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Abstract—In this paper, a nonlinear constitutive law and a curve 

fitting, two relationships between the stress-strain and the shear 

stress-strain for sandstone material were used to obtain a second-order 

polynomial constitutive equation. Based on the established polynomial 

constitutive equations and Newton’s second law, a mathematical 

model of the non-homogeneous nonlinear wave equation under an 

external pressure was derived. The external pressure can be assumed 

as an impulse function to simulate a real earthquake source. A 

displacement response under nonlinear two-dimensional wave 

equation was determined by a numerical method and computer-aided 

software. The results show that a suit pressure in the sandstone 

generates the phenomenon of stress solitary waves. 

 

Keywords—Polynomial constitutive equation, solitary.  

I. INTRODUCTION 

HE nonlinear Schordinger equation (NLS) [1] was first 

derived from shallow water equation and used to describe 

one dimensional soliton in physics. Nowadays, solitons are 

widely used to physics, mathematics, biology, chemistry, and 

communications [2]-[7]. However, a soliton in the earthquake’s 

investigation literature is still quite rare. 

A construction of the nonlinear relationship between stress 

and strain for polymer material was used for the solution of the 

nonlinear stress-strain problem before a material function was 

obtained by experiment [8]. Yoshinaka [9] employed 

experiment method to non-linear stress and strain dependent 

behavior of soft rocks under cycle triaxial conditions. Typical 

stress-strain and shear stress-strain curves for sandstone in Lab. 

test were presented by Chang and Jeng [10]. In elastic region, 

the material was strongly non-linear curve. Then, two 

non-linear stress-strain and shear stress-strain constitute 

equations must be used to derive the wave equation of 

earthquake dynamics at the kilometer length scale. 

Our paper used the curve fitting stress-strain curve of 

laboratory rock material to establish nonlinear wave equation 

with external source. The curve fitting stress-strain and shear 

stress-shear strain curves comes from Chang and Jeng [10]. 

One needs to find a curve to pass certain data points. 

Specifically, a polynomial curve-fitting algorithm is used to fit 
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the stress-strain and shear stress-shear strain relation of 

sandstone from a laboratory text [10]. Based on Newton’s 

second law and the stress-strain curve equation, a 

two-dimensional nonlinear wave equation was established. 

Through a numerical method and computer-aided software, a 

displacement response under nonlinear two-dimensional wave 

equation was evaluated. A type of external source was used to 

simulate the earthquake force. The results show that the 

sandstone can generate bright and darken stress soliton under 

the external force stimulus.  

II. MATHEMATICAL MODELS OF THE NONLINEAR 

CONSTITUTIVE RELATIONS 

Typical stress-strain and shear stress-strain curves for 

sandstone in triaxial compressive test were presented by [10], 

as shown in Figs. 1 (a) and (b). In Figs. 1 (a) and (b), the chosen 

stress-strain and shear stress-strain curves were divided by ten 

points on these curves. Based on above information, a second 

order polynomial with three unknowns constant is used to fit 

stress-strain and shear stress-strain curves in nonlinear region 

of Figs. 1 (a) and (b). Then stress-strain relation and shear 

stress-strain relation can be represented in the form of  
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where xσ  and yσ  represent a stress at x-axis and y-axis 

directions, respectively. Symbols xε  and yε  were a strain 

represented by 
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v=v(x, y, t) were displacement at x-axis and y-axis directions, 

respectively. 0a , 1a , 2a , 0b , 1b , and 2b  were unknown 

constants and determined by curve fitting conditions. Similarly, 

τ  represents a shear stress. The first subscript in the notation 

refers to the plane on which the shear stress acts; the second 

subscript is the direction of shear stress. The symbol γ  is a 

shear strain represented by 
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∂ . 0c , 1c , and 2c  are unknown 

constants and determined by curve fitting conditions. For 

simplicity, the selected stress-strain curves in the x direction 

Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieh 

Stress Solitary Waves Generated by a 

Second-Order Polynomial Constitutive Equation 

T



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:8, No:5, 2014

308

 

 

and y direction are the same. In other words, the coefficients 0b

, 1b , and 2b  in (2) are equal to the coefficients 0a , 1a , and 2a  

in (1). Based on curve fitting method, (1) and (3) must pass 

through the ten points in region ab  and cd  on the stress-strain 

and shear stress-strain curves in Figs. 1 (a) and (b), 

respectively. 

