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Studies of Rule Induction by STRIM
from the Decision Table

with Contaminated Attribute Values
from Missing Data and Noise

— In the Case of Critical Dataset Size —
Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno

Abstract—STRIM (Statistical Test Rule Induction Method) has
been proposed as a method to effectively induct if-then rules from
the decision table which is considered as a sample set obtained
from the population of interest. Its usefulness has been confirmed
by simulation experiments specifying rules in advance, and by
comparison with conventional methods. However, scope for future
development remains before STRIM can be applied to the analysis
of real-world data sets. The first requirement is to determine the
size of the dataset needed for inducting true rules, since finding
statistically significant rules is the core of the method. The second
is to examine the capacity of rule induction from datasets with
contaminated attribute values created by missing data and noise,
since real-world datasets usually contain such contaminated data. This
paper examines the first problem theoretically, in connection with the
rule length. The second problem is then examined in a simulation
experiment, utilizing the critical size of dataset derived from the first
step. The experimental results show that STRIM is highly robust in
the analysis of datasets with contaminated attribute values, and hence
is applicable to real-world data.
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I. INTRODUCTION

ROUGH Sets theory as introduced by Pawlak [1] provides
a database called the decision table, with various

methods for inducting if-then rules, and determination of the
structure of rating and/or knowledge in the database. Such rule
induction methods are needed for disease diagnosis systems,
discrimination problems, decision problems, and other aspects,
and consequently many effective algorithms for rule induction
by rough sets have reported in the literature [2] – [7]. However,
these methods and algorithms have paid little attention to
mechanisms of generating the database, and have generally
focused on logical analysis of the given database. This narrows
the scope of the analysis. In a previous study [8] we devised
a model of data generation for the database, proposed a
statistical rule induction method, and presented an algorithm
named STRIM. In a simulation experiment based on the model
of the data generation with if-then rules specified in advance,
STRIM successfully inducted the specified true rules from
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different databases generated from the same specified rules
[8], whereas the conventional methods [2], [4], [7] could not.

In contrast to the ideal data set generated by the simulation
experiment, real-world data sets are often small, and/or contain
missing and contaminated values in the decision table. The
problem of the size of the dataset has seldom been studied to
date, as the conventional methods mainly focus on the logical
aspect of the rule induction problems and their related features,
and hence the issue of dataset size has been of little interest.
Conversely, many studies have proposed methods for handling
tables containing missing values. One study [9] summarizes
this work, based on reference to about fifty studies. The
conclusions reached in [9] were:

1) Those studies could be divided into two types:
sequential or parallel methods.

2) In the sequential methods, missing attribute
values are first replaced by known values during
preprocessing, and the rules are then inducted using
the ordinary rule induction method [10]. Over ten
preprocessing methods have been used [9].

3) In parallel methods, no preprocessing occurs: i.e., the
rules are inducted from the original table by devising
the ordinary rule induction methods, in order to
accept and handle the missing attribute values. The
parallel method distinguishes two types of missing
attribute values: ”lost” and ”do not care” conditions.
The former condition is handled as a value outside
the range of the attribute values, whereas the latter
is handled as any value within the range.

After summarizing the rule induction method by STRIM,
our present paper theoretically studies the dataset size problem,
and derives the expression Nlst(w, RL) of the minimum size
of the data set which can induct a true rule with the rule
length RL and the probability w [%]. This paper also examines
contamination of the decision table having not only missing
values in the condition attributes but also contaminated values
in the decision attribute, by applying it as a parallel method to
examine the capacity of STRIM at the critical data size Nlst(w
= 100, RL = 2). The validity of the expression Nlst(w, RL)
and the capacity of STRIM for contaminated datasets are
confirmed by a simulation experiment. These studies yield
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useful information for analyzing real-world datasets, since the
conventional method can give no such guiding principle. The
results further illustrate the advantages of STRIM over the
conventional method.

