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a  Abstract—Symbolic Circuit Analysis (SCA) is a technique used 
to generate the symbolic expression of a network. It has become a 
well-established technique in circuit analysis and design. The 
symbolic expression of networks offers excellent way to perform 
frequency response analysis, sensitivity computation, stability 
measurements, performance optimization, and fault diagnosis. Many 
approaches have been proposed in the area of SCA offering different 
features and capabilities.  Numerical Interpolation methods are very 
common in this context, especially by using the Fast Fourier 
Transform (FFT). The aim of this paper is to present a method for 
SCA that depends on the use of Wavelet Transform (WT) as a 
mathematical tool to generate the symbolic expression for large 
circuits with minimizing the analysis time by reducing the number of 
computations.    

  
    Keywords—Numerical Interpolation, Sparse Matrices, Symbolic 
Analysis, Wavelet Transform. 

I. INTRODUCTION 
CA refers to the calculation of network functions where 
all or part of the circuit parameters are represented by 
symbols. The applicability of symbolic simulation 

techniques to the analysis and synthesis of analog integrated 
circuits has been known for a long time [1,2,3]. SCA has been 
developed to help designers get a better understanding of 
circuit behaviours using the symbolic expressions for the 
circuit performances. This technique is quite mature in 
analysis of linear circuits [4,5]. 
    Given the exponential increase in complexity and the time 
required to do SCA with the circuit size, finding a method that 
can handle large circuits keeping both the complexity and time 
as minimum as possible is a challenging factor [5]. 
     SCA methods (in a close connection with numerical 
methods) can be divided mainly into two categories. These are 
the topological and the numerical methods [6]. Each one of 
these methods has its own advantages and limitations. For 
instance, in topological methods the number of elements 
represented as symbols is large but the circuits that can be 
handled is small. On the other hand, in numerical methods, 
fairly large networks can be handled but the number of 
symbolic variables is limited. The numerical interpolation 
method constitutes a very efficient technique for the 
calculation of network function coefficients with only the 
complex frequency in symbolic form [6]. The direct 
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application of numerical interpolation method can be used to 
solve problems of system matrix size of around 30 and about 
10 elements only represented as variables beside the complex 
frequency “s” [7,8]. Modified versions of numerical 
interpolation method are available and proved to be efficient; 
however, it still suffers from serious limitation in practice, 
which is the rapidly increasing amount of calculation as the 
number of symbols to be handled increases. This naturally 
leads to escalation of computer CPU time and memory 
requirements, and hence, the famous overflow problem.  
    Looking to the issue from linear system window, it is so 
obvious that the size of the matrices under processing needs to 
be reduced. This can be done naturally by two methods: 
approximation (omission of insignificant terms in the system 
matrix) [5] and compression (introducing sparsity to increase 
the number of zeros in the system matrix). Following this 
strategy, larger circuits can be analysed with less computation 
efforts. 
   This paper follows the second method, i.e. compressing the 
system matrix by introducing sparsity. To achieve this aim, a 
clever and promising mathematical transform will be used. 
This transform is the Discrete Wavelet Transform (DWT). To 
simulate the application to SCA, a program was written and 
tested using MATLAB.  
   The next sections will describe the numerical interpolation 
traditional method using FFT, then the DWT will be 
introduced and its use as a method to compress system 
matrices will be illustrated. Some experimental results will be 
shown, and the paper will be concluded with comments on the 
proposed method.     

II. NUMERICAL INTERPOLATION METHOD FOR SYMBOLIC 

ANALYSIS 
    Numerical interpolation methods are based on the theory 
and implementation of numerical methods for generating 
symbolic functions of networks. They seem to have a lower 
computational cost than other well-known symbolic analysis 
algorithms such as parameter extraction method. 
   The following discussion will introduce the idea of using 
interpolation in finding network transfer functions using the 
Discrete Fourier Transform (DFT) in interpolation [8, 9,10, 
11]. 

