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Abstract—A strip domain decomposition parallel algorithm for 

fast direct Poisson solver is presented on a 3D Cartesian staggered 
grid. The parallel algorithm follows the principles of sequential 
algorithm for fast direct Poisson solver. Both Dirichlet and Neumann 
boundary conditions are addressed. Several test cases are likewise 
addressed in order to shed light on accuracy and efficiency in the 
strip domain parallelization algorithm. Actually the current 
implementation shows a very high efficiency when dealing with a 
large grid mesh up to 93.6 10×  under massive parallel approach, 
which explicitly demonstrates that the proposed algorithm is ready 
for massive parallel computing.     
 

Keywords—Strip-decomposition, parallelization, fast direct 
poisson solver.  

I. INTRODUCTION 
HE Poisson equation is one of the most basic equations in 
scientific calculation in many different fields of interest 

such as, for instance, acoustics, electromagnetism and fluid 
dynamics, just to quote a few. In fluid dynamics, among the 
flows that are of importance and interest to mankind, the 
category of low Mach-number or incompressible flow is by 
far the largest. As recently put forward by Löhner et al. [1], 
incompressible solvers have recently been enhanced in a 
variety of ways such as sub-stepping for advection, implicit 
treatment of convective terms and linelet preconditioning flow 
the pressure-Poisson equation. The combined effect of these 
improvements leads to speed-up factors of the order of 1 to 
10; In addition, massive parallel approach is a way to 
significantly reduce time simulation for academic and 
industrial problems. However, even if numerous solvers have 
already been addressed in the past in view of solving the 
pressure-Poisson equation, solver efficiency drastically falls 
with parallel computing. This is naturally a key problem 
because pressure-Poisson equation solving requires significant 
CPU time.  

A standard procedure for solving the Poisson equation by 
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direct method requires 6( )O N operations for 3N  grid points 
in a 3D problem, which makes such a direct method 
prohibitive for a large-scale physical problem. Fast direct 
Poisson solver development began in 1965 when Hockney [2] 
used Fourier analysis and fast Fourier transform (FFT) [3], 
which leads to computation speed up to ( log )O N N  on a 
N N×  grid. Such a method is often used [4, 5, 6] for 3D 
Poisson problems [7, 8, 9] since it costs only about 

3( log )O N N  for a N N N× ×  grid points. With large-scale 
problems, particularly incompressible 3D Navier-Stokes 
equations, large mesh point grids are carried out. Therefore, 
parallelization of Poisson solver is required and the latter must 
be as fast as possible. Thus, several methods for parallel fast 
Poisson algorithms have been developed and one should first 
distinguish two main groups of parallel techniques dependent 
on parallel machine architecture. The first one was proposed 
according to parallel vectorial machine [10, 11]. Thus, 
solution of Poisson equation is carried out by distributing 
various computational segments from the direct solver. That is 
to say, parallel algorithm was developed for both fast Fourier 
transform and solution of tridiagonal systems [12]. The 
second group considered a massive parallel philosophy [13, 
14, 15, 16] in which the computational domain is split into 
multi-domains [17]. Each computational sub-domain is then 
performed on one single processor and data transfer between 
processors is naturally requested. Several techniques of 
domain decomposition were presented for 2D Poisson solver 
[13, 18] using FFT parallelization on multiprocessors [19, 20]. 
Unfortunately, such development is rather complex to achieve 
and, in addition, its cost in data transfer is significantly high.  

However, fast direct Poisson solver on a massively parallel 
machine was first introduced by Swarztrauber and Sweet [21] 
in which FFT parallelization is avoided. Each processor 
should perform the same amount of data and the latter are then 
dynamically redistributed between the whole sub-domains. 
This approach is called the transposed method, a technique 
that is generally preferred on account of several advantages. 
First, and foremost, it requires less communication between 
processors than other techniques. A second reason to prefer 
the transposed method is its simplicity of use. The method is 
based only on already existing efficient algorithms and no 
specific and complex development is required to address 
parallel FFT. This technique has successfully been used for 
the solving of a 2D cylindrical Poisson solver problem [22] 
but to author’s knowledge, transposed method has been rarely 
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applied to tri-dimensional problems. 
Direct methods are often used ensuring stability in the 

computing process, which is often requested especially when 
Poisson equation must be solved every time-step. Then, fast 
algorithms are generally built to take advantage on FFT 
algorithm. However, FFT algorithms bring their own 
drawbacks. Spatial discretization must be constant in the 
spectral directions, i.e. which render complex geometry in 
fluid mechanics for instance not easy to target. However, a 
new trend in fluid mechanics solver is actually under 
development. Nowadays, there is interest in investigating a 
novel grid generation concept, the Immersed Boundary 
Method, as an improved methodology to boundary fitted 
grids. With such algorithms, the grid does not coincide any 
longer with the geometry being solved. Since the grid does not 
fit the surface geometry, this type of grid used is often chosen 
for computational efficiency instead of geometry, which 
allows the use of simple orthogonal grids. Furthermore the 
grid generation complexity and time is greatly reduced as the 
complex geometry only needs to be mapped onto the 
underlying orthogonal grids. Yang and Balaras [23], Balaras 
[24], Fadlum et al. [25], just to mention a few, successfully 
approaches carried out with various algorithms to address 
complex flow simulations. Ranges of application are naturally 
very broad. A parallel version of such method is easy to 
develop even if the major difficulties are to solve Poisson 
equation in an efficient and fast way. 

