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Abstract—One of the most important parameters in petroleum 

reservoirs is the pressure distribution along the reservoir, as the 
pressure varies with the time and location. A popular method to 
determine the pressure distribution in a reservoir in the unsteady state 
regime of flow is applying Darcy’s equation and solving this equation 
numerically. The numerical simulation of reservoirs is based on these 
numerical solutions of different partial differential equations (PDEs) 
representing the multiphase flow of fluids. Pressure profile has 
obtained in a one dimensional system solving Darcy’s equation 
explicitly. Changes of pressure profile in three situations are 
investigated in this work. These situations include section length 
changes, step time changes and time approach to infinity. The effects 
of these changes in pressure profile are shown and discussed in the 
paper. 
 

Keywords—Explicit solution, Numerical simulation, Petroleum 
reservoir, Pressure distribution. 

I. INTRODUCTION 
OR real petroleum reservoirs, the multiphase flow of 
reservoir fluids are expected. These multiphase flow 

equations are so complex and can be solved analytically, i.e., 
numerically.  

The numerical simulation of reservoirs is based on these 
numerical solutions of different partial differential equations 
(PDEs) representing the multiphase flow of fluids. Numerical 
simulation has become a common means of predicting and 
understanding complex performance of oil and gas reservoirs 
in the petroleum industry. It has been widely used for 
simulations in primary, secondary, and tertiary oil and gas 
recovery processes [1]. 

The most common forms of numerical methods are based 
on finite difference approximation of the flow equations. 
Finite different method (FDM) is more common due to several 
factors (robustness, ease of programming, etc.) [2]. FDM 
approach will be followed in this paper too. 

The unknown parameters of flow equations (i.e., pressure, 
saturation, etc.) are a function of both time and space, which 
gives the flow equations a partial differential appearance. One 
of these equations is experimentally derived Darcy’s equation 
which describes the fluid flow through a porous medium. 

In this work a linear one dimensional system is described by 
Darcy’s equation and then the PDE is solved based on the 
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finite difference method explicitly, i.e., the partial derivatives 
are replaced by finite difference quotients and then the 
solutions of the resulting system of algebraic equations are 
obtained [3].  

Different quantities, which are involved in the explicit finite 
difference solution of PDE, are changed to study the 
sensitivity and the applicability of the explicit solution.  

II. METHODOLOGY 
To obtain best results, accurate numerical simulation and an 

appropriate mathematical model are crucial [4]. In transient 
flow through porous media, the general PDE to be solved is 
obtained by combining appropriate forms of Darcy's law and 
the equation of mass conservation [5], which has the form of 
(1), for an unsteady state regime of flow in a three 
dimensional linear system. 
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where 
P is the pressure (MPa) 
t is the total time (s) 
k is the permeability (mD) 
c is the compressibility (1/MPa) 
Φ is the porosity 
μ is the viscosity (cP)                       
x is the dimension in x axis (m) 
y is the dimension in y axis (m) 
z is the dimension in z axis (m) 

In this paper pressure distribution has been studied in a one 
dimensional system, therefore (1) simplifies to (2): 
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In which, k/(cфμ) is a constant and is called hydraulic 

diffusivity. For further simplification, this constant will be 
assumed equal to one, transforming (2) to (3): 
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Equation (3) has been solved by finite difference method. 

The finite difference method is the most popular and has been 
used widely in modeling [6], [7]. For solving (3), by using a 
numerical method, the length of the system (L) is divided into 
several sections, length of each section equal to Δx (spatial 
discretization). Applying finite differences to both sides of (3), 
taking Δt as time step, can be written as: 
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Here, subscript j shows the section number (i.e., 1, 2, …, n) 

and superscript τ shows time in seconds. 
To overcome the difficulties associated with the selection of 

discretization step, the explicit method is used. By combining 
(4) and (5), then rearrangements, the next equation will 
appear: 
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                  (6) 
 
The pressure term at a time (τ+1) seconds in (6), can be 

calculated in each separated section (j) by knowing pressure in 
three sections (j-1), (j), and (j+1) at a time (τ) with specified 
section length (Δx) and time step (Δt). The boundary condition 
and initial conditions are as follows: 
1) Pressure in the first block (P1) is constant for all time. 
2) Pressure in the last block (Pn) is constant for all time. 
3) Pressure at t=0 second from the second block to the (n-1) 

block is constant and equal to the pressure in the last 
block (Pn). 

