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 
Abstract—We focus on internal stress and displacement of an 

elastic axisymmetric contact problem for indentation of a 
layer-substrate body. An elastic layer is assumed to be perfectly 
bonded to an elastic semi-infinite substrate. The elastic layer is 
smoothly indented with a flat-ended cylindrical indenter. The 
analytical and exact solutions were obtained by solving an infinite 
system of simultaneous equations using the method to express a 
normal contact stress at the upper surface of the elastic layer as an 
appropriate series. This paper presented the numerical results of 
internal stress and displacement distributions for hard-coating system 
with constant values of Poisson’s ratio and the thickness of elastic 
layer. 
 

Keywords—Indentation, contact problem, stress distribution, 
coating materials, layer-substrate body. 

I. INTRODUCTION 

HE coating technology has been used to reduce friction and 
improve surface materials. Fracture of the coating 

materials occur due to delamination and spalling at the 
boundary between coating layer and the substrate. Therefore, 
the analysis of internal stress distributions of contact problem is 
very important. 

The contact problem of elastic layer-substrate body has been 
studied by many researches [1]-[5]. However, they focused on 
applied load of rigid indenter and the distribution of contact 
stress and not internal stress distribution. 

In the present study, the axisymmetric elastic contact 
problem for a layer-substrate composite consisting of an elastic 
layer perfectly bonded to an elastic semi-infinite substrate 
indented by a rigid flat-ended cylindrical indenter is 
considered. Instead of using the Fredholm integral equation [1], 
[2], this study obtained an analytical solution by solving an 
infinite system of simultaneous equations using a method to 
express the normal contact stress at the upper surface of the 
elastic layer as an appropriate series [6], [7]. Numerical results 
of internal stress and displacement distributions were given for 
hard-coating system, and Poisson’s ratio and the thickness of 
elastic layer were constants. 
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II. FORMULATION OF THE PROBLEM 

Consider the problem where a composite material consisting 
of an elastic layer perfectly bonded to an elastic semi-infinite 
substrate is indented by a rigid flat-ended cylindrical indenter, 

as shown in Fig. 1. A cylindrical coordinate system (r, , z) is 
used in this study. Displacement components along r, and z 
are denoted by ur, v and wz, respectively. Components of the 
stress tensor are expressed by r, ,z,r z, r and z. A 
general solution of the equilibrium equations for the elastic 
layer and substrate without torsion can be derived using 

harmonic stress functions (i)
and (i)

 (i = 1, 2), i.e. [8], where 
superscripts 1 and 2 represent the layer and substrate, 
respectively. 
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Fig. 1 An elastic layer perfectly bonded to an elastic semi-infinite 
substrate indented by a rigid cylindrical indenter 
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Gi and i (i =1, 2) denote the shear modulus and Poisson’s 
ratios of the layer and substrate, respectively. The harmonic 
functions (i)

 and (i)
 (i = 1, 2) can be written as 
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where Jn ( r) is the Bessel function of the first kind of order n 
and, A(1) (), B(1) (), C (1) (), D(1) (), A(2) () and B(2) () are 
unknown functions that can be determined from the boundary 
conditions. 

If shear tractions between the indenter and layer are assumed 
to be negligible, then the boundary conditions of the upper 
surface of the layer indented by cylindrical indenter with 
constant penetration depth can be described by: 
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The elastic layer is perfectly bonded to the semi-infinite 

substrate; therefore, the continuity conditions of the 
components of displacement and traction at the interface z = h 
can be written in the following form: 
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By substituting (2) and (3) into the equilibrium equations (1) 

and using the boundary conditions of (4)-(8), the unknown 
functions can be reduced to one and we obtain following dual 
integral equations: 
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The dual integral equations (9) and (10) are usually 

transformed into a Fredholm equation of the second kind [1], 
[2]. In this study, the normal contact stress between the indenter 
and the layer surface was expressed as an appropriate series 
function that contains Tchebycheff polynomials Tn(x), and a 
Hankel inversion was applied so that the problem finally 
reduced to following an infinite system of simultaneous 
equations: 
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where bn (n = 0, 1, 2, …), 0m are unknown coefficients matrix 
and the Kronecker delta function, and Amn is given by: 
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Detailed techniques of numerical calculation of (12) are 

summarized in [7]. 
By calculating the infinite system of simultaneous equations 

(12), the unknown functions A(1) (), B(1) (), C (1) (), D(1) (), 
A(2) () and B(2) () can be determined. Therefore, it is possible 
to estimate the stress and displacement components at any 
position in the layer-substrate body. 

The stress and displacement components of elastic layer 
given by: 
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For the elastic substrate, the stress and displacement are 

given by: 
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In this study, the unknown functions reduced into C (1) () in 
(18) and (20) by using computer algebra software, which is 
wxMaxima (MIT). After that, numerical calculations of (17) 
and (19) are conducted to obtain internal distributions of stress 
and displacement. 

