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Abstract—Structural failure is caused mainly by damage that 
often occurs on structures. Many researchers focus on to obtain very 
efficient tools to detect the damage in structures in the early state. In 
the past decades, a subject that has received considerable attention in 
literature is the damage detection as determined by variations in the 
dynamic characteristics or response of structures. The study presents 
a new damage identification technique. The technique detects the 
damage location for the incomplete structure system using output 
data only. The method indicates the damage based on the free 
vibration test data by using ‘Two Points Condensation (TPC) 
technique’. This method creates a set of matrices by reducing the 
structural system to two degrees of freedom systems. The current 
stiffness matrices obtain from optimization the equation of motion 
using the measured test data. The current stiffness matrices compare 
with original (undamaged) stiffness matrices. The large percentage 
changes in matrices’ coefficients lead to the location of the damage. 

TPC technique is applied to the experimental data of a simply 
supported steel beam model structure after inducing thickness change 
in one element, where two cases consider. The method detects the 
damage and determines its location accurately in both cases. In 
addition, the results illustrate these changes in stiffness matrix can be 
a useful tool for continuous monitoring of structural safety using 
ambient vibration data. Furthermore, its efficiency proves that this 
technique can be used also for big structures. 
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I. INTRODUCTION 

HIS study indicates the damage that is based on the 
vibration by using “Two Points –Condensation (TPC) 

technique”, this technique is to create a set of matrices by 
reducing the whole structure stiffness matrix to two degree of 
freedoms matrices and  compare  the condensed stiffness 
matrices’ coefficients that calculated by using measured test 
data with theoretical condensed stiffness matrices’ 
coefficients, according to  the large percentage changes in 
matrices’ coefficients, location of the damage can be easily 
estimated. 

TPC technique is an analytical method that reduces the 
theoretical system rigidity matrix into a set of two degree of 
freedom stiffness matrices using the Guyan condensation 
which is the simplest and most popular condensation approach 
and has been widely used for large number of engineering 
problems and implemented into many commercial finite 
element analysis codes [1]. By comparing the theoretical 
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structure rigidity (the rigidity of structure model according to 
the drawings) with the calculated rigidity (that calculated 
using signal data), the large changes in stiffness matrices’ 
coefficients imply the locations of damage.  

In TPC technique, calculate the real stiffness matrices by 
finding optimal solution of Equation of Motion (1) that satisfy 
the system real properties. 
 

ሾܯሿଶ௫ଶሼݑሽሷ ଶ௫ଵ ൅ ሾܥሿଶ௫ଶሼݑሶ ሽଶ௫ଵ ൅ ሾܭሿଶ௫ଶሼݑሽଶ௫ଵ ൌ 0       (1) 
 

where K: Stiffness Matrix of system, M: Mass Matrix of 
system, C: Damping Matrix of system, ݑሷ : The acceleration 
vector, ݑሶ : The velocity vector, ݑ: The displacement vector. 

The optimization uses the recorded acceleration signals ݑሷ  
and  velocity ݑሶ  calculated by using measured acceleration, and 
displacement ݑ calculated from velocity while using the 
theoretical mass matrix M of real structure because it can be 
calculated easily and it does not change mostly [2]. 

Damping matrix C is calculated by considering the damping 
proportional to the mass and the stiffness [3]: 
 

ܥ ൌ ܽ଴ܯ ൅ ܽଵ(2)      ܭ 
 

The damping ratio for the nth mode of such a system is: 
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The coefficients ܽ଴ and ܽଵ can be determined from the ith 

and jth modes’ damping ratios ξi and ξj, respectively. Damping 
ratios are calculated using Half-Power Bandwidth Method [4]. 

TPC technique uses the multi objective optimization. When 
there is more than one design objective for the problems, the 
solution defines as Multi-objective optimization. The TPC 
technique finds the optimal stiffness value to satisfy the 
equation of motion, where the input data included the mass 
matrix and initial stiffness matrix (calculated undamaged 
stiffness matrix) in addition, the corresponding vectors of 
acceleration, velocity, and displacement. The damping matrix 
optimized due to the stiffness updating. The solution is 
controlled by frequencies’ satisfaction.  

The damage location is obtained by observation on the 
value of changes in the stiffness coefficients of the two 
degrees of freedom systems. 

II. SYSTEM CONDENSATION 

A useful method of accomplishing the reduction of the 
stiffness matrix is to identify those degrees of freedom to be 
condensed or reduced as secondary degrees of freedom, and 
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express them in the term of the remaining primary degrees of 
freedom. The Guyan condensation method divides the degrees 
of freedom into secondary and primary DOF’s, where those 
degrees of freedom arranged to put the (secondary) degrees of 
freedom as the first (s) coordinates. 