The aim of this paper is to propose a very fast parallel way 
for solving 3D Poisson solver. As far as the author’s knows, 
only 2D Poisson equations were addressed with a transposed 
method. In addition, in a massively parallel implementation, 
one should develop a very efficient and clever way of 
parallelization in order to provide efficient computing. As we 
will see later, strip domain decomposition will be found to be 
sufficiently efficient when solving the Poisson equation. 
Therefore, we will also analyze the efficiency of direct fast 
Poisson solver when dealing with a massive parallel 
environment. First, section 2 briefly describes and rapidly 
recalls the mathematical preliminaries of Fast Fourier 
Transform. Sequential implementations as well as parallel 
algorithm based on strip decomposition are described. 
Naturally, the key point concerns its efficiency. Therefore, 
two test cases are shown with close attention being paid to 
errors and efficiency of the parallel implementation. Data 
transfer may be considered as a major drawback, and 
efficiency will be tested on massive parallel simulations with 
mesh grid points up to 93.6 10×  points so as to shed light on 
the potential of the proposed algorithm. 

II. PRELIMINARY ANALYSIS 
Mathematical formulation for fast direct solver of the 

Poisson equation is first recalled; we arbitrarily chose to focus 
on a staggered grid arrangement in the Cartesian coordinates. 
However, application of the proposed algorithm to co-located 
grids is straightforward. The Poisson equation in (x, y, z) 

system is: 
2 2 2

2 2 2 ( , , ) for ( , , )u u u f x y z x y z
x y z

∂ ∂ ∂
+ + = ∈ Ω

∂ ∂ ∂
    (1) 

where ( ) ( ) ( )0, 0, 0,x y zL L LΩ = × ×  is the computational 

domain. Boundary conditions applied on each limit face may 
be either the Dirichlet or the Neumann boundary condition. 
For the Dirichlet boundary condition:   

( , , ) ( , , ) for ( , , )u x y z x y z x y zφ= ∈ ∂Ω       (2) 
where ( , , )x y zφ  are the values of solution at ∂Ω , i.e. 
boundary condition.  For the Neumann boundary condition:   

( , , ) ( , , )
i

u x y z x y z
x

φ∂
=

∂
              (3) 

for ( , , ) and ( , , )ix x y z x y z= ∈ ∂Ω  
In order to discretize the Poisson equation, the domain Ω  

is covered with a regular grid mesh 
( ), ,x y zΔ Δ Δ corresponding to ( , , )x y z  directions with 

( , , )L M N  points in each direction. Each grid point ( , , )i j kx y z  

is obtained by ( 0.5)ix i x= − Δ , ( 0.5)jy j y= − Δ , 

( 0.5)kz k z= − Δ  for 1: , 1: , 1:i L j M k N= = = . Replacing 
the derivatives by second-order central-difference 
approximation, the interior points of Poisson's equation can be 
written as: 

1, , , , 1, , , 1, , , , 1,
2 2

, , 1 , , , , 1
2

2 2

2
( , , )

i j k i j k i j k i j k i j k i j k

i j k i j k i j k

u u u u u u
x y

u u u
f i j k

z

+ − + −

+ −

− + − +
+ +

Δ Δ
− +

=
Δ

   (4) 

while the boundary values , ,i j ku are specified at the interface 
of Ω . 

The direct Poisson solver was performed by a direct Fourier 
transform. Note that a direct transform method requires 

2( )O N  arithmetic operations for N  points i.e. such a method 
is exceedingly expensive in terms of CPU time. However, a 
very clever and well-known algorithm, the Fast Fourier 
transform (FFT) algorithm [3] requires ( log )O N N  arithmetic 
operations to directly solve the Poisson equation. According 
to the kind of boundary condition applied, sine or cosine 
transforms are addressed. The fast Fourier-sine transform is 
used for the Dirichlet boundary condition and the fast Fourier-
cosine transform is required for the Neumann boundary 
condition. On a 3D staggered grid, these fast Fourier 
transforms can be written as: 

In z direction:  

1

2 ( 1/ 2)ˆ sin

Dirichlet boundary condition

N

n k
k

n ku u
N N

π
=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

⇒

∑          (5) 

1

2 ( 1)( 1/ 2)ˆ cos

Neumann boundary condition

N

n k
k

n ku u
N N

π
=

− −⎛ ⎞= ⎜ ⎟
⎝ ⎠

⇒

∑        (6) 
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The resulting equation, after applying fast Fourier 
transform in z direction, is written as: 

1, , , , 1, ,
2

, 1, , , , 1,
, ,2

ˆ ˆ ˆ2

ˆ ˆ ˆ2 ˆˆ ( , , )

i j n i j n i j n

i j n i j n i j n
z i j n

u u u
x

u u u
u f i j n

y
λ

+ −

+ −

− +
+

Δ
− +

+ =
Δ

     (7) 

where:  

2

1 2cos 2

Dirichlet boundary condition

z
k
Nz
πλ ⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠

⇒

       (8) 

2

1 ( 1)2cos 2

Neumann boundary condition

z
k

Nz
πλ ⎛ − ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠

⇒

       (9) 

In y direction, the same Fourier transforms are applied for 
M points. The resulting equations after fast Fourier transform 
in y and z directions are rewritten as: 

1, , , , 1, ,
, ,2

ˆ ˆ ˆ2 ˆˆ( ) ( , , )i m n i m n i m n
y z i m n

u u u
u f i m n

x
λ λ+ −− +

+ + =
Δ

  (10) 

where:  

2

1 2cos 2

Dirichlet boundary condition

y
j
My
πλ ⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠

⇒

       (11) 

2

1 ( 1)2cos 2

Neumann boundary condition

y
j

My
πλ ⎛ − ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠

⇒

       (12) 

The final tridiagonal systems can be written as:  

