
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1510

Abstract—Components of a software system may be related in a

wide variety of ways. These relationships need to be represented in

software architecture in order develop quality software. In practice,

software architecture is immensely challenging, strikingly

multifaceted, extravagantly domain based, perpetually changing,

rarely cost-effective, and deceptively ambiguous. This paper analyses

relations among the major components of software systems and

argues for using several broad categories for software architecture for

assessment purposes: strongly adequate, weakly adequate and

functionally adequate software architectures among other categories.

These categories are intended for formative assessments of

architectural designs.

Keywords—Components, Model Driven Architecture, Graphical

User Interfaces.

I. INTRODUCTION

HIS paper critically examines the current best practices in

software architectural studies and suggests some strategies

for improvements through formative assessments. Most

engineering fields are founded on scientific disciplines. Unlike

most engineering fields, software engineering is primarily

based on current best practices [1]. There are some recent

attempts to establish software science as a foundation of

software engineering [2]. This may promote more analytical

reasoning about software architecture, if it becomes popular.

Software architectural design would benefit from analytical

reasoning with scientific foundations. Importance of software

architecture in the software design process is generally

accepted among practitioners. According to Pressman [1:

page 223] “One goal of software design is to derive an

architectural rendering of a system”. Architectural design,

detailed design and design reviews provide the most important

steps in a cost effective software development process.

Software engineering activities are goal directed in order to

produce working software in a timely manner within some cost

constraints. For complex computer based systems, software

architecture plays a very important role in its success or

failure. Software architecture is “the overall structure of the

software and the ways in which that structure provides

conceptual integrity for a system” [3]. According to Braude

and Bernstein [4: page 438], "A software architecture

describes the overall components of an application and how

they relate to each other." Software architectural design is

immensely challenging, strikingly multifaceted, extravagantly

domain based, perpetually changing, rarely cost-effective,

Pradip Peter Dey is with National University, 3678 Aero Court, San

Diego, CA 92123, USA. He is now with the School of Engineering,

Technology and Media (phone: 858-309-3421; fax: 858-309-3421; e-mail:

pdey@nu.edu)

deceptively ambiguous, and perilously constrained with some

exceptions [5]. Often software architecture is presented in

misleading notations and incomplete or controversial

descriptions. The best architectural practices are rarely

published and often inferred from excellent products [5].

This paper is intended to develop some architecture

evaluation ideas that may bring some clarity to architectural

design specifications and their assessments. We are primarily

interested in formative assessments during reviews and

inspections. According to Wang [2: page 102], review and

inspection is “a software engineering principle for finding and

eliminating software design and implementation defects via

reading and examining the work products by peer or more

experienced reviewers.” This paper takes a more practical

approach to reviews and inspections. The term “adequate

software architecture” is often used in published articles [6]

with a connotation of quality; however, the term is not

properly defined. This paper suggests some architectural

design contexts in which a set of related terms can be used

with clear meanings and appropriate definitions.

II. BACKGROUND

Controversies about software development have been

profoundly ostentatious and often explicated with effective

metaphors. Donald Knuth initially [7] suggested that software

writing is an art. David Gries [8] argued it to be a science.

Watts Humphrey [9] viewed it as a process. In recent years,

practitioners have come to realize that software is engineered

[1]-[2], [4], [10]-[13]. The scientific foundation of software

engineering is not fully understood. That is, we do not

understand it the way we understand chemistry as the scientific

foundation of chemical engineering. Software architectural

design is based partly on computer science and partly on

behavioral sciences and intuitive judgments although there are

attempts to establish “software science” [2] as the primary

basis for software architecture. It is often suggested that

software architectural design is creatively built from

requirements analysis in an iterative process [1], [4], [9]-[17].

Model Driven Architecture (MDA) is becoming

increasingly popular among the practicing software engineers

[15]. MDA promotes grouping of models into three

categories, according to their abstraction level; namely,

Computation-Independent Models, Platform-Independent

Models and Platform-Specific Models. MDA advocates Model

Driven Development. In order to highlight some features, we

will consider a small case presented below.

Assume that a small software project started with the

following initial description of requirements: Develop a

software system for computing volume of two types of storage

Pradip Peter Dey

Strongly Adequate Software Architecture

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1511

units: box-storage and cylinder-storage. Users should be able

to enter input interactively using a Graphical User Interface

(GUI).

Assume that after studying requirements, software engineers

discover that the system has to be web-based and it should be

available 24/7. Users should be able to access the software

without any login ID. It should be easy to maintain by an

administrator. The software engineers then would prepare a

software requirements specification (SRS) document. A

modern requirements analysis is generally use case driven. A

use case diagram is drawn with UML notations [18]. A use

case diagram for the storage volume problem is given in

Figure-1. An activity diagram can be drawn for each of the use

cases in order to provide a visual representation of details of

the requirements [1]. Alternatively, a use case operational

diagram can be drawn for each use case; Figure-2 shows one

use case operational diagram for the box-storage volume use

case.