Substituting ten points on Figs. 1 (a) and (b) into (1)~(4) and 

through Mathematica software package, the unknown 

coefficients from (1) to (4) can be evaluated and the obtained 

mathematical equations of nonlinear stress-strain and shear 

stress-strain curves were respectively shown in Figs. 2 and 3. 

 

 

Fig. 1 (a) The relationship between stress and strain redraw from 

Chang and Jeng [10] 

 

 

Fig. 1 (b) The relationship between shear stress and shear strain redraw 

from Chang and Jeng [10] 

 

 

Fig. 2 The nonlinear stress-strain curves of the second-order 

polynomial 

 

Fig. 3 The nonlinear shear stress-strain curves of the second-order 

polynomial 

III. MATHEMATICAL MODELING 

As shown in Fig. 4, the compression force can be an impulse 

function to simulate a real crust condition. One also assumes 

that xσ , yσ , xyτ , and yxτ  are independent of z. A body force is 

neglect. This model in Fig. 4 has a unit depth. The driving 

equations of equilibrium by Newton’s second law for the 

rectangular plate are given by 
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Since dxdy is not zero, the quantity in this term must vanish. 

Thus we can obtain 
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where u=u(x, y, t) is displacement at x direction. U is an impulse 

function. P is an external force. xyτ  is a shear stress. The first 

subscript in the notation refers to the plane on which the shear 

stress acts; the second subscript is the direction of shear system. 

)( 1tt −δ  is an impulse function. The normal stress on the x 

surface is defined by xσ .  

Using the Newton’s second law for driving equations of 

equilibrium in the y direction yields the relation 
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where v=v(x, y, t) is a displacement in the y direction. 

Substituting (1) and (3) into (6) we can obtain: 
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Similarly, substituting (2) and (4) into (18) we can obtain 
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The nonlinear feature of the plate of the two-dimensional 

sandstone is denoted by displacements u=u(x, y, t) and v=v(x, y, 

t). Equations (8) and (9) were nonlinear wave equation 

generated by the nonlinear region of the stress-strain curve and 

the shear stress-strain curve.  The coefficients 1a , 2a , 1c , 2c  1b , 

and 2b  were determined in Section II. The initial conditions 

were assumed by setting the displacement, ( ) 00,, =yxu , 

( ) 00,, =yxv  and particle velocity,
( )

0
,,

0 =
∂

∂
=t

t

tyxu
 and 

( )
0

,,
0 =

∂

∂
=t

t

tyxv
. The boundary conditions at the left and 

right faces of Fig. 5 were respectively given as u(0, y, t)=0 and 

u(L, y, t)=0. The boundary conditions at the top and bottom 

faces of Fig. 5 were respectively given as v(x, 0, t)=0 and v(x, w, 

t)=0. To determine whether the established mathematical 

modeling has solitary wave, therefore, the length and width of 

L=1000m and W=1000m were tested at the beginning of the 

study. Symbol ρ  is a density. P  is an external force.  

 

 

Fig. 4 The rectangular plate with unit thickness and edge lengths L and 

W 

 

 

Fig. 5 The plate was subjected to a uniform compression force in the 

x-direction 

IV. NUMERICAL ILLUSTRATION 

Based on the set models and assigned initial and boundary 

conditions, (8) and (9) were solved using finite element method 

and second-order implicit back difference formula. Applying a 

modified Newton-Raphson iteration procedure for 

time-stepping, a non-linear formula for (8) and (9) was 

obtained. In this research, the grid tablet comprised 2153 nodes 

and 1034 cells. In calculating the two dimensional nonlinear 

wave equation, the acceptable deviation was 710− .  

The form of external force in the impulse function is similar 

to the energy source from the instantaneous compression 

between tectonic plates. In this research, the magnitude of the 

initial external force was set at 4MPa, and the boundary and 

initial conditions were set as stated in the previous section. 