A. Polynomial Interpolation 
    First, N+1 points will be found by evaluating the function: 

)](det[)( xAxPN =                                                               (1) 

at x0, x1, ..., xN, where N is the maximum power of x. Now, 
there are N+1 distinct points (xi, yi=PN (xi)), i=0, 1, ..., N. Both 
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xi and yi may be real or complex numbers. The coefficients of 
the polynomial:  
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are required to be found such that it passes through the given 
set of points. 
   Inserting xi into the polynomial (2), the following set of 
equations will be obtained: 

Niyxaxaxaa i
N
iNii ...,,1,0,...2

210 ==++++       (3) 
with unknowns a0, a1, a2, ...,  aN. Since there are N+1 unknown 
coefficients and the same number of equations, a matrix 
equation can be formulated as follows: 
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Or:  
[ ] [ ] [ ]YAX =                                                                       (5) 

   The solution of (5) provides the unknown coefficients. 
   Since there is a choice of selecting the points xi, the question 
arises as to what the choice should be in order to obtain the 
best possible result. It can be shown that the interpolation with 
real xi is, in general, numerically unstable [10]. 

B. The use of Discrete Fourier Transform (DFT) 
  The DFT interpolation can be derived by introducing a 
special symbol for the matrix X in (5): 

[ ]n
ixX =                                                                               (6) 

where the index i and the exponent n run from 0 to N. If the 
set of points xi is chosen to be uniformly spaced on the unit 
circle in the complex plane, then these points are:  
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Introducing the substitution:  

⎥⎦
⎤

⎢⎣
⎡

+
=

1
2exp

N
jw π

                                                                (8) 

then: 
k

k wx =                                                                                 (9) 
and: 

[ ]inwX =                                                                            (10) 
It can be shown that [5]: 
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   Where X* denotes the transpose conjugate matrix and i runs 
from 0 to N. 
 
   The solution of (5) with the points defined by (7) is:  
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   The original polynomial in (2), evaluated at xk, can be 
written as: 
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   Equations (13) and (14) represent the solution of one 
another. They are called the DFT pair. 
   To improve the speed of the method, a fast algorithm in 
interpolation can be used. Algorithms that reduce the 
computational cost of DFT are called in general the Fast 
Fourier Transform (FFT). The DFT has been studied 
extensively and it can be programmed in a very efficient way, 
particularly when N+1=2m, m being a positive integer. The 
number of operations required in this case is m×(N+1) [8,12].  

III. THE USE OF THE WAVELET TRANSFORM 
   In this section, the use of the Discrete Wavelet Transform 
(DWT) in the area of SCA will be illustrated. Before that, the 
DWT will be explained briefly.   

 

A.  The Discrete Wavelet Transform (DWT) 
   Like the FFT, the Discrete Wavelet Transform (DWT) is a 
fast linear operation that operates on a data vector whose 
length is an integer power of two, transforming it into a 
numerically different vector of the same length. Also, like the 
FFT, the DWT is invertible and in fact orthogonal, that is, the 
inverse transform when viewed as a big matrix is simply the 
transpose of the transform. Both FFT and DWT, therefore, can 
be viewed as a rotation in space, from the input space (or time) 
domain, where the basis functions are the unit vectors eI, or 
Dirac delta functions in the continuum limit, to a different 
domain. For the FFT, this new domain has basis functions that 
are the familiar sines and cosines. In the wavelet domain, the 
basis functions are somewhat more complicated and have the 
fanciful names "mother functions" and "wavelets" 
[12,13,14,15].     
   Of course there are infinity of possible bases for function 
space, almost all of them uninteresting. What makes the 
wavelet basis interesting is that, unlike sines and cosines, 
individual wavelet functions are quite localized in space; 
simultaneously, like sines and cosines, individual wavelet 
functions are quite localized in frequency or (more precisely) 
characteristic scale. The particular kind of dual localization 
achieved by wavelets renders large classes of functions and 
operators sparse, or sparse to some high accuracy, when 
transformed into the wavelet domain. Analogously with the 
Fourier domain, where a class of computations, like 
convolutions, become computationally fast, there is a large 
class of computations (those that can take the advantage of 
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sparsity) that become computationally fast in the wavelet 
domain [13,14,9]. 
   Unlike sines and cosines, which define a unique Fourier 
transform, there is not one single unique set of wavelets; in 
fact, there are infinitely many possible sets. Roughly, the 
different sets of wavelets make different trade-offs between 
how compactly they are localized in space and how smooth 
they are. 
   The wavelet transform procedure is to adopt a wavelet 
prototype function, which is the mother function. Temporal 
analysis is performed with a contracted, high-frequency 
version of the prototype, while frequency analysis is 
performed with a dilated, low-frequency version of the same 
wavelet. Because the original signal or function can be 
represented in terms of a wavelet expansion (using 
coefficients in a linear combination of the wavelet functions), 
data operations can be performed using the corresponding 
wavelet coefficients. And if the best wavelets adapted to the 
data are further chosen, or truncate the coefficients below a 
threshold, the data is sparsely represented. This sparse coding 
makes wavelet an excellent tool in the field of data 
compression. It is this feature that will make the WT plays as a 
good tool to speed up the SCA problem.  
 