1, , , ,2 2

1, ,2

1 2ˆ ˆ

1 ˆˆ ( , , )

i m n y z i m n

i m n

u u
x x

u f i m n
x

λ λ+

−

⎛ ⎞− − − +⎜ ⎟Δ Δ⎝ ⎠

=
Δ

        (13) 

The systems contain L M N× ×  periodic tridiagonal 
equations and the system of equations can be solved by using 
a direct method in order to determine the solutions in Fourier's 
space. Following that, solutions in the physical space can be 
reconstructed via a double inverse Fourier transform in the y 
and z directions. For example, the formulations of inverse 
Fourier - sine and Fourier - cosine in z direction are written as: 

1

2 ( 1/ 2)ˆ sin

Dirichlet boundary condition

N

k n
n

n ku u
N N

π
=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

⇒

∑         (14) 

1
2

2 1 ( 1)( 1/ 2)ˆ ˆ cos
2

Neumann boundary condition

N

k n
n

n ku u u
N N

π
=

⎛ − − ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⇒

∑     (15) 

In this section, homogeneous boundary conditions were 
addressed whereas all the non-homogeneous boundary 
conditions could be found in [5] and through these 
mathematical preliminaries, sequential and mainly parallel 
algorithm is presented in the following sections.  

III. SEQUENTIAL AND PARALLEL ALGORITHM 
The sequential algorithm of fast direct Poisson solver for 

3D Cartesian staggered grid problem is straightforward to the 
mathematical preliminaries presented above. For a L M N× ×  
grid mesh, the main tasks for solving the Poisson equation are 
listed: 

• Compute fast Fourier transform in z direction for LM 
sets of data ( , , )f i j k  for 1,k N=  following different 
boundary conditions. 

• Compute fast Fourier transform in y direction for LN 
sets of data ˆ ( , , )f i j n  for 1,j M=  following different 
boundary conditions. 

• Solve LMN periodic tridiagonal systems using the 
direct method. 

• Compute the inverse fast Fourier transform in y 
direction for LN sets of data ˆ ( , , )f i m n  for 1,m M= .  

• Compute the inverse fast Fourier transform in z 
direction for LM sets of data ˆ ( , , )f i j n  for 1,n N= . 

The sequential algorithm recalled just above is a well-
known fast algorithm to access the solution of the Poisson 
equation. However, insofar as a parallel computation is 
required, a clever strategy must be selected. To provide a fast 
and efficient algorithm, a strip domain decomposition is 
proposed. The computational domain is decomposed into 
several sub-domains, which are distributed on each processor. 
The parallelization for fast Fourier transform is thereby 
avoided for the proposed technique through the use of 
crossing data transfers between every sub-domain and 
processors. Strip domain decomposition also offers additional 
benefits. First, for a specified grid mesh, the number of total 
operations on all sub-domains for a parallel algorithm is 
similar to the one necessary for sequential algorithm, which 
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Fig. 1 Schematic of strip domain decomposition in z direction on a 
3D Cartesian grid for fast direct Poisson solver parallel algorithm. 
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means that total computational times of all processors used are 
exactly equal to those of a single processor. Second, the 
proposed algorithm can use almost the same subroutines as the 
sequential algorithm. Finally, for a large grid mesh and a large 
number of processors, the communication time between the 
processors is minimized. 

As mentioned in the introduction, our goal is to achieve 
efficient parallel algorithm for solving the Poisson equation on 
different architectures. However, with advances in parallel 
computing, massive parallel approach with domain 
decomposition is more and more widely used. The choice of 
strip domain decomposition method allows one to avoid 
solving fast Fourier transforms with parallel algorithms; in 
fact, strip decomposition is performed in order to weaken as 
much as possible the effect of data transfer on algorithm 
efficiency. The computational domains divided into P sub-
domains in the z direction as shown in Figure 1, where a 4-
sub-domain decomposition is given as an example. 

The data in the z direction is divided into P sub-domains, 
whose contents N/P points in the z direction. Then, each sub-
domain contains data associated with the grid points ( , , )f i j k  

with ( )1: , 1: , / 1: ( 1) /i L j M k pN P p N P= = = + + , in which 
p corresponds to the index of the considered sub-domain. To 
avoid parallelization of Fast Fourier Transform on multi-
domains, one needs to transfer necessary data. In order to 
minimize time transfer, each strip is also divided (virtually) 
into P sub-domains corresponding to the P processors in use. 
Cross-data transfers between the P sub-domains and P 
processors are then necessary and are schematically shown in 
Figure 2. As soon as data are transferred, each processor 
contains the LM/P data of the ( , , )f i j k  right-hand side term 

with ( )1: , / 1: ( 1) / , 1:i L j pM P p M P k N= = + + =  for 
processor p. In order to optimize computational time, FFT on 
each processor are computed simultaneously. At this point, the 
discretized equation given in (7) corresponds to a 2D 
Cartesian staggered grid, where each solution of LM points in 
the xy plan corresponds to a Fourier mode in the z direction 

To optimize the solver of N systems of the 2D Poisson 
equation, the computational data are redistributed on the P 
processors. Thus, each processor evaluates the solution of one 
sub-domain decomposition. To do so, it is essential to carry 
out a cross-data transfer between the processors and the sub-
domains in order to obtain the complete data after fast Fourier 
transform in the z direction for each sub-domain. After that, 
each sub-domain contains N/P sets of the LM coefficients of 
the complete fast Fourier transform. Therefore, each processor 
evaluates N/P systems of 2D Poisson equations. The FFT in 
the y direction is carried out for each 2D Poisson equation in 
order to obtain the final tridiagonal systems (13). Finally, the 
tridiagonal systems are solved for each 2D Poisson equation. 
The different steps of the proposed algorithm can be 
summarized as follows: 

• Each processor performs (P-1) sets of 2/LMN P  cross-
data transfer between the strip sub-domain and data 
divided by P processors in y direction. 