The stiffness equation for the structure may be rewritten 
using partition matrices as: 

 

ቈ
ሾKୱୱሿ ൣKୱ୮൧

ൣK୮ୱ൧ ൣK୮୮൧
቉ ቊ
ሼuୱሽ
൛u୮ൟ

ቋ ൌ ቊ
ሼ0ሽ
൛F୮ൟ

ቋ   (4) 

        
where {uୱ} is the displacement vector corresponding to the s 
degrees of freedom to be reduced and {u୮} is the vector 
corresponding to the reigning p independent degrees of 
freedom [5]. 

The transform matrix ሾTሿ obtained using (5) and (6). The 
reduced stiffness matrix ሾKഥሿ can be expressed as a 
transformation of the system stiffness matrix [K] as shown in 
(7). The reduced mass matrix is calculated by (8). 
 

ቊ
ሼuୱሽ
൛u୮ൟ

ቋ ൌ ൤
ሾTഥሿ
ሾIሿ
൨ ൛u୮ൟ ൌ ሾTሿ൛u୮ൟ               (5) 

      
 ሾTഥሿ ൌ െሾKୱୱሿିଵൣKୱ୮൧    (6) 

       
 ሾKഥሿ ൌ ሾTሿ୘ሾKሿሾTሿ   (7) 

 
ሾMഥሿ ൌ ሾTሿ୘ሾMሿሾTሿ                 (8) 

III.  EXPERIMENTAL STUDY 

To apply the developed damage detection algorithm given 
in this study, the beam’s cross section is a rectangular cross 
section  10cm by 2.19cm and the material properties of the 
beam  are taken as density 7.85x10-6 ton/cm3 and Young’s 
modulus E  2100 ton/cm2 for modeling in the MATLAB 
software. In damage model, the element 2 has extra thickness 
0.38cm represents the damage (the changing in thickness leads 
to change in stiffness) the total thickness for element 2 is 
2.57cm as shown in Fig. 1. 

 

 

Fig. 1 Damage model steel beam A-B shown the DOF’s, (a) 5-element test beam, (b) 6-element test 
 

The considered degree of freedoms (DOFs) are vertical 
displacements and rotations as shown in Fig. 1, where the 
DOFs (θଵ, θଶ, θଷ, θସ, θହ and θ଺) refer to the rotations and the 
DOFs (ߥଶ, ߥଷ, ߥସand ߥହ) refer to the vertical displacements. 

The mass matrix that is used in this study is Consistent 
Mass Matrix while the stiffness matrix that is used is the 
Euler–Bernoulli beam Element Stiffness Matrix [6]. 

At first case (Fig. 1 (a)) the global stiffness matrix of the 
five element system is condensed to DOFs:	ߥଶ െ ଶߥ	,ସߥ െ  ,ହߥ
ଷߥ	 െ ଷߥ ,ସߥ െ ସߥ ହ andߥ െ  ହ. The resultant matrices andߥ
condensed structure’s systems are given in Fig. 2. 

The beam is modeled as five element system that make the 
damage location is all through the element length (see Fig. 3) 
(between nodes 2-3) while in the second case six equal length 
elements is used which means the damage location is between 
the nodes 2 and 4 (see Fig. 1 (b)). 

In the first case, the damaged beam prototype is used with 
four accelerometers placed on the nodes 2, 3, 4 and 5 as 
shown in Fig. 3.  

The mass of the accelerometer is 2.85 Kg (including the 
apparatus for connections) see Fig. 5; these masses are added 
to the global mass matrix of the system as lumped mass at the 
nodes that accelerometers located. In this technique the time 
domain and incomplete system is considered. The system 
vibrated by impact excitation. The recorded acceleration 
signals for five element beam test and six element beam test 
shown in Fig. 6. 

To obtain velocity and displacement that is necessary to use 
in the equation of motion, the trapezoidal rule for numerical 
integration is applied to acceleration data [7]. The modes’ 
frequencies are obtained by using fast Fourier transforming 
(FFT). The frequencies used for control the solution and 
obtaining the damping coefficients [8]. 
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Fig. 2 Reduced system of the beam to 2 DOF’s system to different DOF’s 
 

 

Fig. 3 The test of 5 element steel simply supported beam with accelerometers 
 

 

Fig. 4 Damage element in beam  
 

   

 Fig. 5 Data-acquisition and Accelerometer 
 

Equation (9) is representing the changes in the stiffness 
matrices using (TPC). 
 

௫ି௬ܭ߂ ൌ ൤
௫௫݇߂ ௫௬݇߂
௬௫݇߂ ௬௬݇߂

൨   (9) 

  
Comparing the	݇߂௫௫ with the	݇߂௬௬, it is seen that percentage 
change of ݇௫௫ is greater than the percentage change of ݇௬௬that 
means the damage lies on the left side of the element. The 
result of the test of  five element steel beam using TPC 
technique is shown in the Table I, while The result of the test 
of six element steel beam (Fig. 1 (b)) using TPC technique are 
shown in Table II. 