The first and second conditions are boundary conditions and 
the last one is the initial condition. 

According to (6), the changes in three parameters appearing 
in the solution of the pressure distribution equation are 
considered. These three parameters are as follows: 
1) Section length (Δx).  
2) Time step (Δt). 
3) Time (τ). 

To investigate the effect of changes in these three 
parameters, which are involved in solving of pressure 
distribution equations by numerical method, each parameter is 
changed while the other parameters are fixed. 

III. RESULTS AND DISCUSSION  
Equation (6) has been solved for different values of section 

length (Δx), time step (Δt), and time (τ). Each one of these 
three parameters is changed while the other two parameters 
are kept constant to see how the changes in these parameters 
affect the final pressure distribution. The Matlab software was 
used to generate data for evaluation and plotting the graphs by 
(6). The text program which has been used is given in the Fig. 
5. The pressures, which were gotten at the end of the process, 
were applied for plotting the graphs. Table I shows the results 
of pressure changes for length 10m, time step 0.1s and section 
length 1m in one second. Tables II-IV are resulted in 5, 10 and 
100 seconds, respectively. The last row has been used form 
the tables for plotting. The following figures show the effect 
of changes in parameters respectively: 

 
Fig. 1 Effect of changes in Δx values in pressure profile 

 

 
Fig. 2 Effect of increase in Δt values in pressure profile 

 

 
Fig. 3 Effect of a small increase in time step on pressure profile 
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Fig. 4 Effect of changes in the values of time on pressure profile 

 
As the length of each section (Δx) decreases, the accuracy 

of the solution increases (Fig. 1), although for very small 
values of Δx (Δx<0.25m in this system) the negative and 
incorrect solutions appear. 

With the large increase in the time step (Δt), negative and 
wrong pressures are occurring, which are physically 
impossible (Fig. 2). In the Fig. 3, the pressure profile for the 
time step equal to one second is removed, which indicates that 
small increase in time step does not strongly affect the 
pressure profile along the length of the system. 

Fig. 4 shows the long time behavior of explicit finite 
difference solutions of PDE with the time, which indicates that 
as the time increases; pressure profile tends to a straight line. 

IV. CONCLUSION 
Resulting from discussions, it can be concluded that 

although the explicit numerical solution of PDE is robust and 
easy to program, but also it does have some limitations in the 
parameters, which are involved in the solution. These 
limitations should be considered carefully by using an explicit 
numerical method. The implicit finite difference solution may 
be suggested for cases with multiple limitations. 

APPENDIX 

Fig. 5 The program text of solving equation in Matlab 
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TABLE I 

PRESSURE DISTRIBUTION IN ALL SECTIONS IN ONE SECOND BY ΔT=0.1 S, ΔX=1 M, LENGTH 10 M WITH PRESSURE AT ENTRANCE (FIRST BLOCK) 100 MPA AND AT 
EXIT (LAST BLOK) 20 MPA 

Time 
(s) 

Pressure (MPa) 
First block Second block Third block 4th block 5th block 6th block 7th block 8th block 9th block 10th block 

0.1 100 20 20 20 20 20 20 20 20 20 
0.1 100 20 20 20 20 20 20 

20 
20 20 20 

0.2 100 28 20 20 20 20 20 20 20 
0.3 100 34.4 20.8 20 20 20 20 20 20 20 
0.4 100 39.6 22.08 20.08 20 20 20 20 20 20 
0.5 100 43.89 23.63 20.27 20.01 20 20 20 20 20 
0.6 100 47.47 25.32 20.58 20.03 20 20 20 20 20 
0.7 100 50.51 27.06 21 20.09 20 20 20 20 20 
0.8 100 53.12 28.8 21.52 20.17 20.01 20 20 20 20 
0.9 100 55.37 30.5 22.11 20.29 20.03 20.01 20 20 20 
1 100 57.35 32.15 22.77 20.44 20.05 20.01 20 20 20 