• A set of LM/P fast Fourier transforms, which contains 
N points in z direction, is computed on each processor. 

• Each processor carries out (P-1) sets of 2/LMN P  
cross-data transfer between the data divided by P 
processors in the y direction and the strip sub-domain.  

• Each processor solves a set of N/P systems of the 2D 
Poisson equation (LM points) by using the fast direct 
solver of the 2D staggered grid Poisson equation. Each 
2D Poisson system corresponds to a mode of Fourier 
transform. Compute the LN/P fast Fourier transforms 
of the M points in y direction for each processor. Solve 
LMN/P tridiagonal systems per processor to obtain the 
solution of problem in the Fourier space. Compute the 
LN/P inverse fast Fourier transforms of the M points in 
y direction from the solution in the Fourier space for 
each processor.  

• Each processor performs (P-1) sets of 2/LMN P  
crossing data transfer between the strip sub-domain and 
the data divided by P processors in the y direction. 

• A set of LM/P inverse fast Fourier transforms, which 
contains N points in the z direction, is computed on 
each processor. 

• Each processor carries out (P-1) sets of 2/LMN P  
crossing data transfer between the data divided by P 
processors in the y direction and the strip sub-domain. 

Finally, the solution of the problem is obtained in the 
physical space. Therefore, each sub-domain Ω , 
corresponding to the processor p, contains the solution 
associated with the grid points ( , , )u i j k  with 

( )1: , 1: , / 1: ( 1) /i L j M k pN P p N P= = = + + . Such 
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Fig. 2 Schematic of strip domain decomposition in z direction, the 
redistribution of data in y direction for several processors and 
crossing transfer between sub-domain decomposition and processor 
data distribution, for a 3D Cartesian grid for the parallel algorithm 
fast direct Poisson solver. 
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algorithm is regarded as an attractive algorithm because, 
despite domain decomposition, the Poisson equation is based 
on a direct FFT solver. The major drawback is certainly linked 
to the amount of data transfer but to shed light on the 
efficiency of the proposed algorithm, numerical tests are 
required. 

IV. NUMERICAL TESTS 
 
The main goal of the several numerical test cases shown 

hereinafter is to highlight accuracy and efficiency of the 
proposed strip domain decomposition parallelization 
algorithm for fast direct Poisson solver. To achieve 
portability, the MPI library [26] is used for inter-
communication between processors. For accuracy, relative 

errors in norms 
∞

•  will be shown by computing the 
difference between the numerical and the exact solutions 
related to the exact solution and accuracy of the method 
depends on the number of discretized points in each direction.     

As mentioned in the introduction, performance of the 
proposed algorithm is a key point for the physical problems 
addressed. Thus, estimation of operations for the algorithm is 
essential [21, 22]. Many tests are carried out in this section by 
using a significant number of processors on a MPI library to 
estimate the time required for several grid point resolutions.  

A. Accuracy of fast direct Poisson solve     
In order to estimate accuracy of the fast direct Poisson 

solver, two problems were solved and results obtained were 
directly compared with the exact solution. In addition, both 

 
Fig. 3 Solution of Poisson's equation for a polynomial problem in a 
3D Cartesian staggered grid with Dirichlet boundary conditions in 
x,y,z direction. The solution is plotted versus x at y = 0.5 and z = 0.5. 
Dotted curve shows the exact solution, whereas the open triangles 
correspond to the numerical solution for 32 32 32× ×  grid points. 

 
Fig. 4 Errors of Poisson's equation for a polynomial problem in a 3D 
Cartesian grid with Dirichlet boundary conditions in x,y,z direction. 
The error is plotted versus x at y = 0.5 and z = 0.5 for several grid 
points. 

TABLE I 
RELATIVE ERRORS IN NORMS 

∞
•   AND RUNNING TIMES FOR PROBLEM 1 WITH REGARD TO THE NUMBER OF GRID POINTS AND PROCESSORS FOR TWO TESTS OF 

BOUNDARY CONDITIONS 
 

Grids Processors Times Errors 

Case L M N L M N× ×  P t(s) Dirichlet Neumann 

1 32 32 32 43.3 10×  1 0.0 42.61 10−×  32.41 10−×  
2 64 64 64 52.6 10×  1 0.04 56.52 10−×  46.09 10−×  
3 128 128 128 62.1 10×  1 0.51 51.63 10−×  41.53 10−×  
4 256 256 256 71.7 10×  1 6.18 64.08 10−×  53.84 10−×  
5 512 512 512 81.3 10×  16 6.05 61.02 10−×  69.42 10−×  
6 1024 1024 1024 91.0 10×  64 22.6 72.55 10−×  62.35 10−×  
7 1280 1280 1280 92.1 10×  64 41.0 71.63 10−×  61.51 10−×  
8 1536 1536 1536 93.6 10×  256 24.0 71.11 10−×  61.03 10−×  
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Dirichlet and Neumann boundary conditions were addressed. 
The numerical results were carried out by using double 
precision on an IBM-P4 64 bit cluster. The test cases concern 
a four-order polynomial distribution as well as a sine function. 