II. DATA GENERATION MODEL AND THE DECISION TABLE

Rough Sets theory is used for inducting if-then rules hidden
in the decision table S. S is conventionally denoted S =
(U,A = C ∪ D, V, ρ). Here, U = {u(i)|i = 1, ..., |U | = N}
is a sample set, A is an attribute set, C = {C(j)|j = 1, ...,
|C|} is a condition attribute set, C(j) is a member of C and a
condition attribute, and D is a decision attribute. V is a set of
attribute values denoted by V =

⋃
a∈A Va and is characterized

by an information function ρ: U × A → V . For example, if
a = C(j) ∈ A (j = 1, ..., |C|) then Va = {1, 2, ..., MC(j)}
and if a = D then Va = {1, 2, ..., MD}. Table I shows an
example where |C| = 6, MC(j) = 6, MD = 6, ρ(x = u(1),
a = C(1)) = 6, ρ(x = u(2), a = C(2)) = 2.

STRIM considers the decision table to be a sample dataset
obtained from an input-output system including a rule box
(Fig. 1), and a hypothesis regarding the decision attribute
values (Table II). A sample u(i) consists of its condition
attributes values of |C|-tuple uC(i) and its decision attribute
uD(i). uC(i) is the input into the rule box, and is transformed
into the output uD(i) using the rules contained in the rule box
and the hypothesis. For example, specify the following rules
in the rule box:

R(d): if Rd then D = d, (d = 1, ..., MD = 6),
where Rd = (C(1) = d) ∧ (C(2) = d) ∨ (C(3) = d)
∧ (C(4) = d). Generate uC(i) = (vC(1)(i), vC(2)(i), ...,
vC(|C|)(i)) of u(i) by use of random numbers with a uniform
distribution, and then uD(i) is determined using the rules
specified in the rule box and the hypothesis.

In contrast, u(i) = (uC(i), uD(i)) is measured by an
observer, as shown in Fig. 1. Existence of NoiseC and
NoiseD leads to missing values in uC(i), and changes
uD(i) to create other values of uD(i), respectively. This
model is closer to the real-world system. However, Table I
shows an example generated by this specification without both
noises, for a plain explanation of the system. Inducting if-then
rules from the decision table is then identifying the rules in
the rule box, by use of the set of observed inputs-outputs
(uC(i), uD(i)) (i = 1, ..., |U | = N).

III. SUMMARIES OF RULE INDUCTION PROCEDURES BY
STRIM

STRIM inducts if-then rules from the decision table through
two processes, in separate stages. The first stage process
is that of statistically discriminating and separating the set
of indifferent data from the set of uniquely determined or
conflicted data in the decision table (See Table II). Specifically,
assume CP (k) =

∧
j ( C(jk) = vj ) (∈ VC(jk)) as the

condition part of the if-then rule, and derive the set U(CP (k))
= {u(i)|uC=CP (k)(i)}. Also derive U(m) = {u(i)|uD=m(i)}
(m = 1, ..., MD). Calculate the distribution f : (n1, n2, ...,
nMD ) of the decison attribute values of U(CP (k)), where
nm = |U(CP (k))∩U(m)| (m = 1, ..., MD). If the assumed

CP (k) does not satisfy the condition U(Rd) ⊇ U(CP (k))
(sufficient condition of specified rule Rd) or U(CP (k))
⊇ U(Rd) (necessary condition), CP (k) only generates the
indifferent data set based on Hypothesis 2 in Table II, and
the distribution f does not have partiality. Conversely, if
CP (k) satisfies either condition, f has partiality, since uD(i)
is determined by Hypothesis 1 or 3. Accordingly, whether f
has partiality or not determines whether the assumed CP (k)
is neither a necessary nor sufficient condition. Whether f has
partiality or not can be determined objectively by statistical
test of the following null hypothesis H0 and its alternative
hypothesis H1:

H0: f does not have partiality. H1: f has partiality.

