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Synchronization Between Two Chaotic Systems:
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Abstract—In this paper, a generalized synchronization scheme,
which is called function synchronization, for chaotic systems is
studied. Based on Lyapunov method and active control method,
we design the synchronization controller for the system such that
the error dynamics between master and slave chaotic systems is
asymptotically stable. For verification of our theory, computer and
circuit simulations for a specific chaotic system is conducted.
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[. INTRODUCTION

During the last two decades, synchronization in chaotic

dynamic systems has received a great deal of interest among
scientists from various research fields [2]-[24] since Pecora
and Carroll [1] introduced a method to synchronization two
identical chaotic systems with different initial conditions. The
idea of synchronization is to use the output of the master
system to control the slave system so that the output of
the response system follows the output of the master system
asymptotically.
To date, various methods for chaos synchronization such
as complete synchronization [12]-[13], phase synchronization
[14] , lag synchronization [15], intermittent lag synchroniza-
tion [16], time scale synchronization [17], intermittent gen-
eralized synchronization [18], projective synchronization (PS)
[19], generalized synchronization [20], and adaptive modified
projective synchronization [21]-[22] have been studied by
many researchers. Amongst all kinds of chaos synchronization,
the functional projective synchronization (FPS) is the state of
the art subject of synchronization study. Recently, FPS has
been reported by Chen et al. [23] and Runzi [24], that is the
generalization of PS. As compared with PS, FPS means that
the master and slave systems could be synchronized up to a
scaling function, but not a constant.

In this paper, we consider the Lorenz chaotic systems as
an example model for applying our function synchronization
problem. Note that our control scheme can be applied to all
chaotic models. To date, the numerical examples are only
provided to verify synchronization algorithms without circuit
simulations in most of research on chaotic synchronization. By
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the way, most of real practical chaos applications have been
investigated by Chua’s circuit which is a simple electronic
circuit that exhibits chaotic behavior. But it is well-known that
another chaotic systems have some errors between theoretical
system parameters and practical system parameters. So, in this
paper, the revised practical Lorenz master and slave systems
will be applied to show our control scheme using NI Multisim
10.0.

This paper is organized ad follows. In Section 2, the prob-
lem statement and master-slave synchronization scheme are
presented for Lorenz systems. In Section 3, a numerical simu-
lation via Matlab is given to demonstrate the effectiveness of
the proposed control method. In Section 4, circuit simulations
are presented to show real applications of the method. Finally,
concluding remarks are given in Section 5.

II. PROBLEM STATEMENT AND SYNCHRONIZATION
SCHEME

Consider the following master and slave chaotic systems

(t) = f(t, z), (1
y(t) = g(t,y) + u(t, z,y), 2
where z(t) = (z1,22,...,2,)7 € R™ and

y#) = (y1,92,---,yn)T € R"™ are drive and response
state vectors respectively, f R x R" — R" and
g: R xR™— R" are continuous nonlinear vector functions
and u(t,z,y) = (u1,us,...,u,)’ € R™ is the control input
for synchronization between master (1) and slave (2).

Definition 1. It is said that FPS occurs between master system
(1) and slave system (2) if there exist scaling functions cv;(t)
such that limy_, o || (¢)y; (¢) —2;(¢)]| =0, (i =1,2,--- ,n).

For convenience’s sake to illustrate the scheme of FPS,
we consider the following Lorenz master and slave systems:

Master : z1(t) = a(za(t) — x1(1))
i’g(t = bxl(t) — .Tl(t)xg(t) — CCL’Q(t)
Tg(t .ll(t).l'g(t) — (].Tg(f),

Slave :

U3(t) = y1()y2(t) — dys(t) + us(?), (€©))

where a,b,c,d € R, and it is well-known that the system
is chaotic when a = 10,0 = 28,¢ = 1,d = 8/3, and Fig. 1
shows chaotic motion of Lorenz system.
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Now, let us define error signals in the sense of Definition 1
as

e1(t) = ar()yi(t) — z1(?)
e2(t) = az(t)y2(t) — w2(t)
e3(t) = as(t)ys(t) — z3(t). (€]

Fig. 1. Chaotic motion of Lorenz system

The time derivative of error signal (4) is

é1(t) = daa(t)yi(t) + ()91 (t) — 21(¢)
é2(t) = da(t)y2(t) + aa(t)ga(t) — ()
é3(t) = ds(t)ys(t) + as(t)ys(t) — 23(t). )

By substituting (3) into (5), the error dynamics is as follows:

e(t) = a®yt) +ait)(aly2(t) —yi(t) +ui(t))
—a(z2(t) — x1(t))

éa(t) = ca(t)ya(t) + az(t) (byr(t) — y1(t)ys(t) — cy2(t)
+u2(t)) — (b;rl( ) — z1(t)zs(t) — cxa(t ))

e3(t) = as(t)ys(t) + as(t) (y1(H)y2(t) — dys(t) + us(t))
—(z1(H)a2(t) — da3(1)). (6)

Here, our goal is to achieve functional projective synchroniza-
tion between two Lorenz systems with different initial condi-
tions. For this end, the following control laws are designed:

= (a0 - e ) — 22(0)

vy = %@)(—ag(t)yg(t)—b(ag(t)y1(t)—$1(t))
ey (s (1) — 1 (0)3(1))

w = s (~aulthnt) — as O () + 1))

where «;(t) # 0 for all ¢, (i = 1,2,3).
Substituting the control input (7) into Eq. (6) gives that

él(t) = fael(t),
eg(t) = —CEQ(t),
és(t) = —des(t). ®)

Then, we have the following theorem.

