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Synchronization for impulsive fuzzy

Cohen-Grossberg neural networks with time delays

under noise perturbation
Changzhao Li, Juan Zhang

Abstract—In this paper, we investigate a class of fuzzy Cohen-
Grossberg neural networks with time delays and impulsive effects.
By virtue of stochastic analysis, Halanay inequality for stochastic
differential equations, we find sufficient conditions for the global
exponential square-mean synchronization of the FCGNNs under
noise perturbation. In particular, the traditional assumption on the
differentiability of the time-varying delays is no longer needed.
Finally, a numerical example is given to show the effectiveness of
the results in this paper.
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I. INTRODUCTION

IN recent years, the well-known Cohen-Grossberg neural

networks [1] has been extensively studied due to their ex-

tensive applications in many fields such as pattern recognition,

computing associative memory, signal and image processing

and so on, see [2-5] for examples. In these applications,

stability of the model is prerequisite.

In reality, the uncertainty or vagueness is unavoidable. In

order to take vagueness into consideration, fuzzy theory is

considered as a suitable method. Fuzzy cellular neural network

(FCNN) was first introduced by Yang et al. in 1996 ([6]),

it combines fuzzy logic with traditional CNN. Studies have

shown the potential of FCNN in image producing and pattern

recognition. In such applications, it is very important to ensure

that the designed FCNN be stable. Some results on stability

have been derived for the FCNN (see [7-9] for more details).

In 1990, Pecora and Carrol [10] introduced a new concept-

synchronization of coupled chaotic systems to force the re-

sponse of the slave system to synchronize the master sys-

tem. The control and synchronization problems of chaot-

ic systems have been intensively investigated due to their

potential applications in various fields [11-16]. There are

several different master-slaver synchronization schemes which

have been described theoretically and observed experimentally.

These include complete synchronization (CS) [17], generalized

synchronization (GS) [18], lag synchronization (LS) [9,19,20],

anticipating synchronization (AS) [21], and so on.

Meantime, time delays occur so often in many processes,

even in almost every situation, that to ignore them is to ignore
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reality ([22]). On the other hand, many evolution processes are

characterized by the fact that at certain moments of time, they

experience a change of state abruptly, that is, in the form of

impulses. There are lots of results about synchronization of im-

pulsive delayed dynamic systems, one can see [7,9,12,23,24]

for more details.

Besides, noise is omnipresent in nature and in man-made

systems. And in the processes of applications, synchronizing

effect is influenced by noise unavoidably. Recently, the syn-

chronization of systems under noise perturbation has become a

field of great interests. In [25], by virtue of stochastic analysis,

Halanay inequality, complete synchronization is investigated

for impulsive delayed Cohen-Grossberg neural networks under

noise perturbation. In [26], based on the Lyapunov stability

theory, sufficient conditions on the exponential synchroniza-

tion are obtained for a class of stochastic perturbed chaotic

delayed neural networks with constant delay.

To the best of our knowledge, however, there are few results

for synchronization of impulsive fuzzy neural networks under

noise perturbation. So, in this paper, complete synchronization

of impulsive fuzzy Cohen-Grossberg neural networks with

delay under noise perturbation will be studied.

Motivated by the above discussion, in this paper we in-

vestigate a class of fuzzy Cohen-Grossberg neural networks

with time-varying delays and impulsive effects described by

the following system:
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


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










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





dxi(t)

d t
= αi(xi(t))

[

− βi(xi(t)) +
n
∑

j=1

δijµj + Ii

+
n
∧

j=1

aijfj(xj(t)) +
n
∧

j=1

bijfj(xj(t− τj(t)))

+
n
∧

j=1

Tijµj +
n
∨

j=1

cijfj(xj(t))

+
n
∨

j=1

dijfj(xj(t− τj(t))) +
n
∨

j=1

Hijµj

]

, t 6= tk,

xi(tk) = xi(t
−

k ) + Iik(xi(t
−

k )), t = tk,
(1)

for i = 1, 2, . . . , n; k = 1, 2, . . ., where xi(t) is the ith
neuron state, αi(xi(t)) represents an amplification function,