 
TABLE II 

PRESSURE DISTRIBUTION IN ALL SECTIONS IN 5 SECONDS BY ΔT=0.1 S, ΔX=1 M, LENGTH 10 M WITH PRESSURE AT ENTRANCE (FIRST BLOCK) 100 MPA AND AT 
EXIT (LAST BLOK) 20 MPA 

Time 
(s) 

Pressure (MPa) 
First block Second block Third block 4th block 5th block 6th block 7th block 8th block 9th block 10th block 

0.1 100 20 20 20 20 20 20 20 20 20 
0.2 100 28 20 20 20 20 20 

20 
20 20 20 

0.3 100 34.4 20.8 20 20 20 20 20 20 
0.4 100 39.6 22.08 20.08 20 20 20 20 20 20 

. . . . . . . . . . . 

. . . . . . . . . . . 
4.6 100 79.19 60.55 45.6 34.84 27.88 23.82 21.68 20.61 20 
4.7 100 79.41 60.92 46.02 35.22 28.17 24.02 21.78 20.65 20 
4.8 100 79.62 61.28 46.43 35.6 28.46 24.21 21.89 20.7 20 
4.9 100 79.82 61.63 46.83 35.97 28.75 24.4 22.01 20.75 20 
5 100 80.02 61.97 47.22 36.33 29.04 24.6 22.12 20.8 20 

 
TABLE III 

PRESSURE DISTRIBUTION IN ALL SECTIONS IN 10 SECONDS BY ΔT=0.1 S, ΔX=1 M, LENGTH 10 M WITH PRESSURE AT ENTRANCE (FIRST BLOCK) 100 MPA AND AT 
EXIT (LAST BLOK) 20 MPA 

Time 
(s) 

Pressure (MPa) 
First block Second block Third block 4th block 5thblock 6th block 7th block 8th block 9th block 10th block 

0.01 100 20 20 20 20 20 20 20 20 20 
0.02 100 20.8 20 20 20 20 20 

20 
20 20 20 

0.03 100 21.58 20.01 20 20 20 20 20 20 
0.04 100 22.35 20.02 20 20 20 20 20 20 20 

. . . . . . . . . . . 

. . . . . . . . . . . 
9.96 100 85.77 72.24 60 49.43 40.69 33.73 28.25 23.85 20 
9.97 100 85.78 72.26 60.01 49.44 40.71 33.74 28.26 23.85 20 
9.98 100 85.79 72.27 60.03 49.46 40.73 33.76 28.27 23.86 20 
9.99 100 85.79 72.28 60.05 49.48 40.75 33.77 28.28 23.86 20 
10 100 85.8 72.29 60.06 49.5 40.76 33.79 28.29 23.87 20 
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TABLE IV 
PRESSURE DISTRIBUTION IN ALL SECTIONS IN 100 SECONDS BY ΔT=0.1 S, ΔX=1 M, LENGTH 10 M WITH PRESSURE AT ENTRANCE (FIRST BLOCK) 100 MPA AND AT 

EXIT (LAST BLOK) 20 MPA 

Time 
(s) 

Pressure (MPa) 
First block Second block Third block 4th block 5thblock 6thblock 7thblock 8thblock 9thblock 10th block 

0.1 100 20 20 20 20 20 20 20 20 20 
0.2 100 28 20 20 20 20 20 

20 
20 20 20 

0.3 100 34.4 20.8 20 20 20 20 20 20 
0.4 100 39.6 22.08 20.08 20 20 20 20 20 20 

. . . . . . . . . . . 

. . . . . . . . . . . 
99.6 100 91.11 82.22 73.33 64.44 55.56 46.67 37.78 28.89 20 
99.7 100 91.11 82.22 73.33 64.44 55.56 46.67 37.78 28.89 20 
99.8 100 91.11 82.22 73.33 64.44 55.56 46.67 37.78 28.89 20 
99.9 100 91.11 82.22 73.33 64.44 55.56 46.67 37.78 28.89 20 
100 100 91.11 82.22 73.33 64.44 55.56 46.67 37.78 28.89 20 
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