Table III shows the number of examples of CP (k), (n1, n2,
..., nMD

) and an index of the partiality by z derived from
Table I with N = 10000, in order to illustrate this concept. For
example, the first row means: 100000 denotes CP (k = 1) =
(C(1) = 1) (the rule length is RL = 1) and its corresponding
f = (495, 231, 231, 254, 248, 245) and z = 13.75, where

z =
nd + 0.5 − npd

(npd(1 − pd))0.5
, (1)

nd = max(n1, n2, ..., nMD
= n6), (d ∈ {1, 2, ..., MD =

6}), pd = Pro(D = d), n =
MD∑

m=1

nm. In principle, (n1, n2,

..., nMD
) obeys a multinomial distribution that is adequately

approximated by the standard normal distribution, by use of nd

under the condition (testing condition): pdn ≥ 5 and n(1−pd)
≥ 5 [11]. In the same way, the fourth row 110000 denotes
CP (k = 4) = (C(1) = 1) ∧ (C(2) = 1) (RL = 2), the
eighth 110400 is (C(1) = 1) ∧ (C(2) = 1) ∧ (C(4) = 4)
(RL = 3), and so on. Here, if we specify a standard of the
significance level such as z ≥ zα = 3.0 and reject H0, then
the assumed CP (k) becomes a candidate for the rules in the
rule box.

The second stage process arranges the set of rule candidates
derived from the first process, and finally estimates the rules
in the rule box, since some candidates may satisfy the
relationship: CP (ki) ⊆ CP (kj) ⊆ CP (kl) · · · . For example,
in the case 100000 ⊃ 110000 ⊃ 110400 (see Table III). The
basic notion is to represent the CP (k) of the maximum z;
that is, the maximum partiality. In the above example, STRIM
selects a CP (k) of 110000, which by chance coincides with
the rule specified in advance. Fig. 2 shows the STRIM
algorithm [8].

Table IV shows the estimated results for Table I with
N = 10000. STRIM inducts all of twelve rules specified
in advance, and one extra rule. However, there are clear
differences between them in their indices of accuracy and
coverage. A simulation experiment in other work [8] also
showed that conventional methods such as LEM2 [4] and
FDMM [6], [7] with lower approximation could barely induct
the significant rules. The rules inducted by these methods
were highly dependent on the sample set, but STRIM clearly
resolved these problems.
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TABLE I
AN EXAMPLE OF A DECISION TABLE

U C(1) C(2) C(3) C(4) C(5) C(6) D
1 6 1 4 4 6 5 4
2 1 2 2 3 1 4 2
3 3 5 3 5 5 6 4
4 5 2 4 3 1 5 3
5 2 6 5 5 2 1 5
· · · · · · · · · · · · · · · · · · · · · · · ·

N − 1 1 2 5 2 6 5 4
N 2 1 6 6 3 4 6

Rule Box &
Hypothesis

Input:

u (i)

Output:

u (i)C D

Observer
NoiseC NoiseD

Fig. 1. Rough Sets system contaminated with noise: Input is a tuple of the condition attributes’ value and its output is the decision attribute’s value

TABLE II
HYPOTHESIS WITH REGARD TO THE DECISION ATTRIBUTE VALUE

Hypothesis 1 uC(i) coincides with R(d), and uD(i) is uniquely determined as D = d
(uniquely determined data).

Hypothesis 2 uC(i) does not coincide with any R(d), and uD(i) can only be determined
randomly (indifferent data).

Hypothesis 3 uC(i) coincides with several R(d) (d = d1, d2, ...), and their outputs of uC(i)
conflict with each other. Accordingly, the output of uC(i) must be randomly
determined from the conflicted outputs (conflicted data).

IV. CONSIDERATION ON TESTING CONDITION

As described in Section III, the data set applicable to
STRIM must satisfy the testing condition: pdn ≥ 5 and
n(1 − pd) ≥ 5. The least number satisfying the condition is
denoted with N0, and then consider the following event with
a given probability w:

P (n ≥ N0) = P (z ≥ z0) = w (2)

Here, z =
n + 0.5 − Npc√

Npc(1 − pc)
, z0 =

N0 + 0.5 − Npc√
Npc(1 − pc)

. pc =

P (C = CP (k)) =
∏

j

P (C(jk) = vk) is the outcome

probability of the condition part CP (k) in the decision table.
For example, if CP (K) = (C(1) = 1) ∧ (C(2) = 1)
(RL = 2) then pc = P (C(1) = 1) · P (C(2) = 1). Assuming
that z obeys the standard normal distribution, z0 is explicitly
determined, and the least N denoted with Nlst satisfying (2)
is given by:

Nlst =
−b ±√

b2 − 4ac

2a
(3)

where +: z0 ≤ 0, −: z0 > 0, a = p2
c , b = −{(2pc(N0 +

0.5) + z02pc(1 − pc)} and c = (N0 + 0.5)2.
Accordingly, Nlst in (3) is mainly determined by parameters

w and RL. So let us denote Nlst in (3) with Nlst(w,RL).

