
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1345

Abstract—Relational databases are often used as a basis for

persistent storage of ontologies to facilitate rapid operations such as
search and retrieval, and to utilize the benefits of relational databases
management systems such as transaction management, security and
integrity control. On the other hand, there appear more and more
OWL files that contain ontologies. Therefore, this paper proposes to
extract ontologies from OWL files and then store them in relational
databases. A prerequisite for this storing is transformation of
ontologies to relational databases, which is the purpose of this paper.

Keywords—Ontologies, relational databases, SQL, and OWL.

I. INTRODUCTION
HERE are two basic techniques for storing ontologies [1].
The first technique is to use file systems for storing

ontologies in flat files. The main problem with this technique
is that file systems do not provide scalability, sharability, or
any query facility.

The second technique (that we follow) is to use database
management systems for storing ontologies in databases. The
main problem with this technique is that database management
systems require that an ontology should have a fixed structure,
which cannot be guaranteed as ontologies are often built in a
distributed way. This means, for example, that one user may
define an employee as having a social security number, but
not foresee a martial status. This will not stop, however,
another user from asserting that a given employee is married,
adding a martialStatus data type property to an
Employee class.

There are several options for storing ontologies in
databases; e.g. relational, object or object-relational. Storing
ontologies in relational databases is less straightforward than
storing ontologies in object or object-relational databases,
because relational database management systems do not
support inheritance. However, relational database
management systems have significant advantages over object
or object-relational database management systems. In
particular, relational database management systems provide

Manuscript received on July 31, 2007. This work was supported in part by
ESF (Estonian Science Foundation) under the grant nr. 5766.

Irina Astrova is with the Institute of Cybernetics, Tallinn University of
Technology, Estonia (e-mail: irinaastrova@ yahoo.com).

Nahum Korda is with Technion, Israel Institute of Technology (e-mail:
korda@technion.ac.il).

Ahto Kalja is with the Institute of Cybernetics, Tallinn University of
Technology, Estonia (e-mail: ahto@cs.ioc.ee).

maturity, performance, robustness, reliability, and availability.

II. MOTIVATION
There are three main reasons for storing ontologies in

relational databases:
• Legacy data: When stored in relational databases,

ontologies can interoperate with a large amount of data
in existing relational databases.

• Legacy applications: When stored in relational
databases, ontologies can be accessed from within
existing relational database applications.

• Large scale ontologies: The ability of relational
databases to store a large amount of data proves that
the relational databases are also suitable for storing
large scale ontologies that can contain millions of
instances.

A prerequisite for this storing is transformation of
ontologies to relational databases, which is the purpose of this
paper.

III. TRANSFORMATION PROBLEMS
Transformation of ontologies to relational databases should

handle the following problems:
• Loss of data: The result of the transformation should

adequately describe the original data.
• Structure loss: In some cases, the transformation is

not really lossless in the sense that not all constructs in
an ontology can be mapped to a relational database.
Therefore, the quality of the transformation should be
analyzed.

• Focus on structures: Besides the mapping of
structures, mechanisms should be provided for the
mapping of data (i.e. instances).

• Focus on data: Data should be mapped, with
incorporation of data types.

• Applicability: In some cases, the transformation is not
really general in the sense that its application is rather
restricted. E.g. if the transformation allows only for
exotic ontologies, not being used in practical situations,
then the transformation suffers from the applicability
problem.

• Correctness: The transformation should have provable
correctness.

Storing OWL Ontologies in SQL Relational
Databases

Irina Astrova, Nahum Korda, and Ahto Kalja

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1346

IV. RELATED WORK
A majority of the related work has been done in mapping

between relational databases and ontologies; e.g. [2] – [5].
However, this mapping is quite different from transformation
of relational databases to ontologies, as shown in Fig. 1.

(a) mapping between relational database and ontology

(b) transformation of relational database to ontology

Fig. 1 Mapping vs. transformation

The difference is that the mapping assumes the existence of

both a relational database and an ontology, and produces a set
of correspondences between the two. That is, the inputs to the
mapping are both a relational database and an ontology, and
the output is a set of correspondences that relate constructs of
the relational database to those of the ontology. A construct in
the relational database unrelated to any construct in the
ontology is considered to be out of scope of the mapping. By
contrast, the transformation assumes that only an ontology
exists, whereas a relational database is produced from the
ontology. That is, the input to the transformation is an
ontology and the output is a relational database.