Fig. 1 A Use Case Diagram

One of the loops of the use case operational diagram, given

in Figure-2, shows that user enters box-dimensions which are

accepted based on some criteria and the volume is computed.

Otherwise, the dimensions are rejected and an error message is

generated. The notation for the use case operational diagram is

similar to that of activity diagram.

In the next phase, the software architectural design is

developed based on the requirements analysis according to

some design approach. “In the use-case driven architecture

design approach, use cases are applied as the primary artifacts

for deriving the architectural abstractions” [19: page 13].

Engineers need to pay attention to details during the

architectural design process , because “Architectures allow or

preclude nearly all of the system’s quality attributes” [20]. An

elegant generic architectural framework, the Model-View-

Controller (MVC) often helps software engineers in

developing an architectural design for a given problem. Use

case driven derivation of an instance of the MVC architecture

for a specific problem allows efficient and cost effective

development. Given the MVC architecture as a general guide,

the domain specific computation of box-volume and cylinder-

volume would be done in the Model component. The

graphical user interface (GUI) elements, such as input fields,

buttons, etc would be placed in the View component. The user

interactions are done in the Controller. The statements about

what happens when the user presses the submit button would

go to the Controller component. Following the preceding logic

the architecture is made ready for review.

Fig. 2 A Use Case Operational Diagram for the Box-Storage Volume

Use Case

Fig. 3 A Model-View-Controller Instance for the Volume Problem

Programmer’s questions are usually about the View-

Controller relation. Are they tightly coupled or loosely

coupled? What should be done in the review of the

architecture? Following these design guidelines the software

architecture is developed and a prototype is implemented in a

Java applet for formative assessment. The implementation of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1512

the prototype architecture is posted at the following web site:

http://www.asethome.org/soft/storage.html.

The basic architectural abstraction is presented in the

instance of the MVC architecture shown in Figure-3. A

significant aspect of the architecture of Figure-3 is that it

merges the View and Controller together into one compound

or composite unit. In other words, the View and Controller

elements are put in a class that extends the Applet class of

Java. The Model is a distinct reusable component where

volume for the box-storage and cylinder-storage units is

computed.

The classes in the Model are shown in the class diagram in

Figure-4.

Fig. 4 A Class Diagram for the classes in the Model

After initial architectural design is completed, it is ready for

a review. The review would help to assess the architecture in

order to identify risks and make improvements. “An

architecture evaluation does not tell you yes or no, good or

bad, or 6.75 out of 10. It tells you where you are at risk.” [20,

page 29]. Formative assessments are very important in an

educational environment. McConnel [21] suggests a checklist

of questions.

Some sample questions are:

1) Does the architecture account for all the requirements?

2) Does the whole architecture hang together conceptually?

3) Is the top-level design independent of the machine and

language that will be used to implement it?

The questions such as these form a checklist for achieving

high architectural quality in a convenient way. The checklists

are very useful for assessment in order to avoid missing

elements. In addition to checklists, some quality categories can

be used especially in formative assessments.

III. FORMATIVE ASSESSMENTS

The main purpose of formative assessments is to improve

the quality of the architecture. Formative assessments are

effective during the iterative development process. In the

review process we would like to use some quality categories.

Practicing software engineers suggest that loosely coupled

components are more desirable than tightly coupled

components, because loosely coupled components are

independent reusable components and the related knowledge

management is feasible [22]. However, in a well-integrated

system, View-Controller relationship may be tightly coupled in

well-designed implementations. Other aspects that need to be

examined carefully during formative assessments are:

abstraction levels, functional and non-functional requirements,

security issues, architecture description language and

notations. Based on these considerations the following

categories are suggested for formative assessments along with

detailed comments.

Strongly adequate software architecture: Software

architecture is strongly adequate, if and only if, it is weakly

adequate and modularity, high cohesion, low coupling,

robustness, flexibility, reusability, efficiency, security and

reliability are achieved at all levels of abstraction.

Weakly adequate software architecture: Software

architecture is weakly adequate, if and only if, it represents

solutions to all functional and non-functional requirements

appropriately at least for the implementation level.

Functionally adequate software architecture: Software

architecture is functionally adequate, if and only if, it

represents solutions to all functional requirements at least for

the implementation level.

Narrowly adequate software architecture: Software

architecture is narrowly adequate, if and only if, it represents

solutions to all non-functional requirements at least for the

implementation level.

 Marginally adequate software architecture: Software

architecture is marginally adequate, if and only if, it represents

solutions to a subset of functional and non-functional

requirements at least for the implementation level.

Notionally adequate software architecture: Software

architecture is notionally adequate, if and only if, it represents

solutions to functional and non-functional requirements with

an appropriate architectural description language notation.

Organizationally adequate software architecture: Software

architecture is organizationally adequate, if and only if, it

represents the overall organization of the software with clear

definitions of all components.