The normal contact stress (z)
(1)

z=0 and normal displacement 
(wz)

(1)
z=0 can be written in the following form [7]: 
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where H(x) is the Heaviside unit step function. 

III. NUMERICAL RESULTS AND DISCUSSION 

The numerical results present internal distributions of stress 
and displacement. Numerical results were given for Poisson’s 

ratio of the layer and substrate 1 = 2 = 0.3 and layer 
thickness ratio h/a = 1.0, and the ratio of the shear modulus of 
the layer and substrate  = G1/G2 = 2.0, which means hard- 
coating system.  
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layer-substrate body in Fig. 5. It is noted that the color bar in 
Figs. 2-5 truncate the value as appropriate. 
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Fig. 3 (a) 2D contour and (b) 3D plot of 1
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Fig. 5 (a) 2D contour and (b) 3D plot of 1

14
r r

P
u u

G

 
   

 


0.012321

0.031519

0.050717

0.050717

0.
05

07
17

0.06991
5

0.
06

99
15

0.
08

91
14

0.
10

83
1

0.
10

83
1

0.
12

75
1

0.
12

75
1

0.146710.
14

67
1

0.16591

0.1851
0.2043

0.2235

0.2427

D
e
pt

h
 z

/
a

-0.6886

-0.67797

-0.66734

-0.65671

-0.64608

-0.63545

-0
.62482

-0
.6

14
19

-0
.6

03
56

-0
.5

92
93

-0
.5

82
3

-0
.5

71
67

-0
.5

61
04

-0
.5

50
41

-0
.5

39
78

-0.52915
-0.51852
-0.50789
-0.49727

-0
.4

97
27

-0.48664

-0
.4

86
64

-0.47601

-0
.4

76
01

-0.46538

-0
.4

65
38

-0.45475

-0
.4

54
75

-0.44412

-0
.4

44
12

-0.43349

-0
.4

33
49

-0.42286

-0
.4

22
86

-0.41223

-0
.4

12
23

-0.4016

-0
.4

01
6

-0.39097

-0
.3

90
97

-0.38034

-0
.3

80
34

-0.36971

-0
.3

69
71

-0.35908

-0
.3

59
08

-0.34845

-0
.3

48
45

-0.33782

-0
.3

37
82

-0.33782

-0
.3

27
19

-0.327 19

-0
.3

16
56

-0
.3 165 6

-0
.3

05
93

-0.30 5
93

-0
.2

95
3

-0
.29 53

-0
.2

84
67

-0.28467

-0
.2

74
04

-0.27
404

-0
.2

63
41

-0
.2

52
78

-0.2
527 8

-0
.2

42
15

-0
.2

31
52

0 0.5 1 1.5 2 2.5
Radial r/a

0

0.5

1

1.5

2

2.5

D
e
pt

h
 z

/
a

-0.049631

-0.049631

-0
.0

46
67

4

-0.043717

-0.043717-0
.0

40
76

1

-0
.0

40
76

1

-0
.037804

-0.037804

-0
.0

34
84

7

-0.034847

-0.03189

-0.03189

-0.028933

-0.025976

-0.023019

-0.023019

-0
.0

20
06

2

-0.020062

-0.017106

-0.014149

-0.011192
-0.0082349

-0.0052781
-0. 00

23212D
e
pt

h
 z

/
a

0 

1 = 2 = 0.3, h/a = 1.0, 
 = G1/G2 = 2.0 

1 = 2 = 0.3, h/a = 1.0, 
 = G1/G2 = 2.0 

1 = 2 = 0.3, h/a = 1.0, 
 = G1/G2 = 2.0 

1 = 2 = 0.3, h/a = 1.0, 
 = G1/G2 = 2.0 

0 

0 

1 = 2 = 0.3, h/a = 1.0, 
 = G1/G2 = 2.0 

1 = 2 = 0.3, h/a = 1.0, 
 = G1/G2 = 2.0 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:3, 2020

148

 

 

IV. CONCLUSION 

The internal distributions of stress and displacement for an 
elastic layer-substrate body indented by the rigid cylindrical 
indenter have been calculated. The numerical results were 
based on analytical solution of an infinite system of 
simultaneous equations obtained by expressing the normal 
contact stress at the upper surface of the elastic layer as an 
appropriate series. 

The numerical results of distributions of stress and 
displacement in this study were reasonable. Therefore, this 
study could provide basis understanding of the coating 
technology by investigating the effects of mechanical 
properties of elastic layer and substrate on the stress and 
displacement distributions. Especially, the distribution of shear 
stress rz at the interface between layer and substrate is 
important for interfacial delamination and spalling. 
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