βi(xi(t)) is an appropriately behaved function, fj denote the

activation function, τj(t) is time delay of jth neuron and

corresponds to finite speed of axonal signal transmission at

time t, δij are elements of fuzzy feed-forward template, aij , bij
are elements of fuzzy feedback MIN template, cij , dij are

elements of fuzzy feedback MAX template, Tij and Hij are

elements of fuzzy feed-forward MIN template and fuzzy feed-
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forward MAX template, respectively.
∧

and
∨

denote the

fuzzy AND and fuzzy OR operation, respectively. µi and

Ii denote input and bias of the ith neuron, respectively. tk
is called impulsive moment and satisfies 0 < t1 < t2 <
. . . , limk→+∞ tk = +∞; xi(t

−

k ) denotes the left limit at tk;

Ik(x(tk)) = (I1k(x1(tk)), I2k(x2(tk)), . . . , Ink(xn(tk)))
T ,

Iik(xi(tk)) shows impulsive perturbation of the ith neuron

at tk.

Remark 1.1: In system (1), if Iik(xi(tk)) ≡ 0(i =
1, 2, . . . , n; k = 1, 2, . . .), then system (1) turns to continuous

FCGNN

dxi(t)

d t
= αi(xi(t))

[

− βi(xi(t)) +

n
∑

j=1

δijµj + Ii

+

n
∧

j=1

aijfj(xj(t)) +

n
∧

j=1

bijfj(xj(t− τj(t)))

+
n
∧

j=1

Tijµj +
n
∨

j=1

cijfj(xj(t))

+
n
∨

j=1

dijfj(xj(t− τj(t))) +
n
∨

j=1

Hijµj

]

Throughout this paper, we assume that

(H1) αi(u) is a continuous function, 0 ≤ αi(u) ≤ αi (αi is a

constant.) and there exists Lα
i > 0 such that

|αi(u)− αi(v)| ≤ Lα
i |u− v|

for all u, v ∈ R, i = 1, 2, . . . , n.

(H2)
αi(u)βi(u)−αi(v)βi(v)

u−v
≥ γi > 0, for all u, v ∈ R, u 6=

v, i = 1, 2, . . . , n.
(H3) fj is bounded and Lipschitzian, that is, there exists

constants Mj , L
f
j > 0 such that

|fj(u)| ≤Mj , L
f
j = sup

u 6=v

|
fj(u)− fj(v)

u− v
|, u 6= v,

i = 1, 2, . . . , n.
(H4) There exist constant λik ≥ 0 such that |Iik(u)−Iik(v)| ≤

λik|u − v| for all u, v ∈ R, i = 1, 2, . . . , n, k =
1, 2, . . . , n.

The initial value conditions of system 1 are given by

xi(s) = ϕi(s), s ∈ [−τ, 0], i = 1, 2, . . . , n,

where ϕ ∈ PC([−τ, 0], Rn).

Let

‖x‖ =

√

√

√

√

n
∑

i=1

x2i , ‖ϕ‖ = sup
s∈[−τ,0]

‖ϕ(s)‖.

The response system with noise perturbation is defined as

follows:
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











d yi(t) =

{

αi(yi(t))

[

− βi(yi(t)) +
n
∑

j=1

δijµj + Ii

+
n
∧

j=1

aijfj(yj(t)) +
n
∧

j=1

bijfj(yj(t− τj(t)))

+
n
∧

j=1

Tijµj +
n
∨

j=1

cijfj(yj(t))

+
n
∨

j=1

dijfj(yj(t− τj(t))) +
n
∨

j=1

Hijµj

]

+εi(yi(t)− xi(t))

}

d t

+
n
∑

j=1

σij(t, y(t)− x(t), y(t− τ(t))

−x(t− τ(t)))dWj(t), t 6= tk,
yi(tk) = yi(t

−

k ) + Iik(yi(t
−

k )), t = tk,
yi(s) = ψi(s), s ∈ [−τ, 0], i = 1, 2, . . . , n.