Let us now use the technique discussed above to solve the 
Poisson equation for a four-order polynomial in a three-
dimensional domain over a staggered grid. The exact solution 
is given by: 

4 4 4( , , ) (1 )(1 )(1 )u x y z x y z= − − −          (16) 
on a cubic region (0,1) (0,1) (0,1)Ω = × × . The right-hand side 
term of equation (4) is then given by: 

2 4 4

2 4 4 2 4 4

( , , ) 12 (1 )(1 )
12 (1 )(1 ) 12 (1 )(1 )

f x y z x y z
y x z z x y

= − − −

− − − − − −
 (17) 

Table 1 gives details of the several mesh grids tested on 
both Dirichlet and Neumann conditions. The first four cases 
were carried out on one single processor, i.e. with the 
sequential algorithm. On the contrary, as soon as grid points 
exceed 256 256 256× × , simulations were carried out on 
several processors due to the high memory capacity required. 
The largest test case involved 256 processors with 3.6 billion 
points in the mesh grid and each sub-domain contained 
1536 1536 6× ×  grid points. Under these conditions, the 
required computational time remained acceptable. Note that 
error levels listed in Table 1 concern maximum level reached 

in the whole sub-domains. As expected, errors were not linked 
to sequential or parallel algorithm but rather to grid resolution 
and the kind of boundary condition. Actually, errors were 
always higher with Dirichlet conditions than with Neumann 
conditions. Furthermore, these errors decrease drastically with 

regard to the grid point number increase in each direction.  
Figure 3 allows one to compare numerical solutions, 

obtained by fast direct Poisson solver with 32 32 32× ×  grid 
points with the exact solution at y = 0.5 and z = 0.5. Note that, 
even for a small number of grid points, the numerical solution 
fits relatively well with the exact solution. In order to follow 
the error distribution, Figure 4 presents the error variation as a 
function of x at y = 0.5 and z = 0.5 for different grid 
resolutions. In this figure, the maximum error is obtained in 
the center of the computational domain. The latter corresponds 
to the maximum error shown in Table 1. Furthermore, the 
errors decrease rapidly with regard to the grid mesh 
resolutions. 

Let us perform a similar analysis involving trigonometric 
function of sine [27] given by: 

 
Fig. 5 Contour of Poisson's equation solution for a trigonometric case 
on a 3D Cartesian grid with Dirichlet boundary conditions in x,y,z
direction. The numerical solution is plotted versus x,y,z for 
32 32 32× ×  grid points. 

(a)

(b)

(a)

(b)

 
Fig. 6 Contour of numerical solution (a) and error (b) of Poisson's 
equation for the trigonometric case on a 3D Cartesian staggered grid 
with the Dirichlet boundary conditions in x,y,z direction. The 
numerical solution is plotted in a plan xy at z = 0.5 for 32 32 32× ×
grid points. 
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( ) ( )( , , ) sin ( ) sinu x y z x y zπ π= +          (18) 

on a cubic region (0,1) (0,1) (0,1)Ω = × × . The source term of 
Poisson's equation (4) is given by: 

( ) ( )2( , , ) 3 sin ( ) sinf x y z x y zπ π π= − +        (19) 
Table 2 lists the errors obtained from fast direct Poisson 

solver applied on the sine problem with regard to several 
numbers of grid resolutions. It is necessary to mention that the 
errors are of the same order of magnitude as those obtained in 
Problem 1. The three-dimensional solution was shown in 
Figure 5 for 32 32 32× ×  grid points. In order to clearly 
observe variation on solution and its errors, Figure 6 plots the 
numerical solution (a) and the error (b) in a xy plan at z = 0.5. 
Maximum error levels were found to remain at a low level 
underlining the accuracy of the algorithm. 

B. Cost of the algorithm    
The cost of the proposed algorithm is naturally of great 

importance and the number of operations must be estimated. 
In addition, the time required for sequential and parallel 
algorithm of fast direct Poisson solver needs to be closely 
studied. Finally, an estimation of asymptotic speedup and 
efficiency of strip decomposition parallelization algorithm and 
its performance will be presented.     

First of all, in order to estimate the number of operations 
and time required for the proposed algorithm, a standard 
communication model for distributed memory computers may 
be assumed. To normalize the time counting procedure, 1t  is 
supposed to correspond to the computational time required for 
fast Fourier transform of one operation, 2t  is the 
computational time for the solver of tridiagonal system of one 
operation, 3t  is the time for communication between inter-
processors for a double precision number, the message startup 
time for parallel communication is considered as negligible. 
The number of operations and the computational time while 
using a single processor can be estimated as follows: 

• LM fast Fourier transforms for N points in z direction 
costs 1 logt LMN N . 

• LN fast Fourier transforms for M points in y direction 
costs 1 logt LNM M . 

• The solution of LMN tridiagonal systems costs 
2t LMN .   

• LN inverse fast Fourier transforms for M points in y 
direction costs 1 logt LNM M . 

• LM inverse fast Fourier transforms for N points in z 
direction costs 1 logt LMN N . 

Therefore, total time required for solving Poisson equation 
on a single processor with a fast direct solver is:  

( ) ( )1 22 log logsT LMN N LNM M t LMN t= + +    (20) 
While using the strip parallel algorithm, the number of 

operations and the computational time can be estimated as: 

• Each processor performs (P-1) sets of 2/LMN P  
crossing communication in order to obtain the total 
right-hand side data for computing on each processor 
fast Fourier transform. This task costs 

2
3 ( 1) /t P LMN P− . 

• Each processor carries out a set of LM/P fast Fourier 
transforms for N points in z direction. This work costs 

1 / logt LM PN N . 

• Each processor performs (P-1) sets of 2/LMN P  
crossing communication to obtain the total Fourier 
coefficients on one sub-domain. This task costs 

2
3 ( 1) /t P LMN P− . 