Theorem 1. For given scaling functions «;(¢)(i = 1,2,3),
the FPS between master and slave systems given in Eq. (3)
will occur by the control law (7).

This implies that the error signals satisfy lim;_, ||e;(¢)|| =

0(i=1,2,3).

Proof. Let us define the following Lyapunov function
candidate

1
vV = 5(e% + €5+ €3). )
By differentiating Eq. (9) and using (7), we obtain
V = €1é1 + 62é2 + 63é3

e1 r a 0 0 el

= — (D) 0 ¢ O €9

€3 0 0 d €3
= —eTPe< 0, (10)

which guarantees the stability of error systems in the sense
of Lyapunov theory. Therefore, the slave system synchronize
the master system in the sense of FPS (4). This completes the
proof. [

III. NUMERICAL SIMULATION

In order to demonstrate the validity of proposed ideas,

numerical simulation is presented. Fourth-order Runge-Kutta
method with sampling time 0.0001[sec| is used to solve the
system of differential equations (3).
The system parameters are used by a = 10,b = 28,¢ =
1,d = 8/3 in numerical simulation. The initial conditions for
master and slave system are given by z(0) = (1,3, —3)7 and
y(0) = (—1,—3,2)7, respectively. The scaling functions for
functional synchronization are taken for a choice as

Ozl(t) =

Fig. 2 shows that error signals of FPS go to zero asymptot-
ically. It means FPS occurs between state of = and state of

Y.

—2, as(t) = 1.1+ cost, as(t) = —2+sin2t. (11)

Fig. 2. Error signals of numerical example

IV. CIRCUIT SIMULATION

In this section, we present circuit simulations for proposed
synchronization scheme. But based on master system of (3),
electronic circuit has major problem: The range of state
variables given in Eq. (3) over the limit of power supply.
So we use transformed values to eliminate this problem. The
reasonable transformation is v = z/10,v = ¢t/10,w = z/20

469



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:4, No:4, 2010

[25]-[27].
Consider the following transformed Lorenz equations

u(t) = o(v(t) —u(t))
0(t) = ru(t) — v(t) — 20u(t)w(t)
w(t) = dbu(t)v(t) — bw(t), (12)

where 0 = 16,7 = 45.6,b = 4.

This system can be more easily operated with analog circuit
because the state variables all gave similar dynamic range
and circuit voltages remain well within the range of typical
power supply limits. The analog circuit of transformed Lorenz
Eq.(12) is shown in Fig. 3.

R -
HBed il ™ e [ om AL
et "'IF =t ‘-1- ",f'o— - --‘.'vt_‘_
{ -l T sy
E"’ =+ -t L vegs

Fig. 3. Lorenz circuit

The electrical equations of the circuit are given by

U0 = o |00 — g (L o)
o) = RliCQ {RnRjOR% * % * %)

(1+ %Z)u(t) _ %zv _ %ju(t)w(t)]

) = o [ Fru(tele) -

<(1+ g;)w@)}, (13)

where Eq. (13) is equivalent to Eq. (12) after rescaling time
by a factor of 2505, and the required electrical parameters
are: R17 R27 R37 R47 R5a R67 R77 R87 R9a Rl8a R19 = 100KQ,
Rl()’ R11 = 499KQ, ng,R14 = ].OKQ;, Rlz = QOOKQ,
R15 = 402KQ, Rl()’ = 158KQ, R17 = 665KQ, RQQ =
63.4KQ; C; = 500pF, (i =1...3).

Fig. 4 displays phase to phase of master system of x; — xo,
r1 — X3, To — T3, respectively.

For our synchronization scheme, the circuit of slave system
is described by Fig. 5. And the required electrical parameters
are: Roy, Roo, Ros, Roa, Rog, Rar, Rss, Raa, Rse, Rar, Rag,
Rgo, Rs1, Rs2, Rs3, Rsa, Rss, Rse, Rsr, Iss, Rso, Roo,
R91 = 100KQ; R25, R30 = 49.9KQ; Rgg, Rgo = 10KQ;
Rgg = QOOKQ, R31 = 634KQ, R35 = 402KQ, Rgg =
66.5KQ; Ry = 158KQ; C; = 500pF, (i =1...3).

To show the effect of control input, we run the circuit without
control inputs and then circuit simulation results are obtained
for two cases, complete synchronization (a; = ae = ag = 1)
and functional projective synchronization with the same scal-
ing factor given in Eq. (11). The Fig. 6 and Fig. 7 display
phase-phase and time-phase situations of master and slave
systems given for the two cases. One can see that the errors
do not approach to zero as expected since the control inputs
are not applied.

Now, let us consider the circuit of the whole synchronizing
system given in Fig. 8.

- 3 |

Fig. 4. Chaotic phase of Lorenz system

Fig. 5. Slave system circuit

The whole circuit is structured as three parts: master sys-
tems, slave systems, and controllers. In the control part, scaling
functions «;(t) (¢ = 1,2,3) are constituted by function
generator. Then, Fig. 9 displays that FPS of Lorenz system
is achieved by control inputs.
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Fig. 6. Simulation results for complete synchronization without control

Fig. 7. Simulation results for functional projective synchronization without
control

V. CONCLUDING REMARKS

In this paper, we have investigated the functional projective
synchronization problem for Lorenz systems. The proposed
control scheme is verified by computer and circuit simulations

B

Mastor
syeam

Fig. 8. Circuit for controlled systems

of the system. The final remark is that the proposed method Fig. 9.  Simulation results for functional projective synchronization with

is applicable to any chaotic systems.
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