(2)

where σT (t, u, v) = (σT
1 (t, u, v), . . . , σ

T
n (t, u, v)) : R+ ×

Rn × Rn → Rn is called the noise intensity matrix,

W = (W1, . . . ,Wn)
T ∈ Rn is a n-dimensional Brownian

motion defined on a complete probability space (Ω, F, P )
with a natural filtration {Ft}t≥0, y(t) − x(t) = (y1(t) −
x1(t), . . . , yn(t) − xn(t))

T , y(t − τ(t)) − x(t − τ(t)) =
(y1(t−τ(t))−x1(t−τ(t)), . . . , yn(t−τ(t))−xn(t−τ(t)))

T ,

ψ ∈ Cb
F0
[[−τ, 0], Rn] denoted the family of all bounded F0-

measurable and C[[−τ, 0], Rn]-valued random variables with

norm ‖ψ‖2F = sup
s∈[−τ,0]

E‖ψ‖2, τ = max
j=1,2,...,n

sup
t∈R

{τj(t)}, and

E{·} stands for the mathematical expectation operator.

Throughout this paper, we always make the following

assumption:

(H5) Assume that σ(t, u, v) satisfies the Lipschitz condition

and the linear growth condition, and there exist pij , qij ≥
0 such that

σi(t, u, v)σ
T
i (t, u, v) ≤

n
∑

j=1

(piju
2
j + qijv

2
j ). (3)

The condition (H5) guarantees the global existence and

uniqueness of the solution of system (2)(see [27] for more

details).

Let ei(t) = yi(t) − xi(t), then the error dynamical system

between the drive system (1) and the response system (2) is
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given as follows:

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











d ei(t) =

{

−
[

αi(yi(t))βi(yi(t))− αi(xi(t))βi(xi(t))
]

+
(

αi(yi(t))− αi(xi(t))
)

˜Ii

+αi(yi(t))
[ n
∧

j=1

aijfj(yj(t))−
n
∧

j=1

aijfj(xj(t))

+
n
∧

j=1

bijfj(yj(t− τj(t)))

−
n
∧

j=1

bijfj(xj(t− τj(t))) +
n
∨

j=1

cijfj(yj(t))

−
n
∨

j=1

cijfj(xj(t)) +
n
∨

j=1

dijfj(yj(t− τj(t)))

−
n
∨

j=1

dijfj(xj(t− τj(t)))
]

+
(

αi(yi(t))− αi(xi(t))
)[ n

∧

j=1

aijfj(xj(t))

+
n
∧

j=1

bijfj(xj(t− τj(t))) +
n
∨

j=1

cijfj(xj(t))

+
n
∨

j=1

dijfj(xj(t− τj(t)))
]

− εiei(t)

}

d t

+
n
∑

j=1

σij(t, e(t), e(t− τ(t)))dWj(t), t 6= tk,

ei(tk) = ei(t
−

k ) + Iik(yi(t
−

k ))− Iik(xi(t
−

k )), t = tk,
ei(s) = φi(s), s ∈ [−τ, 0], i = 1, 2, . . . , n.

(4)

where ˜Ii =
n
∑

j=1

δijµj + Ii +
n
∧

j=1

Tijµj +
n
∨

j=1

Hijµj

The organization of the rest of this paper is as follows:

In Section 2, we introduce some notations and definitions,

and state some preliminary results needed in later sections.

In Section 3, we establish our main results by constructing a

proper Lyapunov functional. In section 4, we give an example

to illustrate our results.

Subsection text here.

Subsubsection text here.

II. PRELIMINARIES

In order to obtain our results, we need the following

definition:

Definition 2.1: The drive system (1) and the response sys-

tem (2) are said to be globally exponentially square-mean

synchronized if, for a suitably designed feedback controller,

there exist constant λ > 0 such that for any t ≥ 0,

E‖y(t)− x(t)‖2 ≤ E‖y(0)− x(0)‖2F e
−λt,

where e(t) is any solution of system (4) and the constant λ is

defined as the exponential synchronization rate.

Before stating our main results, we need a few more

notations. Let C1,2(R+ × Rn, R+) denote the family of

all nonnegative functions V (t, x) on R+ × Rn which are

continuously twice differentiable in x and once differentiable

in t. For SDE

dx = f(t, x(t), xt) + σ(t, x(t), xt)dW (t), (5)

where xt = x(t − s), s ∈ [−τ, 0]. For each V ∈ C1,2(R+ ×
Rn, R+) define an operator L associated with system (5)

acting on V by

LV (t, x) = Vt(t, x) + Vx(t, x)f(t, x, y)

+
1

2
trace[σT (t, x, y)Vxx(t, x)σ(t, x, y)],

where

Vt(t, x) =
∂V (t, x)

∂t
, Vx(t, x) = (

∂V (t, x)

∂x1
, . . . ,

∂V (t, x)

∂xn
),

Vxx(t, x) =
(

∂2V (t,x)
∂xi∂xj

)

n×n
.