There are several approaches to transformation of
ontologies to relational databases; e.g. [6] – [8]. However, all
these approaches suffer from one or more of the following
problems:

• They ignore restrictions that capture additional
semantics.

• They are not implemented.
• They are semi-automatic (i.e. they can require much

user interaction).
• They do not analyze structure loss caused by the

transformation. Rather, they assume that all constructs
of an ontology can be mapped to a relational database.

As an attempt to resolve these problems, we propose a
novel approach to transformation of ontologies to relational
databases, which is the main contribution of this paper. We
assume that an ontology is written in OWL [9], the standard
ontology language, and that a relational database is written in
SQL [10], the standard relational database language.

V. TRANSFORMATION
An ontology is considered to be an implementation of an

ontological model. This model includes constructs for
specifying classes, properties, data types, inheritance,
restrictions, and other semantics, as shown in Fig. 2. However,
the ontology does not need to include all constructs of the
ontological model (i.e. it can use only a portion of the
ontological model).

Fig. 2 Simplified ontological model

Similarly, a relational database is considered to be an

implementation of a relational model. This model includes
constructs for specifying tables, columns, data types,
constraints, and other semantics, as shown in Fig. 3. However,
the relational database does not need to include all constructs
of the relational model (i.e. it can use only a portion of the
relational model).

Fig. 3 Simplified relational model

Fig. 4 shows the basic idea behind our approach.

Transformation of ontologies to relational databases is based
on a set of rules called mapping rules that specify how to map
constructs of the ontological model to the relational model.
The mapping rules are then applied to an ontology (source) to
produce a relational database (target). Since the mapping rules
are specified on the model level, they are applicable to any

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1347

ontology that conforms to the ontological model.

Fig. 4 Transformation of ontologies to relational databases

A. Mapping Rules
There are two types of properties that need to be

considered: data type properties and object properties. In
addition, properties can be single-valued or multivalued,
required or optional; this has a great impact on the
transformation.

If a property is single-valued, then it means that each
instance in a class may have at most one value for the
property. A single-valued property is identified in the
following cases:

• Where a cardinality of the property has a (maximum)
value of 1.

• Where the property is (inverse) functional.
In any other case, the property is multivalued.
If a property is required, then it means that each instance in

a class must have at least one value for the property. A
required property is identified in the following cases:

• Where a cardinality of the property has a (minimum)
value greater than 0.

• Where the property is restricted to have some values
from another class.

• Where the property is restricted to have a particular
value.

In any other case, the property is optional.
Our approach maps constructs of an ontology to a relational

database, applying the following rules:
Rule 1: A named class (including subclasses and

association classes) maps to a table. This table is named with
the name of the class. The table is assigned a primary key.

• A table that corresponds to an association class (i.e. the
class that relates other classes) gets as its primary key a
combination of foreign keys to all its related tables.

• A table that corresponds to a subclass gets as its
primary key a foreign key to its “superclass” table.

• Any other table gets an “auto-number” primary key.
This key is named with the name of the table suffixed
with ID, such as EmployeeID for an Employee
table.

Rule 2: If a data type property is single-valued, then it
maps to a column in the table that corresponds to the class
specified as the domain of the data type property. This column
is named with the name of the data type property. The column
uses as its type the type specified as the range of the data type

property converted from XSD to SQL (see Section B).
Rule 3: If a data type property is multivalued, then it maps

to a table. This table is named with the name of the data type
property suffixed with Value, such as hobbyValue for a
hobby data type property. The table gets as its primary key a
combination of a corresponding column and a foreign key to
the table that corresponds to the class specified as the domain
of the data type property.

E.g. a hobby data type property in Fig. 5 is multivalued
(i.e. an employee can have zero or more hobbies). Since SQL
does not support multivalued columns, a hobbyValue table
is created. This table gets as its primary key a combination of
an EmployeeID column (that is a foreign key to an
Employee table) and a hobby column. If the hobby data
type property were single-valued, then the hobbyValue
table would not be created but just the hobby column in the
Employee table.

Rule 4: If an object property is both single-valued and
optional, and there is a single-valued inverse of the object
property (a one-to-zero-or-one relationship), then the inverse
of the object property maps to a foreign key in the table that
corresponds to the class specified as the range of the object
property. This key references the primary key in the table that
corresponds to the class specified as the domain of the object
property. The name of the foreign key is the name of the
inverse of the object property. (The object property does not
map to any foreign key, because creating two foreign keys for
the relationship would mean a circular dependency.)