• Each processor carries out a set of LN/P fast Fourier 
transforms for M points in y direction. This work costs 

1 / logt LN PM M .   
• The solution of /LMN P  tridiagonal systems for each 

processor costs 2 /t LMN P . 
• A set of LN/P inverse fast Fourier transforms for M 

points in y direction on each processor costs 
1 / logt LN PM M .   

•  (P-1) sets of 2/LMN P  crossing communication to 

TABLE II 
RELATIVE ERRORS IN NORMS 

∞
•  AND RUNNING TIMES FOR PROBLEM 2 WITH REGARD TO THE NUMBER OF GRID POINTS AND PROCESSORS FOR TWO TESTS OF 

BOUNDARY CONDITIONS 
 

Grids Processors Times Errors 

Case L M N L M N× ×  P t(s) Dirichlet Neumann 

1 32 32 32 43.3 10×  1 0.0 44.70 10−×  33.34 10−×  
2 64 64 64 52.6 10×  1 0.04 41.19 10−×  48.34 10−×  
3 128 128 128 62.1 10×  1 0.52 52.99 10−×  42.08 10−×  
4 256 256 256 71.7 10×  1 6.22 67.48 10−×  55.21 10−×  
5 512 512 512 81.3 10×  16 6.06 61.84 10−×  51.31 10−×  
6 1024 1024 1024 91.0 10×  64 22.4 74.59 10−×  63.26 10−×  
7 1280 1280 1280 92.1 10×  64 40.9 72.94 10−×  62.09 10−×  
8 1536 1536 1536 93.6 10×  256 24.1 72.00 10−×  61.42 10−×  
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obtain the total coefficients for the inverse fast Fourier 
transform for a single processor is performed. This task 
costs 2

3 ( 1) /t P LMN P− . 
• A set of LM/P inverse fast Fourier transforms for N 

points in z direction on each processor costs 
1 / logt LM PN N  operations. 

• (P-1) sets of 2/LMN P  crossing communication to 
obtain the final solution of each sub-domain are 
performed. This task costs 2

3 ( 1) /t P LMN P− . 
Thus, the total time used for the computation of strip 

parallel algorithm of fast direct Poisson solver is equal to:  
( )

( ) ( )
1

2
2 3

2 / log / log

/ 4 ( 1) /
pT LM PN N LN PM M t

LMN P t P LMN P t

= +

+ + −
      (21) 

Finally, speed-up for the parallel algorithm can be obtained by 
the asymptotic estimation as: 

( ) ( )
( ) ( ) ( )

1 2

1 2 3

2 log log
2 log log 4 ( 1) /

s

p

TS
T

LMN N LNM M t LMN t
P

LMN N LNM M t LMN t P LMN P t

= =

+ +
+ + + −

(22) 

and the corresponding E efficiency coefficient can be 
estimated as: 

( ) ( )
( ) ( ) ( )

1 2

1 2 3

2 log log
2 log log 4 ( 1) /

SE
P

LMN N LNM M t LMN t
LMN N LNM M t LMN t P LMN P t

= =

+ +
+ + + −

 (23) 

Therefore, it is obvious that the efficiency E is lower than 
unity and that the latter decreases while increasing the number 
of processors involved.  According to the number of operation 
analyses required for the fast direct Poisson solver with strip 
decomposition parallelization, the number of operations for 
the two y and z Fourier directions are ( log )M MΟ  and 

( log )N NΟ respectively when the direct solver of tri-diagonal 
system in x-direction takes about ( )LΟ  operations. Thus, for a 
given problem involving L, M and N of different orders of 
magnitude, a clever choice is to select the direction of the 
highest point resolution for the tri-diagonal system resolution, 
the two other directions being the Fourier’s direction. Note 
that the number of points in the two Fourier directions must be 
divided by the proposed processor number.  

C. Efficiency  
  In order to estimate the efficiency of the proposed 

algorithm, several tests were carried out using Problem 1 with 
Dirichlet boundary conditions. Details on the grid mesh are 
given in Table 3. Case M1 corresponds to the largest test case 
performed on a single processor while case M5 is the largest 
grid mesh points performed on 256 processors. A so large 
number of processors was necessary to estimate the 
performance of the proposed algorithm (from 1 to 256 
processors). Figure 7 presents running times while allocating 
1, 2, 4, 8, 16, 32, 64, 128, 256 processors for several grids 
given in Table 3. It is obvious that the time variation is 
approximately linear in the logarithmic scale, i.e. the 
algorithm offers a good performance for parallelization. 
Moreover, it is important to emphasize that the slope of 
variation time remained constant whatever the number of grid 

points considered. 
Moreover, in order to evaluate the cost of parallelization of 

the proposed Poisson solver, speedup and efficiency were 
estimated. Speedup is estimated by comparing running time 
for a single processor against that obtained in a multiple 
processor architecture. Table 4 presents running times for 
parallel algorithm using up to 128 processors for case M1 
grid. S Speedup factor is defined as the ratio of running time 
on a single processor using the sequential algorithm with time 
taken to solve the problem using P processors. For example, 
in Table 4, the speedup reaches about 66 for a 128 processor 
test. 

Based on running times and speedup factor for M1 test 
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Fig. 7 Running times change with regard to the number of processors 
used for a polynomial problem on a 3D Cartesian grid with Dirichlet 
boundary conditions in x,y,z direction. Running times are plotted in a 

log-log scale for several grids. 