The following lemmas are useful for the proof of our main

results of this paper.

Lemma 2.1: [12] For any i ∈ {1, 2, . . . , n}, suppose u and

v are two states of system (1). Then we have

∣

∣

∣

∣

n
∧

j=1

αijfj(uj)−
n
∧

j=1

αijfj(vj)

∣

∣

∣

∣

≤
n
∑

j=1

∣

∣αij

∣

∣

∣

∣fj(uj)−fj(vj)
∣

∣,

∣

∣

∣

∣

n
∨

j=1

βijfj(uj)−
n
∨

j=1

βijfj(vj)

∣

∣

∣

∣

≤
n
∑

j=1

∣

∣βij
∣

∣

∣

∣fj(uj)− fj(vj)
∣

∣.

Lemma 2.2: (Halanay inequality)[25] Assume that there

exist k1 > k2 > 0, y(t) ∈ C[t0 − τ, t0] is nonnegative, and

D+y(t) ≤ −k1y(t) + k2y(t),

where y(t) = sup
t−τ≤s≤t

{y(s)}, τ > 0, then

y(t) ≤ y(t0)e
−λ(t−t0), t ≥ t0,

where λ is unique solution of the equation

λ = k1 − k2e
λτ .

Lemma 2.3: [25] Assume that there exist k1 > k2 > 0, V ∈
C1,2(R+ ×Rn, R+), and

LV (x, y) ≤ −k1V (x) + k2V (y),

then

EV (x(t)) ≤ EV (x(0))e−λt, t ≥ 0,

where EV (x(t)) = sup
t−τ≤s≤t

EV (x(s)), λ is unique solution of

the equation λ = k1 − k2e
λτ , x(t) is any solution of system

(5).

III. MAIN RESULT

Our main result of this paper is as follows:

Theorem 3.1: Assume that (H1)− (H5) hold, furthermore,

suppose that
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(i) k1 > k2, where

k1 = min
i=1,...,n

{

2γi + 2εi − 2Lα
i (˜Ii +Ni)

−

n
∑

j=1

[

αiL
f
j (|aij |+ |bij |+ |cij |+ |dij |)

+αjL
f
i (|aji|+ |cji|) + 2pji

]

}

,

k2 = max
i=1,...,n

{

n
∑

j=1

[

αjL
f
i (|bji|+ |dji|) + 2qji

]

}

,

Ni =
n
∧

j=1

|aij |Mj +
n
∧

j=1

|bij |Mj

+
n
∨

j=1

|cij |Mj +
n
∨

j=1

|dij |Mj

(ii) Λk ≤ eµ∆tk−λτ , where Λk = max
i=1,...,n

{(1+λik)
2},∆tk =

tk − tk−1, k = 1, . . . , n, t0 = 0, 0 < µ < λ, λ is the

unique solution of the following equation λ = k1−k2e
λτ .

Then system (1) and system (2) is globally exponentially

square-mean synchronized.

Proof: Let V (e(t)) = 1
2

n
∑

i=1

e2i (t). Then, by (4), we obtain

LV (t) =
n
∑

i=1

ei(t)

{

−
[

αi(yi(t))βi(yi(t))

−αi(xi(t))βi(xi(t))
]

+
(

αi(yi(t))− αi(xi(t))
)

˜Ii

+αi(yi(t))
[

n
∧

j=1

aijfj(yj(t))−
n
∧

j=1

aijfj(xj(t))

+

n
∧

j=1

bijfj(yj(t− τj(t)))−

n
∧

j=1

bijfj(xj(t− τj(t)))

+
n
∨

j=1

cijfj(yj(t))−
n
∨

j=1

cijfj(xj(t))

+
n
∨

j=1

dijfj(yj(t− τj(t)))−
n
∨

j=1

dijfj(xj(t− τj(t)))
]

+
(

αi(yi(t))− αi(xi(t))
)[

n
∧

j=1

aijfj(xj(t))

