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Abstract—Support Vector Machine (SVM) is a statistical 

learning tool that was initially developed by Vapnik in 1979 and later 
developed to a more complex concept of structural risk minimization 
(SRM). SVM is playing an increasing role in applications to 
detection problems in various engineering problems, notably in 
statistical signal processing, pattern recognition, image analysis, and 
communication systems. In this paper, SVM was applied to the 
detection of SAR (synthetic aperture radar) images in the presence of 
partially developed speckle noise. The simulation was done for single 
look and multi-look speckle models to give a complete overlook and 
insight to the new proposed model of the SVM-based detector. The 
structure of the SVM was derived and applied to real SAR images 
and its performance in terms of the mean square error (MSE) metric 
was calculated. We showed that the SVM-detected SAR images have 
a very low MSE and are of good quality. The quality of the 
processed speckled images improved for the multi-look model. 
Furthermore, the contrast of the SVM detected images was higher 
than that of the original non-noisy images, indicating that the SVM 
approach increased the distance between the pixel reflectivity levels 
(the detection hypotheses) in the original images. 

 
Keywords—Least Square-Support Vector Machine, Synthetic 

Aperture Radar. Partially Developed Speckle, Multi-Look Model. 

I. INTRODUCTION 
ECENTLY, support vector machines (SVM’s) have been 
introduced as a new method for solving classification 

and function estimation problems with many successful 
applications. In the remote sensing field, SVM has only been 
applied in the post processing phase for generic object 
recognition, classification [1], and orientation [2], [3]. Our 
work is novel in the sense that we apply SVM in the image 
acquisition phase while considering advanced noise models 
such as the single look and multi-look partially developed 
speckle, which has been suggested and verified in [4]. 
Specifically, we apply least square-support vector machine 
(LS-SVM) in the detection stage to classify the received signal 
in order to construct the desired image with a relatively high 
precision.  

A detailed description of the theory of operation of SAR is 
lengthy and beyond the scope of this document. The reader is 
referred to the work of Christensen and Dich [5] for an 
excellent treatment of SAR systems design.  
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II.  SUPPORT VECTOR MACHINE 
Traditional detection approaches generalize poorly on 

image detection tasks because of the high dimensionality of 
the feature space. SVM can generalize well on difficult image 
detection problems with a superior performance to traditional 
techniques, including neural networks. 

 In this section, we provide a succinct introduction to the 
SVM approach. The reader is referred to the initial work of 
Vapnik [6] and the book of Christianini [7] for more in-depth 
treatment of the SVM theory. 

As an intuitive approach to understanding SVM, consider a 
given set of points which belongs to either one of two classes. 
A linear SVM finds the hyperplane leaving the largest 
possible fraction of points of the same class on the same side, 
while maximizing the distance of either class from the 
hyperplane. This hyperplane minimizes the risk of 
misdetecting hypotheses of the test set. In SVM, the input 
vectors are nonlinearly mapped to a higher dimensional 
feature space. A linear discriminant function is then 
constructed in the new higher space, resulting in a non linear 
discriminant in the original input space. 

We now present a brief theoretical approach to SVM. The 
relation between the capacity of a learning machine and its 
performance is ruled by a set of boundaries, which is referred 
to as the bound on the generalization performance. Statistical 
pattern recognition techniques face two problems: the 
identification problem and the parameters estimation problem. 
The identification problem is the problem of determination of 
the degree of freedom or complexity of the model and is 
generally the more complex problem [8]. The estimation 
problem is how to get an optimal estimate of the model 
parameters regarding the training data set. 

Let us consider a mapping d HΦ � a: , which maps the 
training data from d�  to a higher Euclidean space H, that 
may have an infinite dimension. In this high dimension space, 
the data is linearly separable, hence linear SVM formulation 
above can be applied for any type of data [9]. In the SVM 
formulations, the training data only appear in the form of dot 
products x.x. These can be replaced by dot products in the 
Euclidean space H, i.e., ϕ(.).ϕ (.). 