Security adequate software architecture: Software

architecture is security adequate, if and only if, it represents all

security measures in the overall organization of the software

with clear definitions. The definitions given above are general

in the sense that they are not constrained by any particular

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1513

programming language or problem domain. It is generally

clear that the best category of all is the strongly adequate

software architecture. Software developers strive to achieve

this target using modern techniques. The reviewers, on the

other hand, carefully review the architecture and assign the

most appropriate category with appropriate comments. It

should be clear that the architectural design example presented

above does not belong to the strongly adequate software

architecture. The software architecture for the volume

problem does not support all levels of abstraction. It deals with

the implementation level by merging the view and controller

elements which needs to be placed preferably in loosely

coupled components. It is a weakly adequate software

architecture which can be improved following the guidelines

generated in the formative assessment. The categories

described in this section provide a viable alternative to earlier

attempts in evaluating software architecture [9], [20], [23].

According to Clements, Kazman, and Klein architecture

evaluation “produces answers to two kinds of questions. (1) Is

the architecture suitable for the system it was designed? (2)

Which two or more competing architectures is the most

suitable for of the system at hand?” [20, page 27]. The first

question is somewhat summative. In contrast, this paper argues

for formative assessments.

IV. CONCLUSION

Strongly adequate software architecture is defined along

with some other software quality categories which may help in

formative assessments of software architecture. The

architectural categories are not constrained by a particular

programming language, or domain. Software engineers strive

for the strongly adequate software architecture. However,

software architecting is an iterative process and formative

assessments guide the architects to improve the qualitative

aspects in an iterative process. The categories proposed in this

paper are intended to help reviewers in formative assessments.

The role of formative assessments is stressed during the

development process in order to produce revised architectures

from initial work or working progress. Additional research is

needed to measure the effectiveness of formative assessments

with the proposed qualitative categories of software

architecture.

ACKNOWLEDGMENT

The author gratefully acknowledges the help and/or

encouragements received from George Beckwith, Mohammad

Amin, Ali Farahani, Gordon Romney, Bhaskar Raj Sinha, and

Jodi Reeves.

REFERENCES

[1] R. S. Pressman, Software Engineering: A Practitioner’s Approach. (7th

ed.), McGraw-Hill, 2010.

[2] Y. Wang, Software Engineering Foundations: A Software Science

Perspective, Auerbach Publications, 2008.

[3] M. Shaw, and D. Garlan, “Formulations and Formalisms in Software

Architectures”, Computer Science Today: Recent Trends and

Developments, Springer-Verlag LNCS, 1000, 307-323, 1995.

[4] E. Braude, and M. Bernstein, Software Engineering: Modern

Approaches, (2nd Edition), John Wiley & Sons, 2011.

[5] J. Hong, “Why is Great Design so Hard?”, Communications of the ACM,

July 2010.

[6] J. L. Azevedo, B. Cunha, and L. Almeida, “Hierarchical Distributed

Architectures for Autonomous Mobile Robots: A case study”, in

Proceedings of the IEEE Conference on Emerging Technologies and

Factory Automation, 2007.

[7] D. E. Knuth, Seminumerical Algorithms: The Art of Computer

Programming 2. Addison-Wesley, Reading, Mass., 1969.

[8] D. Gries, The Science of Programming. Springer, 1981.

[9] W. Humphrey, Managing the Software Process, Reading, MA.

Addison-Wesley, 1989.

[10] I. Sommerville, Software Engineering, 9th Edition, Addison Wesley,

2010.

[11] S. Pfleeger, and J. Atlee, Software Engineering, Prentice-Hall, 2010.

[12] B. Agarwal, S. Tayal and M. Gupta, Software Engineering and Testing,

Jones and Bartlet, 2010.

[13] F. Tsui, and O. Karam, Essentials of Software Engineering, 2nd Ed.,

Jones and Bartlet, 2011.

[14] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, 2nd Edition Addison-Wesley, 2003.

[15] J. Miller, and J. Mujerki, Editors, MDA Guide, Version 1, OMG

Technical Report. Document OMG/200-05-01,

http://www.omg.com/mda, 2003.

[16] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering

Using UML, Patterns, and Java (3rd Edition), Prentice Hall, 2009

[17] Capers Jones, Software Engineering Best Practices: Lessons from

Successful Projects in the Top Companies, McGraw-Hill, 2009.

[18] R. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling

Language Reference Manual. (2nd Edition), Addison Wesley, 2005.

[19] B. Tekeinerdogan, and M. Aksit, “Classifying and Evaluating

Architecture Design Methods”, in M. Aksit (editor), Software

Architectures and Component Technology, Kluwer Academic

Publishers, 2002.

[20] P. Clements, R. Kazman, and M. Klein. Evaluating Software

Architectures.Addison-Wesley, 2002.

[21] S. McConnel. Code Complete, Microsoft Press, 2004.

[22] M. Babar, T. Dingsoyr, P. Lago, and H. van Vliet, Editors, Software

Architecture Knowledge Management, Springer, 2009.

[23] E. Bouwers, J. Correia, A. van Deursen, and J. Visser, “Quantifying the

Analyzability of Software Architectures,” Technical Report, Delft

University of Technology, 2011.