+

n
∧

j=1

bijfj(xj(t− τj(t))) +

n
∨

j=1

cijfj(xj(t))

+

n
∨

j=1

dijfj(xj(t− τj(t)))
]

− εiei(t)

}

+
1

2
trace[σT (t, e(t), e(t− τ(t)))σ(t, e(t), e(t− τ(t)))]

≤

n
∑

i=1

ei(t)

{

− γiei(t) + Lα
i (˜Ii +Ni)|ei(t)|

+αi

[

n
∑

j=1

(|aij |+ |cij |)L
f
j |ej(t)|

+

n
∑

j=1

(|bij |+ |dij |)L
f
j |ej(t− τj(t))|

]

− εiei(t)

}

+
1

2
trace[σT (t, e(t), e(t− τ(t)))σ(t, e(t), e(t− τ(t)))]

≤
n
∑

i=1

{

[

− γi − εi + Lα
i (

˜Ii +Ni)
]

e2i (t)

+αi

[

n
∑

j=1

(|aij |+ |cij |)L
f
j

e2j (t) + e2i (t)

2

+
n
∑

j=1

(|bij |+ |dij |)L
f
j

e2j (t− τj(t)) + e2i (t)

2

]

+
n
∑

j=1

(pije
2
j (t) + qij)e

2
j (t− τj(t))

}

≤
n
∑

i=1

[

− γi − εi + Lα
i (˜Ii +Ni)

+

n
∑

j=1

(αiL
f
j (|aij |+ |bij |+ |cij |+ |dij |)

2

+
αjL

f
i (|aji|+ |cji|)

2

)

+ pji
]

e2i (t)

+

n
∑

i=1

n
∑

j=1

(αjL
f
i (|bji|+ |dji|)

2
+ qji

)

e2i (t− τi(t))

≤ −k1V (t) + k2V (t).

Since k1 > k2, by Lemma 2.3, it follows that

EV (t) ≤ EV (tk)e
−λ(t−tk), t ∈ [tk, tk+1).

Because of

EV (tk) = E
n
∑

i=1

e2i (tk)

2

= E
n
∑

i=1

1

2
(ei(t

−

k ) + Iik(yi(t
−

k ))− Iik(xi(t
−

k )))
2

= E

n
∑

i=1

(1 + λik)
2

2
e2i (t

−

k )

≤ max
i=1,...,n

{(1 + λik)
2}E

n
∑

i=1

e2i (t
−

k )

2
≤ ΛkEV (t−k ).

Then for t ∈ [0, t1),

EV (t) ≤ EV (0)e−λt,

hence,

EV (t1) ≤ Λ1EV (t−1 ) ≤ Λ1EV (0)e−λt1 ,

then for t ∈ [t1, t2),

EV (t) ≤ Λ1EV (0)e−λ(t−τ).

Repeating the above process, when t ∈ [tk, tk+1),

EV (t) ≤ Λ1 · · ·ΛkEV (0)e−λ(t−kτ)

≤ eµ∆t1 · · · eµ∆tkEV (0)e−λt

= EV (0)eµ(tk−t0)e−λt

≤ EV (0)e−(λ−µ)t.
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Then

E‖e(t)‖2 = E
(

n
∑

i=1

e2i (t)
)

≤ ‖φ‖2F e
−(λ−µ)t, t ≥ 0.

Therefore, system (1) and system (2) is globally exponentially

square-mean synchronized.

This completes the proof.

From Theorem 3.1, we can easily obtain the following result

about the continuous FCGNN described in Remark 1.1.

Corollary 3.1: Assume that (H1)−(H5) hold, furthermore,

suppose that the condition (i) in Theorem 3.1 is true, then

the system described in Remark 1.1 is globally exponentially

square-mean synchronized.

Remark 3.1: For our model (1), the time delays τj(t) can

be constants τij , then system (1) turns to be system (1) in

[23]. By Theorem 3.1, we can obtain the similar results about

system (1) in [23]. Meantime, if the amplification function

αi(xi(t)) = 1, behaved function βi(xi(t)) = βixi(t) where βi
are constants, we can have some special cases for our model,

and they have been studied by many papers.