Rule 5: If an object property is single-valued and Rule 4 is
not applied (a zero-or-one-to-one, one-to-one or many-to-one
relationship), then the object property maps to a foreign key in
the table that corresponds to the class specified as the domain
of the object property. This key references the primary key in
the table that corresponds to the class specified as the range of
the object property. The name of the foreign key is the name
of the object property.

Rule 6: If an object property is multivalued and there is a
single-valued inverse of the object property (a one-to-many
relationship), then the inverse of the object property maps to a
foreign key in the table that corresponds to the class specified
as the range of the object property. This key references the
primary key in the table that corresponds to the class specified
as the domain of the object property. The name of the foreign
key is the name of the inverse of the object property.

Rule 7: If an object property is multivalued and Rule 6 is
not applied (a many-to-many relationship), then the object
property maps to a table. This table is named with the name of
the object property. The table gets as its primary key a
combination of two foreign keys. One foreign key references
the primary key in the table that corresponds to the class
specified as the domain of the object property. Another
foreign key references the primary key in the table that
corresponds to the class specified as the range of the object
property.

Rule 8: A value restriction on a data type property maps to
a CHECK constraint on the corresponding column.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1348

Rule 9: An inverse functional property maps to a UNIQUE
constraint on the corresponding column.

Rule 10: A required property maps to a NOT NULL
constraint on the corresponding column.

Rule 11: An enumerated data type maps to a CHECK
constraint with enumeration.

Rule 12: An instance in a class maps to a row in a
corresponding table.

In addition, to support multilingual ontologies, a
RDFSProperty table is created for multilingual strings to
store multilingual labels and comments of classes and
properties.

B. Data Type Conversion
Most of the transformation of data type properties has to do

with converting data types from XSD to SQL. Unlike SQL,
OWL does not have any built-in data types. Instead, it uses
XSD data types such as string, integer, float,
boolean, time and date.

TABLE I

DATA TYPE CONVERSION
XSD data type SQL data type

short SMALLINT
unsignedShort SMALLINT

integer INTEGER
positiveInteger INTEGER
negativeInteger INTEGER

nonPositiveInteger INTEGER
nonNegativeInteger INTEGER

int INTEGER
unsignedInt INTEGER

long INTEGER
unsignedLong INTEGER

decimal DECIMAL
float FLOAT

double DOUBLE PRECISION
string CHARACTER VARYING

normalizedString CHARACTER VARYING
token CHARACTER VARYING

language CHARACTER VARYING
NMTOKEN CHARACTER VARYING

Name CHARACTER VARYING
NCName CHARACTER VARYING

time TIME
date DATE

datetime TIMESTAMP
gYearMonth DATE
gMonthDay DATE

gDay DATE
gMonth DATE
boolean BIT

byte BIT VARYING
unsignedByte BIT VARYING

hexBinary CHARACTER VARYING
hexBinary CHARACTER VARYING

anyURI CHARACTER VARYING

Table I shows how to convert data types from XSD to SQL.

This conversion is simple for the XSD data types that directly
correspond to SQL data types. E.g. if XSD data type is
string, then SQL data type is CHARACTER VARYING.
However, the conversion becomes a challenge for
“unsupported” data types. E.g. a ssn data type property in

Fig. 5 uses positiveInteger as its range. However, there
is no positiveInteger in SQL. Therefore, a ssn column
uses INTEGER as its type, combined with a CHECK
constraint: CHECK (ssn > 0).

C. Example
To illustrate the transformation, Fig. 5 shows an ontology

and a relational database that is produced from this ontology,
applying the mapping rules.

<owl:Class rdf:ID="Employee"/>
<owl:Class rdf:ID="Project"/>
<rdf:ObjectProperty rdf:ID="involves">
 <rdfs:domain rdf:resource="#Project"/>
 <rdfs:range rdf:resource="#Employee"/>
</rdf:ObjectProperty>
<rdf:ObjectProperty rdf:ID="involvedIn">
 <owl:inverseOf rdf:resource="#involves"/>
</rdf:ObjectProperty>
<rdf:ObjectProperty rdf:ID="manages">
 <rdfs:domain rdf:resource="#Employee"/>
 <rdfs:range rdf:resource="#Project"/>
</rdf:ObjectProperty>
<rdf:ObjectProperty rdf:ID="managedBy">
 <owl:inverseOf rdf:resource="#manages"/>
</rdf:ObjectProperty>
<owl:Class rdf:ID="Project">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty

rdf:resource="#managedBy"/>
 <owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<owl:DatatypeProperty rdf:ID="ssn">
 <rdfs:domain rdf:resource="#Employee"/>
 <rdfs:range
rdf:resource="&xsd;positiveInteger"/>
</owl:DatatypeProperty>
<owl:InverseFunctionalProperty rdf:ID="ssn"/>
<owl:DatatypeProperty rdf:ID="hobby">
 <rdfs:domain rdf:resource="#Employee"/>
<rdfs:range rdf:resource="&xsd;sting"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="sex">
 <rdfs:domain rdf:resource="#Employee"/>
 <rdfs:range>
 <owl:DataRange>
 <owl:oneOf>
 <rdf:List>
 <rdf:first

rdf:datatype="&xsd;string">Male/>
 <rdf:rest>
 <rdf:List>
 <rdf:first

rdf:datatype="&xsd;string">Female/>
 <rdf:rest

rdf:resource="&rdf;nil"/>
 </rdf:List>
 </rdf:rest>
 </rdf:List>
 </owl:oneOf>

 </owl:DataRange>
 </rdfs:range>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1349

</owl:DatatypeProperty>
<owl:Class rdf:ID="SoftwareProject">
 <rdfs:subClassOf rdf:resource="#Project"/>
</owl:Class>
<owl:DatatypeProperty rdf:ID="type">
 <rdfs:domain
rdf:resource="#SoftwareProject"/>
 <rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:Class rdf:ID="SoftwareProject">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#type"/>
 <owl:hasValue rdf:resource=Software/>

 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

↓
CREATE TABLE Employee(
 EmployeeID INTEGER PRIMARY KEY,
 ssn INTEGER CHECK (ssn > 0) UNIQUE,
 sex VARCHAR CHECK IN (‘Male’, ‘Female’))
CREATE TABLE Project(
 ProjectID INTEGER PRIMARY KEY,
 managedBy INTEGER REFERENCES Employee NOT
NULL)
CREATE TABLE involves(
 EmployeeID INTEGER REFERENCES Employee,
 ProjectID INTEGER REFERENCES Project,
 PRIMARY KEY(EmployeeID, ProjectID))
CREATE TABLE hobbyValue(
 hobby VARCHAR,
 EmployeeID INTEGER REFERENCES Employee,
 PRIMARY KEY (hobby, EmployeeID))
CREATE TABLE SoftwareProject(
 ProjectID INTEGER PRIMARY KEY REFERENCES
Project,
 type VARCHAR CHECK (type=‘Software’))

Fig. 5 Example of transformation of ontology to relational database

VI. IMPLEMENTATION
Our approach is implemented in a utility called QUALEG

DB. This utility is capable of automatic transformation of an
ontology (written in OWL) to a relational database (written in
SQL).

As shown in Fig. 6, the utility is a transformation engine
that parses an OWL file (that contains an ontology), performs
consistency and error checks, and generates an SQL script.
This script is then executed via an ODBC driver by a
relational database management system to create a relational
database.

Fig. 6 Software architecture of QUALEG DB

The utility requires minimum user interaction. The only

thing users need to do is to select or specify the name for an
OWL file and the name for an SQL script, as shown in Fig. 7.

Fig. 7 Graphical user interface of QUALEG DB

When parsing an ontology, the utility checks the ontology

to ensure that the ontology meets all requirements of the
relational database management system and is consistent. This
checking is important because it prevents certain kinds of
errors in the resulting relational database. Examples of
consistency and error checks include the following:

• Class and property names should not exceed 15
characters.

• Class and property names should not contain any other
character except a letter, a digit and an underscore.

• Individuals in an enumerated class should be unique.
• Values in an enumerated data type should be unique.
• Both a domain and a range should be specified for a

property unless the property is an inverse of an object
property. (For the inverse of the object property, the
domain and the range can be inferred from the object
property.)

Violation of any of these checks will lead to errors. If the
utility encounters any error during transformation, it will
display the error to the user (as shown in Fig. 8) and continues
the transformation unless the error is terminal. The “incorrect”
construct that has caused the error will be excluded from the
transformation.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1350

Fig. 8 Consistency and error checks

VII. QUALITY OF TRANSFORMATION
Since a relational model does not support all constructs of

an ontological model, some of the constructs in an ontology
will necessarily be lost when transforming the ontology to a
relational database. Therefore, we need to analyze structure
loss caused by this transformation. One way to do this is to
retransform the resulting relational database to an ontology
and see if the transformation is reversible. By reversible, we
mean that transformation of an ontology to a relational
database followed by reverse transformation of the resulting
relational database to an ontology will yield the original
ontology.