TABLE III 
LIST OF GRIDS USED FOR TESTING PERFORMANCE AND EFFICIENCY OF THE 

PROPOSED ALGORITHM 
 

Case L M N L M N× ×  

M1 256 512 512 76.7 10×  
M2 512 512 512 81.3 10×  
M3 1024 1024 1024 91.0 10×  
M4 1280 1280 1280 92.1 10×  
M5 1536 1536 1536 93.6 10×  

 

TABLE IV 
SPEED-UPS AND EFFICIENCIES OF STRIP DECOMPOSITION PARALLELIZATION 

ALGORITHM OF FAST DIRECT POISSON SOLVER FOR TEST GRID M1 
 

Number of 

processors 

Running 

time (s) 

Communication 

time (s) 

Speedup

S 

Efficiency 

1 36.40 0.00 1.0 1.00 
2 19.00 0.80 1.9 0.96 
4 9.80 0.70 3.7 0.93 
8 5.20 0.65 7.0 0.88 

16 2.80 0.53 13.0 0.81 
32 1.53 0.39 23.8 0.74 
64 0.88 0.31 41.4 0.65 
128 0.55 0.27 66.2 0.52 
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case, it is useful to stress that the present algorithm offers a 
very high degree of efficiency. First, FFT allows one to 
minimize the number of operations. Second, the choice of 
strip decomposition appears to be a clever way to achieve sub-
domain decomposition. In order to estimate the performance 
of the proposed algorithm, efficiency is defined as E = S/P, 
i.e. which corresponds to the ratio between speedup and 
number of processors. Table 4 also shows efficiencies of the 
proposed algorithm for case M1 using up to 128 processors. It 
is obvious that the highest efficiency is obtained for P = 1 in 
the case of sequential simulation while efficiency decreases 
with the increase of number of processors considered. 
Speedup and efficiency were estimated for grid M1 since it is 
the only one that can be carried out by one single processor. 
However, one may ask whether or not the degree of 
implementation varied with the increase of the number of grid 
points. Unfortunately, previous definitions of speedup and 
efficiency are not estimated for other grid cases since the 
computational problem cannot be carried out by a mono-
processor. Actually, the cost of the multi-processor running 
time used for solving the problem includes computational time 
and inter-communication time between each processor. 
Following this idea, efficiency E can be defined as the ratio 
between computational time and total running time. Such a 
definition was applied to this case while total computational 
time of direct Poisson solver for a specified grid is 
independent of the number of processors.  Figure 8 presents 
efficiency (with the last definition) of the proposed algorithm 
with regard to the increase of number of processors for several 
test grids. It is obvious that the order of magnitude in 
efficiency is similar to that obtained for grid M1. For a given 
test grid, efficiency decreases with the increase of the number 

of processors. However, efficiency increases significantly 
with regard to the increase of the number of grid points. For 
example, when using 128 processor, efficiency of the 
algorithm for M1 grid is about 0.52 whereas for grid M5 this 
efficiency is about 0.80. Actually, it is important to note that 
the proposed algorithm is highly efficient, particularly when 

each sub-domain is significantly loaded in terms of grid 
points. As clearly observed in the results shown, it is indeed 
true that a compromise needs to be found between amounts of 
data to transfer with regard to grid points contained per sub-
domain. 

V. CONCLUSION 
A parallel algorithm based on strip decomposition for 3D 

Cartesian staggered grid fast direct Poisson solver was 
investigated. The algorithm was developed for the purpose of 
solving the Poisson equation on a multi-processor architecture 
machine. Two types of boundary conditions were applied for 
the test cases and several grid resolutions. Several numbers of 
grid points were performed to estimate errors between the 
numerical and exact solutions. As expected, these errors 
drastically decrease in relation to the increase of the grid 
resolutions. 

Moreover, performance of parallelization of the proposed 
algorithm was particularly well-focused. In our procedure, the 
number of operations was estimated. Running time decreases 
exponentially with the increase of the number of processors. 
In addition, several grids were tested to estimate the efficiency 
of the algorithm. By using the MPI library on an IBM-P4 
multi-processor machine, the Poisson equation was solved 
with several grid resolution and various processor numbers, 
the largest involving  P = 256 processors with 93.6 10×  grid 
points. The CPU time was equal to 24 seconds so that 
efficiency was about 0.80. The proposed algorithm offered a 
high efficiency for large grid meshes and the communication 
times were found smaller than 20 percent of total running 
times. As a result, one may conclude that the efficiency of the 
proposed method when dealing with Poisson solver is quite 
significant for large-scale physical problems as well. Finally, 
based on this proposed parallel algorithm, it is possible to 
develop such techniques of strip decomposition parallelization 
for other coordinate grid meshes as well as 3D cylindrical 
problems.         

ACKNOWLEDGMENT 
Computations were carried out at the Institut de 

Développement et des Ressources en Informatique 
Scientifique (IDRIS), the computational center of the Centre 
National de la Recherche Scientifique (CNRS). The authors 
wish to warmly thank the head of IDRIS department, V. 
Alessandrini, for his constant willingness to provide needed 
support. 

REFERENCES   
 
                                                           
[1]  R. Löhner, C. Yang, J,  J. Cebral, F. Camelli, O. Soto and J. Waltz, 

“Improving the speed and accuracy of projection-type incompressible 
flow solvers”, Comput. Methods Appl. Mech. Engrg, vol. 195, 2006, pp. 
3087-3109.   

 
[2]  R. W. Hockney, “A fast direct solution of Poisson equation using Fourier 

analysis”, J. Assoc. Comput. Mach., vol. 8, 1965, pp. 95-113. 

