitioning
[8] is applied in the forward selection step. This technique
provides a way for calculation of the parameters estimates
without a direct matrix inversion at each iteration. In this way
the computational burden decreases drastically.
The following three sets of factors are used below to present
the SWR algorithm. Si is the set of i factors, taking part in
the current model. S+j

i is the set obtained by adding the j-th
factor ϕj,k to Si (S+j

i contains i+ 1 factors). S−j
i is the set

obtained by removing of ϕj,k from Si (S−j
i has i−1 factors).

The three ANOVA measures: the total sum of squares (SST),
the regression sum of squares (SSR) and the residual (error)
sum of squares (SSE) are used for the calculation of two
F -ratios. They are necessary to assess the significance of
the factors at each step of SWR. (Note that the ANOVA
measures depend on w, as the weight factor is introduced in
the identification scheme.) Let the current model has i factors
and the j-th (not entered) factor is tested for significance. The
residual and regression mean squares are

MSES+j
i

=
1

N ′ − i− 1
SSES+j

i
, MSRS+j

i
=

1

i+ 1
SSRS+j

i
,

where N ′ =
∑

c wk. Let also TIISSS+j
i

= SSRS+j
i
− SSRSi

is the type II sum of squares for the case, when add the
j-th factor to a model with i factors. For linear regression

models the ratios Fo =
MSR

S
+j
i

MSE
S
+j
i

= N ′−i−1
i+1

SSR
S
+j
i

SSE
S
+j
i

and

Fp = N ′−i−1
1

TIISS
S
+j
i

SSE
S
+j
i

have theoretical F-distribution with

(i + 1, N ′ − i − 1) and (1, N ′ − i − 1) degrees of freedom
(keep in mind that the intercept is omitted). Fo and Fp are
the overall and the partial F -ratio respectively. Fo is used in
the statistical analysis to test the hypothesis θ = 0i+1 where
0i+1 ∈ Ri+1 (i.e. if there is a linear relation between the
factors and the dependent variable). Fp is used to determine
whether a given factor has to be added or removed from the
current model.
From section II it is easy to see that the static model (1) is a

Fig. 1. SWR procedure for the �-th MISO dynamic model.

particular case of the dynamic model (2). For this reason SWR
algorithm is explained below for the dynamic case. Figure 1
presents the basic idea of this modeling technique.
Step 1. Initialization
In order to determine the first (single factor) model, the most
significant factor ϕs1,k has to be isolated. For all factors the
candidate models

y = ΦS+j
0
θ + ej for j = 1, p (13)

are investigated. At this step all unknown models parameters
are θ ∈ R and the data matrices are ΦS+j

0
← Φ.j . With Φ.j

is denoted the j-th column of Φ. The partial F ratios

F+j
p =

N ′ − 1

1

TIISSS+j
0

SSES+j
0

, for j = 1, p (14)

are computed. Here the type II sum of squares is TIISSS+j
0

=

SSRS+j
0

. The p sets S+j
0 , related to the candidate models,

contain only one factor. Let ϕs1,k results in F+s1
p , which is the

maximum partial F -ratio and hence the corresponding p-value
p+s1
p is the minimal one. A significance level to enter is used

in SWR to restrict the number of factors entering in the model.
It is defined with the parameter SLE ∈ [0, 1] (SLE = 0.05 by
default). If p+s1

p ≤ SLE, the related model with parameter
estimate θ̂ is assumed to be the current best model. Otherwise
the SWR procedure is terminated.
Step 2. Forward selection
Let the current best model contains i factors with indexes s1,
s2, ..., si. The set of entered factors in the model is Si. For
all p − i remaining (not entered) factors are investigated the
models

y = ΦS+j
i
θ + ej for j = 1, p, j �= s1, s2, ..., si. (15)

The unknown parameter vectors are θ ∈ Ri+1 and the data
matrices are ΦS+j

i
← [Φ.s1 ... Φ.si Φ.j ]. The set of factors of

the j-th model is S+j
i . For each candidate model, the partial

F -ratios

F+j
p =

N ′ − (i+ 1)