B. Daubechies Wavelet Filter Coefficients 
    A particular set of wavelets is specified by a particular set 
of numbers, called wavelet filter coefficients. Here, the 
wavelet filters that will be followed are the ones discovered by 
Daubechies [15]. This class includes members ranging from 
highly localized to highly smooth. The simplest (and most 
localized) member, often called DAUB4, has only four 
coefficients, c0, c1, c2, and c3 [14,15].  
   Consider the following transformation matrix acting on a 
column vector of data to its right: 
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     Here, blank entries signify zeroes. Note the structure of this 
matrix. The first row generates one component of the data 
convolved with the filter coefficients c0, c1, c2, and c3. 
Likewise the third, fifth, and other odd rows. If the even rows 
followed this pattern, offset by one, then the matrix would be a 
circulant, that is, an ordinary convolution that could be done 
by FFT methods (Note how the last two rows wrap around like 
convolutions with periodic boundary conditions.). Instead of 

convolving with c0, c1, c2, and c3, however, the even rows 
perform a different convolution, with coefficients c3, −c2, c1, 
and −c0. The action of the matrix, overall, is thus to perform 
two related convolutions, then to decimate each of them by 
half (throw away half the values), and interleave the remaining 
halves [14]. 
     It is useful to think of the filter c0, c1, c2, and c3 as being a 
smoothing filter, called H, something like a moving average of 
four points. Then, because of the minus signs, the filter c3, 
−c2, c1, and −c0, called G, is not a smoothing filter (In signal 
processing contexts, H and G are called quadrature mirror 
filters [14]).  In fact, the c’s are chosen so as to make G yield, 
insofar as possible, a zero response to a sufficiently smooth 
data vector. This is done eventually by requiring the sequence 
c3, −c2, c1, and −c0 to have a certain number of vanishing 
moments. When this is the case for p moments (starting with 
the zeroth), a set of wavelets is said to satisfy an 
“approximation condition of order p”. This results in the 
output of H, decimated by half, accurately representing the 
data’s “smooth” information. The output of G, also decimated, 
is referred to as the data’s “detail” information. 
   For such a characterization to be useful, it must be possible 
to reconstruct the original data vector of length N from its N/2 
smooth or s-components and its N/2 detail or d-components. 
That is effected by requiring the matrix (15) to be orthogonal, 
so that its inverse is just the transposed matrix: 
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   Now, since: 
 

IWWWW T ==−1                                                        (17) 
 
   Where I is the identity matrix, one sees immediately that 
matrix (16) is the inverse of matrix (15) if and only if the 
following two equations hold: 
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   If additionally, the approximation condition of p = 2 is 
required, then the following two additional relations must be 
true: 
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    Equations (18) and (19) are 4 equations for 4 unknowns c0, 
c1, c2, and c3, first recognized and solved by Daubechies. The 
unique solution (up to a left-right reversal) is:  
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     In fact, DAUB4 is only the most compact of a sequence of 
wavelet sets: If we had six coefficients instead of four, there 
would be three orthogonality requirements in equation (18) 
(with offsets of zero, two, and four), and requiring the 
vanishing of p = 3 moments in equation (19). In this case 
DAUB6 is obtained and the solution coefficients can also be 
found by following the same steps.  
    For higher p, up to 10, Daubechies has tabulated the 
coefficients numerically [14,15]. The number of coefficients 
increases by two each time p is increased by one. 

C. The Use of DWT for Fast Solution of Linear 
Equations 

   One of the most interesting and promising wavelet 
applications is linear algebra [14]. The basic idea is to think of 
an integral operator (that is, a large matrix) as a digital image. 
Suppose that the operator compresses well under a two-
dimensional wavelet transform, i.e., that a large fraction of its 
wavelet coefficients are so small as to be negligible. Then any 
linear system involving the operator becomes a sparse system 
in the wavelet basis. In other words, to solve: 

bxA =.                                                                             (21) 
   Then, wavelet-transform the operator A and the right-hand 
side b by:   

bWbWAWA T .,..
~~
≡≡                                       (22) 