Remark 3.2: In Theorem 3.1, the traditional assumption on

the differentiability of the time-varying delays is no longer

needed. Therefore, our results are more general and easy to

be verified.

Remark 3.3: In this paper, the amplification function and

the activation function are required to be bounded, which

is a strict condition, to make fuzzy Cohen-Grossberg neural

networks synchronized. Therefore, the synchronization of im-

pulsive fuzzy Cohen-Grossberg neural networks without the

boundedness condition of the two functions remains to be

further research.

IV. AN EXAMPLE

In this section, an example is given to demonstrate the

results yielded above.

Example 4.1: Consider the following two-dimensional im-

pulsive fuzzy Cohen-Grossberg neural networks with time-

varying delays (i = 1, 2):



























































dxi(t)

d t
= αi(xi(t))

[

− βi(xi(t)) +
2
∑

j=1

δijµj + Ii

+
2
∧

j=1

aijfj(xj(t)) +
2
∧

j=1

bijfj(xj(t− τj(t)))

+
2
∧

j=1

Tijµj +
2
∨

j=1

cijfj(xj(t))

+
2
∨

j=1

dijfj(xj(t− τj(t))) +
2
∨

j=1

Hijµj

]

, t 6= tk,

xi(tk) = xi(t
−

k ) + k0 sin(xi(t
−

k )), t = tk,
(6)

where αi(xi) = 7+ 1
1+x2

i

, β1(x1(t)) = 1.4x1(t), β2(x2(t)) =

1.6x2(t), fj(x) = tanhx, a11 = 1.8, a12 = −0.1, a21 =
−2, a22 = 0.4, b11 = −1.7, b12 = −0.6, b21 = 0.5, b22 =
−2.5, c11 = 0.2, c12 = 0.6, c21 = 0.2, c22 = 0.4, d11 =
0.3, d12 = 0.2, d21 = 0.5, d22 = 0.2, δij = Tij = Hij =

µj = 1, I1 = 1, I2 = −0.5, τ1(t) = τ2(t) =
et

1+et
.

The response system with noise perturbation is defined as

follows






































































































d yi(t) =

{

αi(yi(t))

[

− βi(yi(t)) +
2
∑

j=1

δijµj + Ii

+
2
∧

j=1

aijfj(yj(t)) +
2
∧

j=1

bijfj(yj(t− τj(t)))

+
2
∧

j=1

Tijµj +
2
∨

j=1

cijfj(yj(t))

+
2
∨

j=1

dijfj(yj(t− τj(t))) +
2
∨

j=1

Hijµj

]

+εi(yi(t)− xi(t))

}

d t+
[

2
∑

j=1

(1− e−yj(t)−xj(t))

+
2
∑

j=1

(1− e−yj(t−τj(t))−xj(t−τj(t)))
]

dWj(t), t 6= tk,

yi(tk) = yi(t
−

k ) + k0 sin(yi(t
−

k )), t = tk,
yi(s) = ψi(s), s ∈ [−τ, 0], i = 1, 2.

(7)

where ε1 = 1, ε2 = 3.

By simply calculation, 7 ≤ αi(xi) ≤ 8,Mj = Lf
j =

1, Lα
i = 0.5, γ1 = 9.1, γ2 = 10.4, τ = 1, λik = k0, pij =

qij = 4, i, j = 1, 2, k = 1, 2, . . . . Then condition (i) is

satisfied in Theorem 3.1. So there exists λ ∈ (0, 1) such that

λ = k1 − k2e
λτ . Choose µ = λ

3 and as ∆k ≥ 6 ln(1+k0)
λ

+ 1,

condition (ii) is satisfied in Theorem 3.1. Therefore, system

(6) and (7) are globally exponentially square-mean synchro-

nized.

V. CONCLUSION

This paper considers the global exponential square-mean

synchronization of the FCGNNs, which is one of the most

popular and typical network models. To the best of our

knowledge, there are few results for synchronization of im-

pulsive fuzzy neural networks under noise perturbation. Some

sufficient conditions are obtained about the global exponential

square-mean synchronization of the FCGNNs under noise

perturbation. In particular, the traditional assumption on the

differentiability of the time-varying delays is no longer needed.

However, there are also some work worth further studying,

such as the impulsive effects on the FCGNNs.
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