Fig. 3 shows Nlst(w,RL) evaluated by (3) at w = 0.1 [%]
(z0 = 3.0), = 2.3 [%] (z0 = 2.0), = 15.9 [%] (z0 = 1.0), =
50.0 [%] (z0 = 0.0), = 84.1 [%] (z0 = −1.0), = 97.7 [%]
(z0 = −2.0), = 99.9 [%] (z0 = −3.0) every RL = 1, 2 and
3 in the specification of section II; where P (C(j) = vk) =
1/6 ( j = 1, ..., |C| = 6 ). For example, Fig. 3 yields the
following useful information:

1) Supposing RL = 2, N = 1865 at least is needed to
induct true rules with the probability of almost w =
100 [%]. This meaning is denoted with 1865 = Nlst

(w = 100 [%], RL = 2).
2) If a data set of N = 1000 is given, then the

probability of inducting the true rules with RL = 2
is estimated to be about w = 30 [%]. This meaning
is denoted with 30 [%] = w = N−1

lst (Ngvn = 1000,
RL = 2).

To confirm the consideration outlined in this section, a
simulation experiment was conducted using the decision table
containing samples of N = 10000 generated in section II, and
the following procedures:

Step 1: Randomly select samples by Nlst (w,RL =
2) from the decision table (N = 10000), and form a
new decision table;
Step 2: Apply STRIM to the new table, and count the
number of inducted true rules specified in advance;
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TABLE III
AN EXAMPLE OF A CONDITION PART AND CORRESPONDING FREQUENCY OF THEIR DECISION ATTRIBUTE VALUES

trying
CP (k) C(1) C(2) C(3) C(4) C(5) C(6) (n1, n2, ..., n6) z

1 1 0 0 0 0 0 (495, 231, 231, 254, 248, 245) 13.75
2 2 0 0 0 0 0 (247, 491, 244, 229, 229, 254) 13.64
3 0 0 0 0 0 5 (287, 246, 263, 286, 300, 295) 1.38
4 1 1 0 0 0 0 (253, 4, 2, 5, 7, 2) 33.78
5 1 2 0 0 0 0 ( 50, 51, 45, 61, 48, 47) 1.72
6 2 1 0 0 0 0 ( 45, 53, 51, 50, 34, 51) 0.98
7 2 2 0 0 0 0 ( 5, 244, 5, 1, 5, 4) 33.11
8 1 1 0 4 0 0 ( 41, 0, 0, 5, 0, 0) 13.39
9 1 1 0 5 0 0 ( 39, 0, 0, 0, 7, 0) 12.59
10 2 1 0 0 0 6 ( 6, 17, 10, 7, 4, 8) 3.29
11 2 2 1 0 0 0 ( 5, 44, 0, 0, 0, 0) 13.93
12 2 2 2 0 0 0 ( 0, 44, 0, 0, 0, 0) 15.03
13 3 3 0 6 0 0 ( 0, 46, 0, 0, 0, 2) 14.91
14 0 0 4 5 5 0 ( 8, 6, 6, 10, 13, 4) 2.22
15 0 0 4 5 6 0 ( 8, 7, 11, 8, 9, 6) 1.13
16 0 0 4 5 0 1 ( 7, 11, 4, 8, 9, 6) 1.60
17 0 0 4 5 0 3 ( 5, 8, 7, 10, 11, 9) 1.20
18 0 0 4 5 0 6 ( 6, 7, 6, 9, 8, 7) 0.95
19 0 0 4 6 2 0 ( 13, 8, 7, 7, 4, 6) 2.40
20 0 0 4 6 4 0 ( 10, 7, 9, 7, 13, 7) 1.72
21 0 0 4 6 5 0 ( 15, 10, 5, 9, 8, 6) 2.46
22 0 0 0 6 6 5 ( 7, 7, 8, 4, 9, 12) 1.83