   Where W represents the one-dimensional wavelet transform 
and WT is the transpose (or inverse) of W, then solve: 

~~~
. bxA =                                                                            (23) 

 
which is a sparse system in the wavelet basis. This property 
can be used to solve the linear system in a faster way (due to 
less computation overhead) than the normal numerical 
techniques including the FFT. By solving the obtained sparse 
system, the solution can obtain almost in a real time basis [14]. 
   Finally, transform to the answer by the inverse wavelet 
transform: 

~
. xWx T=                                                                         (24) 

 
   The result will appear with a high accuracy as compared 
with the use of other transforms to perform the same task [14]. 
   The method discussed above was implemented and verified 
for solving numerical linear systems in a fast and compressed 
way. It is also adopted to solve the linear system that will be 
obtained when performing the SCA. The problem now is to do 
the above operations in a symbolic way, and hence solving the 
linear system symbolically as fast as possible. This problem is 

overcome and applied to solve the symbolic linear system that 
was converted into a sparse symbolic system in the wavelet 
basis. The system is then solved using sparse system solution 
technique, all in a symbolic fashion. This process reduces the 
time required to obtain the SCA output as will be shown later.  
The above steps were programmed using MATLAB, with the 
aid of some built-in modules. 

D. The Wavelet Matrices and Sparsity 
    It can be seen from eq. (15) that the W matrix of dimension 
4×4 will be as shown below: 
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   Where c0, c1, c2, and c3 are the DAUB4 filter coefficients as 
explained previously. The 4×4 matrix does not contain any 
zero.   
   Now, the W matrix of dimension 8×8 is as shown below: 
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    Note the sparsity as the dimension of the matrix increases. 
The above matrix contains 64 elements, 32 of them are zeros 
(50% sparsity). The W matrix of dimension 16×16 contains 
even more zero entries and so on for higher order of W 
matrices. This will lead, when used to transform a linear 
system, to obtain a sparse system that makes its solution easier 
and faster. Table I shows a comparison between the size of the 
W matrices and the number of zeros included.  
 

TABLE I  
COMPARISON BETWEEN THE SIZE OF WAVELET MATRICES AND THE 

NUMBER OF ZEROS  
Size of W 

Matrix 
Total Number 
of Elements 

Total Number 
of zeros 

Sparsity ratio* 
(%) 

4×4 16 None 0.00 
8×8 64 32 50.00 

16×16 256 192 75.00 
32×32 1024 896 87.50 
64×64 4096 3840 93.75 

128×128 16384 15872 96.88 
* Sparsity ratio= (Number of zeros)/(Number of elements) 
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     It was found that the number of zeros in W matrix for 
DAUB filter is covered by the formula: 
  

DDZ 42 −=                                                                     (27) 
 

   Where Z is the number of zeros and D×D is the dimension of 
the matrix (D = 4, 8, 16, ...). 

IV. SIMULATING RESULTS 
   This section presents examples of using the previously 
explained method that depends on the use of the DWT to solve 
the linear system matrix of circuits to be analyzed. The results 
are all compared to the conventional technique of numerical 
interpolation that uses FFT as a main transform. The 
comparison is based mainly on the computation overhead 
(amount of calculations) and hence the execution time.  
    The software required to test the proposed method is the 
MathWorksTM MATLAB ver. 7.5. For the purpose of fair 
comparison, two versions of the symbolic analysis program 
were written and tested. The first program that applies FFT in 
numerical interpolation is called SAUFFT (Symbolic Analyser 
Using Fast Fourier Transform), and the second program that 
applies DWT is called SAUDWT (Symbolic Analyser Using 
Discrete Wavelet Transform).  The same circuits were used in 
both programs and the output obtained using a computer that 
has Intel Core Duo Processor operates on 1.6 GHz with 2 GB 
RAM. 

A. Example 1 
   Consider the circuit shown in Fig.1. This circuit contains 8 
symbolic variables which are C1, C2, C3, C4, gm1, gm2, gm3, 
and gm4, where the gm’s are the transconductances of the 
Operational Transconductance Amplifier (OTA) devices. 
Being an active device, the OTA has been modelled using the 