0.00

0.25

0.50

0.75

1.00

1 10 100 1000number of processors

efficiency

M1
M2
M3
M4
M5

0.00

0.25

0.50

0.75

1.00

1 10 100 1000number of processors

efficiency

M1
M2
M3
M4
M5

 
Fig. 8 Efficiencies of strip domain decomposition parallelization 
variation for fast direct Poisson solver with regard to the number of 
processors. Efficiencies were obtained from the tests of Poisson's 
equation for a polynomial problem on a 3D Cartesian grid with 
Dirichlet boundary conditions in x,y,z direction for several grids. 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:3, 2007

199

 

 

                                                                                                     
[3] J. Cooley and J. Tukey, “An algorithm for the machine calculation of 

complex Fourier series”, Math. Comput., vol. 19, 1965, pp. 297-301. 
[4] A. McKenney, L. Greengard and A. Mayo, “A fast Poisson solver for 

complex geometries”, J. Comput. Phys., vol. 118, 1995, pp. 348-355. 
[5] U. Schumann and R. A. Sweet, “Fast Fourier transforms for direct solution 

of Poisson's equation with staggered boundary conditions”, J. Comput. 
Phys., vol. 75, 1988, pp. 123-127. 

[6] C. Temperton, “On the FACR(l) algorithm for the discrete Poisson 
equation”, J. Comput. Phys., vol. 34, 1980, pp. 314-329. 

[7] E. Braverman, M. Israeli and A. Averbuch, “A fast solver for a 3D 
Helmholtz equation”, SIAM J. Sci. Comput., vol. 20(6), 1999, pp. 2237-
2260. 

[8] G. H. Golub, L. C. Huang, H. Simon and W. P. Tang, “A fast Poisson 
solver for the finite difference solution of the incompressible Navier-
Stokes enquations”, SIAM J. Sci. Comput., vol. 19(5), 1998, pp. 1606-
1624. 

[9] J. C. Adams and P. N. Swarztrauber, “SPHEREPACK 3.0: A model 
development facility”, Monthly Weather Review, vol. 127, 1999, pp. 
1872-1878. 

[10] P. N. Swarztrauber and R. A. Sweet, “Vector and parallel methods for the 
direct solution of Poisson's equation”, J. Comput. and Appl. Math., vol. 
27, 1989, pp. 241-163. 

[11] P. N. Swarztrauber, “The vector multiprocessor”, Int. J. High Speed 
Comput., vol. 11, 2000, pp. 1-18. 

[12] U. Schumann and M. Strietzel, “Parallel solution of Tridiagonal systems 
for the Poisson equation”, J. Sci. Comput., vol. 10, 1995, pp. 181-190. 

[13] T. F. Chan and D. C. Resasco, “A domain-decomposed fast Poisson 
solver on a rectangle”, SIAM J. Sci. Stat. Comput., vol. 8, 1987, pp. 27-
42. 

[14] T. Hoshino, Y. Sato and Y. Asamoto, “Parallel Poisson solver FAGECR-
implementation and performance evaluation on PAX computer”, J. Info. 
Proc., vol. 12(1), 1988, pp. 20-26. 

[15] S. Ghanemi, “A domain decomposition method for Helmholtz scattering 
problems”, Ninth. Int. conf. Dom. Demcomp. Meth., 1998, pp. 105-112. 

[16] J. -Y. Lee and K. Jeong, “A parallel Poisson solver using the fast 
multipole method on networks of workstations”, Comput. Math. Appl., 
vol. 36, 1998, pp. 47-61. 

[17] P. Grandclément, S. Bonazzola, E. Gourgoulhon and J. -A. Marck, “A 
multidomain spectral method for scalar and vectorial Poisson equations 
with noncompact sources”, J. Comput. Phys., 170, 2001, pp. 231-260.  

[18] M. Israeli, L. Vozovoi and A. Averbuch, “Parallelizing implicit algorithm 
fo time-dependent problems by parabolic domain decomposition”, J. Sci. 
Comput,. Vol. 8(2), 1993, pp. 151-166. 

[19] W. Briggs, L. Hart, R. A. Sweet and A. O'Gallagher, “Multiprocessor 
FFT methods”, SIAM J. Sci. Stat. Comput., vol. 8, 1987, pp. 27. 

[20] P. N. Swarztrauber, “Multiprocessor FFTs”, Parallel Computing, vol. 5, 
1987, pp. 197-210. 

[21] P. N. Swarztrauber and R. A. Sweet, “The Fourier and cyclic reduction 
methods for solving Poisson's equation”, In: Handbook of Fluid 
Dynamics and Fluid Machinery, J. A. Schetz and A. E. Fuhs, eds., John 
Wiley and Sons, New York, NY, 1996. 

[22] L. Borges and P. Daripa, “A fast parallel algorithm for the Poisson 
equation on a disk”, J. Comput. Phys., vol. 169, 2001, pp. 151-192. 

[23] J. Yang and E. Balaras, “An embedded-boundary formulation for large-
eddy simulation of turbulent flows interacting with moving boundaries”, 
J. Comput. Phys., vol. 215(1), 2006, pp. 12-40. 

[24] E. Balaras, “Modeling complex boundaries using an external force field 
on fixed Cartesian grids in large-eddy simulations”, Computers & Fluids, 
vol. 33(3), 2004, pp. 375-404. 

[25] E. A. Fadlun, R. Verzicco, P. Orlandi and J. Mohd-Yusof, “Combined 
Immersed-Boundary Finite-Difference Methods for Three-Dimensional 
Complex Flow Simulations”, J. Comput. Phys., vol. 161(1), 2000, pp. 35-
60. 

[26] P. Pacheco, “Parallel programming with MPI”, Morgan Kaufmann, San 
Francisco, CA, 1997. 

[27] G. Sköllermo, “A Fourier method for the numerical solution of Poisson's 
equation”, Math. Comput., vol. 29, 1975, pp. 697. 