The dot product in the high dimension space can also be 
replaced by a kernel function. By computing the dot product 
directly using a kernel function, one avoids the mapping Φ(x). 
This is desirable because H has possibly infinite dimensions 
and Φ(x) can be tricky or impossible to compute. Using a 
kernel function, a SVM that operates in infinite dimensional 
space can be constructed [7].  
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Given a training set of N data points {yk, xk)N, where xk 
denotes the kth input pattern and yk the kth output pattern, the 
SVM aims at constructing a decision function 
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where w is the weight vector in the reproducing kernel Hilbert 
space (RKHS), αk are support values (Lagrangian multipliers), 
b is the bias term, and the kernel function 
 

 ( , ) ( ) ( ).k kK x x x xϕ ϕ=  (2) 
 
For every new test data, the kernel functions for each SV 
(support vector) need to be recomputed. 

For any kernel function suitable for SVM, there must exist 
at least one pair of {H, Φ}, such that (2) is satisfied. The 
kernel that has these properties is said to obey the Mercer’s 
condition, i.e., for any g(x) with finite L2 norm, 

 
 2( )g x dx < ∞∫ ,   (3) 

 ( ) ( ) ( ) 0K x y g x g y dxdy ≥∫∫ ,   (4) 

 
By choosing different kernel functions, the SVM can emulate 
some well known classifiers [10], as shown in Table I. 
 

TABLE I 
KERNEL FUNCTIONS’ CLASSIFIERS 

Kernel Function Type of Classifier 
( , )K x y xy=  Linear 

( )2 2
2( , ) exp /K x y x y σ= −  Gaussian radial bias 

function (RBF) 

( , ) ( )dK x y xy τ= +  Polynomial of degree d 

( , ) tanh( )K x y xyκ θ= +  Multi layer perceptron  

 
While standard SVM solutions involve solving quadratic or 

linear programming problems, the least square version of 
SVM (LS-SVM), which has been adopted for this research, 
corresponds to solving a set of linear equations. In LS-SVM, 
the Mercer’s condition is still applicable. Hence several types 
of kernels can be used, yet the RBF is the adopted one since it 
gives a Gaussian distribution for the errors in the feature space 
yielding an optimal estimate of the support values [11]. Many 
reasons could be stated for preferring LS-SVM over other 
models of SVM, yet the most important one is that LS-SVM is 
an iterative method that could be used to solve large scale 
problems with robustness in the sense of the choice of the 
regularization and smoothing parameters. Moreover, it offers 
a fast method for obtaining classifiers with good 
generalization performance in many real life applications. 

So far, the formulation of SVM was based on a two-class 
problem (SVM is essentially a binary classifier). Various 
schemes can be applied to the basic SVM algorithm to handle 

the M-class pattern classification problem. Some of these 
schemes [9], [12], for solving the multi-class problem are: 

• Using M one-to-rest classifiers. 
• Using M(M-1)/2 pair-wise classifiers with one of the 

voting schemes: Majority voting; Pairwise coupling. 
• Extending the formulation of SVM to support the M  

class problem: By considering all classes at once; By 
considering each class with only the training data 
points belonging to that particular class. 

The derivation of the multi-class LS-SVM is based on the 
Lagrangian optimization formulation 
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subject to the equality constraint 
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where γ is the regularization factor and kξ  is the difference 
between the output yk and discriminant function f(xk). Using 
standard techniques, the Lagrangian for (5) and (6) is 
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where αk are the Lagrangian multipliers corresponding to (6). 
The saddle point is obtained from 
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This yields the Karush-Kuhn-Tucker optimality conditions: 
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III. PARTIALLY DEVELOPED SPECKLE NOISE MODEL 
In the single-look model, a radar resolution cell is assumed 

to contain a collection of N elemental point scatterers 
randomly distributed throughout the resolution cell, with each 
elementary scatterer’s position distributed independently of 
the positions of other scatterers. The random spatial 
distribution of the scatterers is described by a point process 
with a set of points having associated complex marks Ek, (k = 
1, … , N), corresponding to the backscattered electric field 
from the k-th scatterer. Each backscattered electric field 
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component Ek has a constant amplitude Ak equal to the size or 
reflectance strength of the k-th scatterer and a random phase 
ϕk, uniformly distributed over the interval [0,2π): 

kj
k kE A e ϕ= . We assume that the number of scattering points 

within a resolution cell is Poisson distributed with parameter 
Γ. 