nullator-norator equivalent circuit [16,17,18]. It is required to 
obtain the symbolic expression for the transfer function Vo/Vi. 
The description of this circuit was input to the program in a 
SPICE-like format. The description file of the circuit was fed 
to the two previously mentioned programs. The output of the 
two programs was the same but with different execution time. 
The output was as shown below: 
 
THE NUMERATOR IS: 
gm1 gm2 gm3 gm4 
 
THE DENOMINATOR IS: 
C1 C2 C3 C4 s4 + C1 C2 C3 gm4 s3 + (gm3 gm2 C1 C4 + C1 C2 gm4 
gm3) s2 + (gm3 gm2 gm1 C4 + C1 gm4 gm3 gm2) s + gm3 gm1 gm2 
gm4 
 
EXECUTION TIME OF SAUDWT: 1.2 sec. 
EXECUTION TIME OF SAUFFT:   1.8 sec. 
  
   Note the difference in execution time between the two 
programs which is in favour of SAUDWT. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Example 2 
   Consider the circuit shown in Fig. 2. The circuit contains 11 
symbolic variables with 4 operational amplifiers (OPAMPs) 
[19]. The output was as follows: 
 
THE NUMERATOR IS: 
– R10 R7 R4 R5 C2 R2 R3 C1 R1 s2 – R10 (R7 R4 R5 C2 R2 R3   – C2 
R2 R9 R1 R3 R5) s – R10 R7 R4 R6 R1 
 
THE DENOMINATOR IS: 
R7 R9 R4 R5 C2 R2 R3 C1 R1 s2 + R7 R9 R4 R5 C2 R2 R3 s +   R7 
R9 R4 R6 R1 
 
EXECUTION TIME OF SAUDWT: 1.6 sec. 
EXECUTION TIME OF SAUFFT:   2.6 sec.    
 

 
 

C. Example 3 
    Consider the RC ladder circuit shown in Fig. 3. It goes up to 
60 sections.  The circuit contains passive elements with 120 
symbolic variables. This circuit is used to show the ability of 
the proposed method to tackle large circuits [20,21]. 
   The output was obtained only using SAUWT program 
because SAUFFT program suffered from overflow due to the 
massive computations overhead. The execution time was 30.4 
sec., and the transfer function will not be shown in this context 
because it is too long. 

C1

C4

Vi

Vo
gm1

gm2_

+

_

+

gm3

_

+

gm4
+

_

C3
C2

Fig. 1 Circuit of example 1 

Fig. 2 Circuit of example 2 
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V. PERFORMANCE COMPARISON BETWEEN THE FFT AND 

DWT IN SCA 
 
   Fig. 4 shows an execution time comparison between the 
performance of the programs SAUFFT (that uses FFT) and 
SAUDWT (that uses DWT) when applied to SCA. It should 
be mentioned that the figure is obtained after using a certain 
set of circuits applied to both programs for the purpose of fair 
comparison. Of course, not only the number of symbolic 
elements affects the time required to analyze the circuit, but 
also the configuration of the circuit (that is, the number of 
nodes and branches). The figure shows the results up to 30 
symbolic variables for the purpose of illustration. 
    It was found practically that SAUDWT performs better than 
SAUFFT in terms of the execution time and the ability to 
handle larger circuits as the number of symbolic variables 
increases. For small number of symbolic variables, however, 
the two programs perform almost the same with slight 
difference.  Also, the program SAUDWT continues to provide 
the analysis with excellent time performance as the number of 
symbolic variables increases. This is not the case with 
SAUFFT, because as the number of symbolic variables 
increases, the required time increases rapidly and the analysis 
of larger circuits becomes impossible. 
 
 

 
 
 

 

 

 

 

VI. CONCLUDING COMMENTS 
     In this paper, a method for SCA was introduced. This 
method is based on the use of wavelet transform, namely the 
DWT, instead of the FFT for the numerical interpolation. Most 
of the usefulness of wavelets rests on the fact that wavelet 

transform can usefully be severely truncated, that is, turned 
into sparse expansions. The case of Fourier transform is 
different: FFT is ordinarily used without truncation, to 
compute fast convolutions, for example.  
    The subject of wavelet is developing fast and many 
questions remain to be answered, from these: what is the best 
choice of wavelet to use for a particular problem? Hence, by 
testing different wavelets, an optimum condition may be 
reached for the SCA application. 
   The ability of the wavelet transform to compress the data 
can be utilized highly in the area of SCA to facilitate the 
ability of analyzing large circuits without the massive 
computations overhead incurred in the old techniques. The 
proposed method and the program SAUDWT can be used with 
little or no modification to cope with large circuits (active 
and/or passive). Also, the CPU time and memory requirements 
are reduced drastically with regard to previous approaches. 
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