 
TABLE I 

THE CHANGES IN THE STIFFNESS COEFFICIENTS USING THE TPC TECHNIQUE 

FOR THE 5 ELEMENT BEAM 
DOFs for 
condensed 

matrix

Exact Changes in the 
stiffness matrix 

(ΔK %) 

Changes in the stiffness 
matrix using TPC (ΔK %) 

૛ࣇ] െ ૝]  ቂࣇ 22.74 15.08
15.08 7.20

ቃ ቂ૛૚. ૟૚ ૚૝. ૚ૡ
૚૝. ૚ૡ ૟. ૟૙

ቃ 

૛ࣇ] െ ૞] ቂ22.80ࣇ 14.18
14.18 4.70

ቃ ቂ૛૚. ૠ૞ ૚૞. ૚૛
૚૞. ૚૛ ૝. ૡ૚

ቃ 

૜ࣇ] െ ૝] ቂ21.52ࣇ 16.93
16.93 11.68

ቃ ቂ૛૙. ૚૜ ૚ૡ. ૙૛
૚ૡ. ૙૛ ૚૚. ૛ૡ

ቃ 

૜ࣇ] െ ૞] ቂ17.86ࣇ 12.26
12.26 5.74

ቃ ቂ૚ૠ. ૛૙ ૚૜. ૜૚
૚૜. ૜૚ ૞. ૙૜

ቃ 

૝ࣇ] െ ૞] ቂ17.86ࣇ 12.26
12.26 5.74

ቃ ቂ૚ૠ. ૜૛ ૚૙. ૡ૝
૚૙. ૡ૝ ૞. ૞૞

ቃ 
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Fig. 6 Recorded acceleration signals for 5 elements steel beam (case-1) and 6 element steel beam, (case-2) where the proportional damping is 
clear in both cases 

  
TABLE II 

THE CHANGES IN THE STIFFNESS COEFFICIENTS USING THE TPC TECHNIQUE 

FOR THE 6 ELEMENT BEAM 
DOFs for 
condensed 

matrix 

Exact Changes in the 
stiffness matrix (ΔK %) 

Changes in the stiffness 
matrix using TPC (ΔK %) 

૛ࣇ] െ 	૜] ቂࣇ 6.03 14.83
14.83 16.87

ቃ ቂ	 6.61 15.53
15.53 	17.01

ቃ 

૛ࣇ] െ 	૟] ቂࣇ 7.10 14.36
14.36 5.04

ቃ ቂ 7.75 14.26
14.26 5.31

ቃ 

૜ࣇ] െ 17.02	૞] ቂࣇ 	14.32
14.32 6.67

ቃ ቂ	17.35 	14.52
14.52 6.99

ቃ 

૝ࣇ] െ 6.40		૞] ቂࣇ 9.83
9.83 	4.07

ቃ ቂ	6.94	 9.71
9.71 	 4.64

ቃ 

IV. THE DISCUSSION AND CONCLUSION 

Considering Table II: For the first result of DOF’s [ߥଶ െ
 ଷ], the node 2 is outside the damage while the node 3 containߥ
the damage, therefore the large change concentrated at	ߥଶ. 

 For the result of DOF’s [ߥଶ െ  ଺] the both degrees ofߥ
freedom belong to nodes that located outside the damage, but 
node 2 is closer to damage than node 6 that explain large 
change in coefficient ݇ఔమఔమcompare with coefficient	݇ఔలఔల. 
The DOF’s [ߥଷ െ  ହ] choose because the position of node 3 atߥ
the damage and the position of the node 5 away from the 
damage, that produce large change in coefficient	݇ఔయఔయ. 

The result of ΔK for [ߥସ െ  ହ] shows the damage to the leftߥ
side of element although the both nodes far away from 
damage. 

The method shows large change in stiffness at the node 
where it near to the damage location, while there small change 
at the recorded nodes that far from the damage. 

Comparison of results shows that the Guyan condensation is 
suitable for use in this technique for beam type structure, the 
method provide a good result for beam type of structure.  

According to Table I the TPC technique shows the location 
of damage regardless the place of the acceleration sensors; the 
technique demonstrates the location of damage when the 
acceleration sensor nears the damage as well as it distant from 
the damage. 

The method can show the damage using output data only 
for incomplete system so it can be used for health monitoring 
of structures using ambient vibration data via less number of 
sensors. 

For large structures, this method may have some limitations 
due to the static condensation errors, where control of the 
frequencies is not enough to obtain stable result. 
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