Using numerical methods, stress propagation through space is 

shown in Figs. 6 and 7, where stress propagation occurred at 

every 0.2s interval when t=0.0~1.4s. After calculations began, a 

maximum external stress of 60MPa was reached at the point of 

exertion around t=0.2s. As time progressed, stress value 

generally remained at 39MPa at the point of exertion. However, 

until x=1000m(right end), although the right propagating stress 

wave value showed slight changes, the patterns generally 

remained fixed and did not show repeated periodic fluctuations, 

therefore indicating non-regular periodic wave cycles. Before 

x=500m, stress value fluctuated between 60-70MPa; after 

x=500m, stress value was between 45-39MPa. With increasing 

propagation distance, the stress peak value showed a pattern of 

decline. The stress wave moved at a rate of 370m/s (0.37km/s), 

and maintained a relatively fixed pattern and velocity 

consistent with soliton, thereby suggesting that this stress wave 

is a stress soliton.  

Fig. 7 was the bottom viewpoint of Fig. 6. From Figs. 6, 7 

and during the propagation, only the peak stress values showed 

slight variations while individual stress wave and wavelength 

showed no clear changes and no periodic fluctuation. Although 

the manifested energy showed depletion over time, it remained 

concentrated. The peak value of the main positive stress wave 

(the first positive stress wave) decreased over propagation time 

and distance, from 60MPa at t=0.2s to about 39MPa at t=1.4s. 

These results indicated that the observed positive stress solitons 

were bright stress solitons while the negative solitons were dark 

stress solitons. Thus, if positive (bright) stress solitons 

represented compressive stress, then negative stress solitons 

represented tensile stress. 

Based on the simulation results, the peak values of the 

soliton fluctuations often exceeded the ultimate stress value set 

in the simulated stress-strain curve (that is, the rupture stress 

value). This seemingly indicated that in the propagation of 

stress solitons through rock stratum, when stress value changed 

and approached rupture stress boundary, the rocks became 

unstable and easily ruptured. The alternating bright and dark 

stress solitons subjected the rocks to repeated compressive and 

tensile stress within a short period of time, rendering the rocks 

even more unstable and more easily ruptured. 
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(a)          (b) 

 

(c)          (d) 

  

(e)           (f) 

 

  

(g)           (h) 

Fig. 6 The stress versus x and y positions for simulation lengths 

L=1000m and W=1000m, and was observed at chosen time from 

0.0sec to 1.4sec step 0.2 sec. (a) t=0.0 sec (b) t=0.2sec (c) t=0.4sec (d) 

t=0.6sec (e) t=0.8sec (f) t=1.0sec (g) t=1.2sec (h) t=1.4sec were used 

to display the solitonary phenomena generated by impulse function of 

an external force 

 

  

(a)          (b) 

 

 

(c)          (d) 

 

 

(e)           (f) 

 

 

(g)           (h) 

Fig. 7 The stress versus x and y positions for simulation lengths 

L=1000m and W=1000m, and was observed at another viewpoint. 

Chosen time from 0.0sec to 1.4sec step 0.2 sec, (a) t=0.0 sec (b) 

t=0.2sec (c) t=0.4sec (d) t=0.6sec (e) t=0.8sec (f) t=1.0sec (g) t=1.2sec 

(h) t=1.4sec were used to display the dark soliton by impulse unction 

of an external force in bottom viewpoint. 

V. CONCLUSION 

To illustrate the complete process of stress propagation with 

two dimensional nonlinear non-homogeneous wave equations, 

a computer program and computer-aided software are used. 

Using Non-linear analysis technology, a stress soliton with 

external forces was displayed. Based on this result, the process 

of stress propagation before rock rupture was obtained. 

The proposed curve fitting method was used to develop the 

mathematical model analysis nonlinear wave equations should 

be helpful in geodynamical region. Finally, the impulse 

functions of the external forces were also to explore the soliton 

of stress propagation when a solid does not excess its elasticity 

limit. 
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