1

TIISSS+j
i

SSES+j
i

, (16)

are calculated. The type II sum of squares is TIISSS+j
i

=
SSRS+j

i
− SSRSi

. Let at the current step of SWR, the factor
ϕsi+1

introduced in the model leads to the maximum value
F

+si+1
p from all p − i partial F -ratios. If the corresponding

p-value is p
+si+1
p ≤ SLE, the related model is assumed to be

the current best model.
Step 3. Backward elimination
A normal situation is to exist a certain level of multicollinearity
between the factors. Hence after entering a new factor in the
model, the significance of the previously entered factors is
changing. Therefore after the forward selection, the signifi-
cance of all factors should be re-investigated. To examine the
informativeness of the entered factors, all possible models,
obtained by removing of one factor, are estimated. Let the
initial model in the backward elimination contains i+1 factors.
Then the candidate models with i factors are

y = Φ
S

−sj
i+1

θ + ej for j = 1, i+ 1, (17)

where the parameter vectors in this case are θ ∈ Ri and the
data matrices are Φ

S
−sj
i+1

← [
Φ.s1 ... Φ.sj−1

Φ.sj+1
... Φsi+1

]
.

The set of variables of the j-th model is S
−sj
i+1 . For each

candidate model, the partial F -ratio

F−sj
p =

N ′ − i

1

TIISS
S

−sj
i+1

SSE
S

−sj
i+1

(18)
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is calculated. Here TIISS
S

−sj
i+1

= SSRSi+1
− SSR

S
−sj
i+1

. Let at
the current step of SWR the factor ϕsj leads to the minimum
value F

−sj
p of the partial F -ratios. A significance level to

stay is used in SWR to restrict the number of factors leaving
the model at the backward elimination step. This restriction
is defined with the parameter SLS ∈ [0, 1] (SLS = 0.05 by
default). If the corresponding p-value is p

−sj
p ≥ SLS, the

related model with a reduced dimension is assumed to be the
current best model.
The steps 2 and 3 are repeating until the set of factors out of
the model contains only non-significant factors and all entered
factors in the model are significant.
There is an additional stopping rule, which is used in SWR.
It is introduced to avoid a generation of overfitted models.
Different criteria for selection of the model structure are avail-
able, which account for the dimension of θ̂. Popular criteria
in statistics are the Akaike Information Criterion (AIC) [10],
[11], the Bayesian Information Criterion (BIC) or Schwarz
Criterion, the Minimum Description Length (MDL) [10], [12],
Final Prediction Error (FPE) [13], etc. These criteria include
an additional penalty of the cost function, and have extremum
with respect to i = dim(θ̂). A further increase of dim(θ̂), after
the extremum, is connected with possible model overfitting.
The mentioned criteria provide reliable assessment of the
overfitting for large datasets (N � 1). But usually the sample
windows of the investigated market systems have short length
(keeping in mind that the observations are collected weekly).
There are modifications of the above criteria for short datasets,
such as corrected AIC (AICc) and corrected MDL [10]. With
increasing of N , AICc converges to AIC, which makes AICc

appropriate for moderate and large datasets as well. The
criterion AICc is used in SMI as an additional restriction on
the number of entered factors in the models. It has the form

AICc =
1

N ′ SSE e2
i+1

N−i−2 (19)

The iterative SWR procedure is terminating when AICc
S+j
i
≥

AICc
Si

, where the above criteria are obtained from two succes-
sive and consecutive forward selection steps. The model with
i factors is chosen as a final model. If a factor is dropped from
the model during a backward elimination step, the above rule
is not checked and SWR continues.

V. SMI PERFORMANCE

A. Data Description and Experimental Scenario

The performance of SMI is investigated by experiments
with a real-life data. For this purpose a database of a large
western supermarket chain, the Dominick’s Finer Foods, is
used. The data is provided by the James M. Kilts Center,
GSB, University of Chicago. It is published at the University’s
website1. The overall dataset contains information about 29
product categories throughout the stores in the chain. The
products in the dataset are distinguished by their unique
universal product code (UPC). The data consists of weekly
observations of the sales, retail prices and an indication of