TABLE IV
RESULTS OF ESTIMATED RULES FOR THE DECISION TABLE IN TABLE I (WITHOUT NOISE) BY STRIM

esti-
mated
R(i) C(1) C(2) C(3) C(4) C(5) C(6) D (n1, ..., n6) p-value (z) accuracy coverage

1 3 3 0 0 0 0 3 ( 6, 4, 280, 6, 2, 2) 0(35.71) 0.933 0.168
2 0 0 5 5 0 0 5 ( 4, 3, 6, 3, 278, 7) 0(35.31) 0.924 0.168
3 0 0 4 4 0 0 4 ( 4, 6, 7, 267, 7, 3) 0(34.19) 0.908 0.158
4 4 4 0 0 0 0 4 ( 5, 4, 4, 255, 3, 2) 0(34.10) 0.934 0.151
5 6 6 0 0 0 0 6 ( 4, 2, 1, 4, 3, 250) 0(34.10) 0.947 0.149
6 0 0 3 3 0 0 3 ( 2, 3, 246, 3, 1, 2) 0(34.10) 0.957 0.147
7 1 1 0 0 0 0 1 (253, 4, 2, 5, 7, 2) 0(33.78) 0.927 0.152
8 0 0 1 1 0 0 1 (247, 3, 6, 3, 3, 5) 0(33.34) 0.925 0.149
9 2 2 0 0 0 0 2 ( 5, 244, 5, 1, 5, 4) 0(33.11) 0.924 0.148

10 0 0 6 6 0 0 6 ( 5, 4, 5, 3, 3, 243) 0(33.04) 0.924 0.145
11 0 0 2 2 0 0 2 ( 4, 237, 5, 5, 5, 5) 0(32.22) 0.908 0.144
12 5 5 0 0 0 0 5 ( 3, 1, 5, 6, 225, 4) 0(31.75) 0.922 0.136
13 0 0 0 0 1 2 3 ( 50, 36, 65, 45, 38, 35) 3.61e-4(3.38) 0.242 0.039

Step 3: Repeat Step 1 and Step 2 Nr times;
Step 4: Calculate the rate of true rules inducted out
of Nr trials.

Fig. 4 shows the comparison of Nlst(w, RL = 2) (w = 0.1
[%] (z0 = 3.0), = 2.3 [%] (z0 = 2.0), ..., = 99.9 [%] (z0 =
−3.0)) between theoretical values studied in this section and
the experimental values obtained from the above procedures by
Nr = 100. The experimental value adequately represents the
theoretical value, and confirms the validity of the theoretical
considerations.

V. EXPERIMENTAL STUDIES ON MISSING VALUES IN THE
CONDITION ATTRIBUTE

Missing values in parallel methods are of two types, as
noted in section I: ”lost” and ”do not care” values. These
are distinguished and denoted by ”?” and ”*” respectively
[9]. Modified STRIM (denoted by mSTRIM) can accept and
handle missing values in accordance with reference [9] as
follows: With respect to ∀x ∈ U and ∀a ∈ C(jk) of CP (k), if
ρ(x, a) = ? then x /∈ U(CP (k)) and if ρ(x, a) = * then x ∈

U(CP (k)). A simulation experiment similar to that described
in section IV was conducted to examine how mSTRIM can
accept and handle the missing values against the data set of
the critical size, by changing Step1, and adding the following
procedures:

Step1: Randomly select u(i) by 1865 = Nlst(w
= 100, RL = 2) from the decision table (N =
10000) in Section II, and determine whether u(i)
has a number of Nmiss of missing values with the
probability q [%] (mixing rate of noise). If u(i) has
the Nmiss of missing values, then randomly select
the Nmiss of condition attributes, and replace them
with ”?” or ”*”, and build a new decision table.