                           
  Original image                         Received speckled noisy image 

   
MSE image for L = 1 Reconstructed image for L = 1 Post filtered image L = 1 

   
MSE image for L = 2 Reconstructed image for L = 2 Post filtered image L = 2 

   
MSE image for L = 4 Reconstructed image for L = 4 Post filtered image L = 4 

   
MSE image for L = 8 Reconstructed image for L = 8 Post filtered image L = 8 

 
Fig. 1 LS-SVM detected speckled SAR images for different number of looks L 
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When electromagnetic waves are scattered from such a 
surface, the resultant scattered field is the superposition of the 
electric fields scattered by each of the elemental scatterers. 
The resulting process is a marked Poisson point process and λ 
= Γ/A is the intensity (or rate) of this process over a 
resolution cell with area A. When λ(.) is a random process, 
the point process is referred to as doubly stochastic marked 
Poisson point process [13]. 

SAR systems record intensity measurements of the mapped 
surface according to: 
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Speckle under this model is referred to as partially 
developed. 

In the multilook model, L-independent diversity 
measurements are taken over the resolution cell by the radar. 
This technique involves the noncoherent sum of L statistically 
independent single realizations of the intensity measurements 
SNl (l = 1,2,..., L) in (10) at each resolution cell: 
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IV.  SIMULATION RESULTS AND DISCUSSIONS 
The simulations are done for single look and multi-look 

partially developed speckle for different images to give a 
complete insight to the new proposed model of the SVM-
based detection. For simulation purposes, Matlab is used 
because of its enhanced mathematical capabilities and 
engineering based structure. We adopt the LS-SVM model 
using Matlab code downloaded from [14]. Without loss of 
generality and for simulation purposes, we assumed in (10) 
and (11) unit amplitude scatterers (Ak = 1) and unit parameter 
for the Poisson process (Γ = 1). 

The resulting images from the simulation are presented in 
Fig. 1. We observe that the SVM-reconstructed SAR images 
are of very good quality for L = 8 looks. The quality of the 
reconstructed speckled images improved as the number of 
looks increased. The performance metric used to determine 
the quality of the detected images is the mean square error 
(MSE). The MSE results are listed in Table I.  

 
TABLE II 

THE SVM PERFORMANCE IN TERMS OF THE NUMBER OF LOOKS 
No. of Looks (L) MSE 

1 3.58 
2 2.16 
4 1.08 
8 0.43 

 
Despite the fact that SVM is essentially a binary classifier, 
the approaches mentioned in section II to extend the SVM to 
multi-class detection worked well, as is evident from the 
results of the detected images, which are clearly not binary 
images.  

Furthermore, the contrast of the SVM detected images was 

higher than that of the original non-noisy images, indicating 
that the SVM approach increased the distance between the 
pixel reflectivity levels (the detection hypotheses) in the 
original images. 

The reconstructed SAR images are observed to contain 
some minor spiky noise, commonly described in image 
processing as “salt & pepper” noise. This is due to simulation 
artifacts, which are inevitable in sample training based 
algorithms. The detected images are then post- processed 
using a 3x3 median filter to reduce the spiky noise effect. As 
shown in Fig. 1, the median filter only produced relatively 
good results for large number of looks. The study of post-
detection filters is not the scope of this research and will be 
left as an area of future investigation. 

V.  CONCLUSION 
In this paper, we applied LS-SVM to the detection of SAR 

images corrupted with partially developed speckle noise 
using single look and multi-look models. SVM proved to be a 
learning machine suitable for detection problems of non 
binary speckled images and produced very good results for 8 
look-SAR images. 

SVM-based detector did also give a superior performance 
over the classical maximum-likelihood (ML) detectors in the 
digital imaging field using the SAR application.  

The data used in the SVM approach is based on the 
underlying noise model. Consequently, snip-offs can be made 
to other coherent imaging systems used in remote sensing and 
medical imaging research with similar noise characteristics.  

The results of SVM also showed an enhanced contrast. As 
perspective to this work, this phenomenon could be mapped 
to the performance of wireless communication systems, 
where SVM detection will increase the distance between the 
signals in the sense that it will make signals representing 
different levels almost perpendicular. This will lead, in 
theory, to higher signal-to-noise ratio (which is what multi-
look SAR processing effectively does). This issue will be 
subjected to more analysis and study in order to fully 
understand the underlying phenomena behind such 
behaviour. 

As future work, we also propose to examine post-detected 
image processing filters which are more suited to the speckle 
noise statistical characteristics than median filters. 
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