Let T1 be transformation of an ontology O1 to a relational
database R. Let T2 be reverse transformation of the relational
database R to an ontology O2. The transformation T1 is said to
be reversible if the ontology O2 is equivalent to the ontology
O1. That is, T1(O1) = R ∧ T2(R) = O2 ⇒ O2 ≡ O1. The
ontology O2 is said to be equivalent to the ontology O1 if a
lexical overlap measure [11] denoted as L(O1, O2) takes a
value of 1. That is, L(O1, O2) = 1 ⇒ O2 ≡ O1. The lexical
overlap measure is calculated as follows: L(O1, O2) = |L1 ∩ L2|
/ |L1|, where L1 is a set of all constructs in the ontology O1 and
L2 is a set of all constructs in the ontology O2.

VIII. CONCLUSION AND FUTURE WORK
We have proposed a novel approach to automatic

transformation of ontologies to relational databases, where the
quality of transformation is also considered. Our approach has
been implemented in the QUALEG DB utility. This utility can
be applied to any relational database management system that
supports the standard SQL, because the utility does not rely on
any SQL dialect. The utility can map all constructs of an
ontology to a relational database, with the exception of those
constructs that have no correspondences in the relational
database (e.g. subproperties). The utility names the constructs
of an ontology using the names of relational database
constructs (converting the names as appropriate or required by
name length restrictions in the relational database
management system).

The main problem with our approach is the naming

strategy, in particular, when an ontology that imports another
ontology is transformed into a relational database. Unlike
OWL, SQL does not support namespaces. A simple solution
to this problem is to keep class names unique over multiple
ontologies (as done in the QUALEG DB utility), but a more
sophisticated naming strategy needs to be developed in the
future.

REFERENCES
[1] R. Harrison, and C. Chan, “Distributed ontology management system,”

in Proc. 18th Annual Canadian Conf. on Electrical and Computer
Engineering, Saskatoon, Canada, 2005, pp. 661-664.

[2] Y. An, A. Borgida, and J. Mylopoulos, “Inferring complex semantic
mappings between relational tables and ontologies from simple
correspondences,” in Proc. OMT Conf., Agia Napa, Cyprus, 2005, pp.
1152-1169.

[3] J. Barrasa, O. Corcho, G. Shen, and A. Gomez-Perez, “R2O: An
extensible and semantically based database-to-ontology mapping
language,” in Proc. Workshop on Semantic Web and Databases,
Edinburgh, Scotland, 2004, pp. 1069-1070.

[4] N. Konstantinou, D. Spanos, M. Chalas, E. Solidakis, and N. Mitrou,
“VisAVis: An approach to an intermediate layer between ontologies and
relational database contents,” in Proc. Int. Workshop on Web
Information Systems Modeling, Luxembourg, Grand Duchy of
Luxembourg, 2006.

[5] Z. Xu, S. Zhang, and Y. Dong, “Mapping between relational database
schema and OWL ontology for deep annotation,” in Proc. of
IEEE/WIC/ACM Int. Conf. on Web Intelligence, Hong Kong, China,
2006, pp. 548-552.

[6] A. Gali, C. Chen, K. Claypool, and R. Uceda-Sosa, “From ontology to
relational databases,” in Proc. Int. Workshop on Conceptual-Model
Driven Web Information Integration and Mining, Shanghai, China,
2004, pp. 278-289.

[7] E. Vysniauskas, and L. Nemuraite, “Transforming ontology
representation from OWL to relational database,” Information
Technology and Control, vol. 35A, no. 3, 2006, pp. 333-343.

[8] I. Astrova, A. Kalja, and N. Korda, “Automatic transformation of OWL
ontologies to SQL relational databases,” in Proc. IADIS European Conf.
Data Mining (MCCSIS), Lisbon, Portugal, 2007, pp. 145-149.

[9] OWL Web Ontology Language Reference, 2004, Available:
http://www.w3.org/TR/owl-ref

[10] Database Language SQL. ANSI X3.135, 2002, Available:
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

[11] M. Sabou, “Extracting ontologies from software documentation: A semi-
automatic method and its evaluation,” in Proc. Workshop on Ontology
Learning and Population, Valencia, Spain, 2004.