Fig. 5 shows the experimental results by the rate of true
rules inducted by mSTRIM and Nr = 100 with respect to q
[%] separately by Nmiss = 1 (a), = 2 (b), = 3 (c). The rate
by ”*” and ”?” is denoted by � and � respectively. Based on
this figure, mSTIRM is very robust against the missing noise
of both ”*” and ”?” type, since mSTRIM can induct true rules
by more than 95 [%] until q = about 60 [%] at Nmiss = 1,
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int main(void) {
int rule[|C|]={0,...,0}; //initialize trying rules
int tail=-1; //initial vale set
input data; // set decision table
rule_check(tail,rule); // Stage 1
make Pyramid(l) (l=1,2,...) so that every r(k) belongs to one Pyramid at least;
// Stage 2, r(k): rule candidate
make rePyramid(l) (l=1,2,...); // Stage 2
reduce rePyramid; // Stage 2
} // end of main

int rule_check(int tail,int rule[|C|]) { // Stage 1
for (ci=tail+1; cj<|C|; ci++) {
for (cj=1; cj<=|C[ci]|; cj++) {
rule[ci]=cj; // a trying rule sets for test
count frequency of the trying rule; // count n1, n2, ...
if (frequency>=N0) { //sufficient frequency ?
if (|z|>3.0) { //sufficient evidence ?

store necessary data such as rule, frequency of n1 and n2, and z
} // end of if |z|

rule_check(ci,rule);
} // end of if frequency

} // end of for cj
rule[ci]=0; // trying rules reset

} // end of for ci
} // end of rule_check

Fig. 2. An algorithm for STRIM (Statistical Test Rule Induction Method)

Fig. 3. Theoretical N(w, RL) evaluated by (3) at w = 0.1 [%] (z0 = 3.0),
= 2.3 [%] (z0 = 2.0), = 15.9 [%] (z0 = 1.0), = 50.0 [%] (z0 = 0.0), =
84.1 [%] (z0 = −1.0), = 97.7 [%] (z0 = −2.0), = 99.9 [%] (z0 = −3.0)
(�: RL = 1, �: RL = 2, �: RL = 3)

30 [%] at Nmiss = 2 and 20 [%] at Nmiss = 3 respectively,
although the size of the dataset used was at the critical level.

VI. EXPERIMENTAL STUDIES ON CONTAMINATED VALUES
IN THE DECISION ATTRIBUTE

The study of inducting if-then rules from decision tables
containing decision attribute values changed by some cause
has seldom been tried to date, even though real-world datasets

Fig. 4. Comparison of N(w, RL = 2) between theoretical and experimental
values at w = 0.1 [%] (z0 = 3.0), = 2.3 [%] (z0 = 2.0), ..., = 99.9 [%]
(z0 = −3.0)) (�: experimental value, •: theoretical value)

may contain such values. The model of changing values by
NoiseD and observing such datasets is shown in Fig. 1. To
examine the performance of STRM for inducting true rules
from such a dataset against the critical data size, we conducted
a simulation experiment similar to that in sections IV and V,
by changing Step1 and adding other procedures:

Step1: Randomly select u(i) by 1865 = Nlst(w =
100, RL = 2) from the decision table (N = 10000),
change uD(i) (i = 1, ..., 1865) randomly into one
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(a)

(b)

(c)

Fig. 5. Experimental results with respect to ”?”: �, ”*”: �

of {1, 2, ..., MD} with the probability q [%], and
build a new decision table.

The experimental results by the rate of true rules inducted
by STRIM and Nr = 100 with respect to q [%] (Fig. 6) show
that STIRM is highly robust against the contaminated noise in
the decision attribute, since it can estimate true rules by better
than 95 [%] until q = about 60 [%], even though the dataset
was at the critical size.

VII. CONCLUSION

We conducted a simulation experiment to examine the
ability and capacity of STRIM for the data size of the

Fig. 6. Experimental results with respect to noise contaminated in decision
attribute

decision table, and handling and accepting missing values
in the condition attributes and contaminated values in the
decision attribute. The results of these experiments were given
in the form of the rate of true rules inducted. The results
overall show that STRIM is highly robust even where such
contaminated values exist. This suggests that STRIM is highly
applicable to real-world datasets, and carries advantages for
the if-then induction problem.
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