1The Dominick’s database is publicly available at the University of Chicago
website: http://research.chicagogsb.edu/marketing/databases/dominicks/

the promotion activities. A subset of four product categories
collected from sixteen stores are used in this paper. The chosen
sample covers almost four-year period (199 weeks).
SMI is used for generation of two sets of models, based on
this data sample. The first set contains MISO static regression
models of type (3). The second set is of MISO dynamic
models of type (4). Both experiments are run under the same
conditions. The thresholds SLE and SLS, discussed in the
previous section are SLE = SLS = 0.15. These levels are not
so restrictive with respect to the informativeness of the entered
and dropped factors from the models. The main restriction
in the SWR algorithm, imposed on the number of factors is
related to the possible overfitting of the models, discussed in
the previous section.
The minimum models order, providing the ability to represent
both aperiodic and oscillating processes is 2. For this reason
the maximum dynamic models order is n = 2.
The following measures of the models accuracy are observed.
The coefficient of determination R2 is a measure of the close-
ness between the models and the real system performance. It
is computed as

R2 =
SSR

SST
. (20)

In the next subsection R2 and the adjusted coefficient of
determination

R2
adj = 1− (1− R2

) N ′ − 1

N ′ − i
(21)

are shown. As it was mentioned earlier the ANOVA measures
depend on the weight factor w. In this case R2 and R2

adj

are more accurate estimates of the models accuracy, as they
are most sensitive with respect to the data when all input-
output observations are available. On the other hand their
sensitivity decreases, if some factors are missing or have
unrealistic values. In the limited case, when all factors and/or
the dependent are not initially available, R2 and R2

adj are
not sensitive to the subsequently introduced values by SMI.
These statistics and the overall F -ratio are presented in the
next subsection.

B. Results

The average values of the statistics for all stores, included
in the data set are shown on table I. A graphical comparison

TABLE I
AVERAGE STATISTICS FOR THE STATIC AND DYNAMIC MODELS

Product category Average values for all stores in the data set
p̄ R̄2 R̄2

adj

static models
Cereals 4.98 0.21 0.20
Cheeses 6.08 0.20 0.19
Frozen Entrees 3.70 0.12 0.11
Refrigerated Juices 6.39 0.17 0.15

dynamic models
Cereals 10.00 0.41 0.38
Cheeses 11.74 0.35 0.31
Frozen Entrees 7.16 0.22 0.20
Refrigerated Juices 12.13 0.32 0.28

of the models accuracy, obtained by SMI is given on figure 2.
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To obtain more readable plot, the models are rearranged with
respect to R2

adj , obtained for the static models.

Fig. 2. R2
adj for all static (dashed) and dynamic (solid) models.

Another result, representing the SMI performance is the time,
spent for the demand models development. To generate the set
of 1155 static models SMI has spent 15 min on a computer
system with CPU 2.8GHz, RAM 1GB (SMI is developed on
Matlab 7.7). On the other hand the dynamic demand models
are obtained for 51 min.

VI. CONCLUSION AND FURTHER IMPROVEMENTS

From the results can be concluded that the SWR algorithm
succeeds to gather appropriate sets of factors for the dynamic
models. The usage of such models leads to significantly better
approximation of the system behavior than the static models.
When introduce the dynamic terms in the demand representa-
tions, according to R2

adj , the average models precision for all
1155 models increases with 14%.
As it is expected the development time for dynamic models is
greater (3.4 times) than the time spent for the static models.
As now-a-day the computers have more than one cores, the
time for identification can be decreased significantly. This
can be obtained by parallelizing the procedures, discussed in
the paper. The SWR is the most time consuming procedure.
Fortunately the nature of this modeling algorithm allows it
easily to be parallelized.
The seasonality is a typical characteristic of the market sys-
tems. A further improvement of SMI can be achieved by
assessing the possible seasonal component in the data. The
same is the situation with the linear trend.
The considered identification is based on the MISO-ARX
models. If the residual is a color noise, more appropriate MISO
models are ARMAX, ARARX, etc. Better approximation can
be achieved by using of prediction error estimators.
In many cases the categories dimension allows to use MIMO
regression models. This would further improve the efficiency
of SMI. State space identification would be useful as well,
when represents the market dynamics, as the system is multi-
variable.
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