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Abstract—Relational databases are often used as a basis for 

persistent storage of ontologies to facilitate rapid operations such as 
search and retrieval, and to utilize the benefits of relational databases 
management systems such as transaction management, security and 
integrity control. On the other hand, there appear more and more 
OWL files that contain ontologies. Therefore, this paper proposes to 
extract ontologies from OWL files and then store them in relational 
databases. A prerequisite for this storing is transformation of 
ontologies to relational databases, which is the purpose of this paper. 
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I. INTRODUCTION 
HERE are two basic techniques for storing ontologies [1]. 
The first technique is to use file systems for storing 

ontologies in flat files. The main problem with this technique 
is that file systems do not provide scalability, sharability, or 
any query facility. 

The second technique (that we follow) is to use database 
management systems for storing ontologies in databases. The 
main problem with this technique is that database management 
systems require that an ontology should have a fixed structure, 
which cannot be guaranteed as ontologies are often built in a 
distributed way. This means, for example, that one user may 
define an employee as having a social security number, but 
not foresee a martial status. This will not stop, however, 
another user from asserting that a given employee is married, 
adding a martialStatus data type property to an 
Employee class. 

There are several options for storing ontologies in 
databases; e.g. relational, object or object-relational. Storing 
ontologies in relational databases is less straightforward than 
storing ontologies in object or object-relational databases, 
because relational database management systems do not 
support inheritance. However, relational database 
management systems have significant advantages over object 
or object-relational database management systems. In 
particular, relational database management systems provide 
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maturity, performance, robustness, reliability, and availability. 
 

II. MOTIVATION 
There are three main reasons for storing ontologies in 

relational databases: 
• Legacy data: When stored in relational databases, 

ontologies can interoperate with a large amount of data 
in existing relational databases. 

• Legacy applications: When stored in relational 
databases, ontologies can be accessed from within 
existing relational database applications. 

• Large scale ontologies: The ability of relational 
databases to store a large amount of data proves that 
the relational databases are also suitable for storing 
large scale ontologies that can contain millions of 
instances. 

A prerequisite for this storing is transformation of 
ontologies to relational databases, which is the purpose of this 
paper. 

III. TRANSFORMATION PROBLEMS 
Transformation of ontologies to relational databases should 

handle the following problems: 
• Loss of data: The result of the transformation should 

adequately describe the original data. 
• Structure loss: In some cases, the transformation is 

not really lossless in the sense that not all constructs in 
an ontology can be mapped to a relational database. 
Therefore, the quality of the transformation should be 
analyzed. 

• Focus on structures: Besides the mapping of 
structures, mechanisms should be provided for the 
mapping of data (i.e. instances). 

• Focus on data: Data should be mapped, with 
incorporation of data types. 

• Applicability: In some cases, the transformation is not 
really general in the sense that its application is rather 
restricted. E.g. if the transformation allows only for 
exotic ontologies, not being used in practical situations, 
then the transformation suffers from the applicability 
problem. 

• Correctness: The transformation should have provable 
correctness. 
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IV. RELATED WORK 
A majority of the related work has been done in mapping 

between relational databases and ontologies; e.g. [2] – [5]. 
However, this mapping is quite different from transformation 
of relational databases to ontologies, as shown in Fig. 1.  

 

 
(a) mapping between relational database and ontology 

 

 
(b) transformation of relational database to ontology 

 
Fig. 1 Mapping vs. transformation 

 
The difference is that the mapping assumes the existence of 

both a relational database and an ontology, and produces a set 
of correspondences between the two. That is, the inputs to the 
mapping are both a relational database and an ontology, and 
the output is a set of correspondences that relate constructs of 
the relational database to those of the ontology. A construct in 
the relational database unrelated to any construct in the 
ontology is considered to be out of scope of the mapping. By 
contrast, the transformation assumes that only an ontology 
exists, whereas a relational database is produced from the 
ontology. That is, the input to the transformation is an 
ontology and the output is a relational database. 

There are several approaches to transformation of 
ontologies to relational databases; e.g. [6] – [8]. However, all 
these approaches suffer from one or more of the following 
problems: 

• They ignore restrictions that capture additional 
semantics. 

• They are not implemented. 
• They are semi-automatic (i.e. they can require much 

user interaction). 
• They do not analyze structure loss caused by the 

transformation. Rather, they assume that all constructs 
of an ontology can be mapped to a relational database. 

As an attempt to resolve these problems, we propose a 
novel approach to transformation of ontologies to relational 
databases, which is the main contribution of this paper. We 
assume that an ontology is written in OWL [9], the standard 
ontology language, and that a relational database is written in 
SQL [10], the standard relational database language. 

V. TRANSFORMATION 
An ontology is considered to be an implementation of an 

ontological model. This model includes constructs for 
specifying classes, properties, data types, inheritance, 
restrictions, and other semantics, as shown in Fig. 2. However, 
the ontology does not need to include all constructs of the 
ontological model (i.e. it can use only a portion of the 
ontological model). 

 

 
 

Fig. 2 Simplified ontological model 
 
Similarly, a relational database is considered to be an 

implementation of a relational model. This model includes 
constructs for specifying tables, columns, data types, 
constraints, and other semantics, as shown in Fig. 3. However, 
the relational database does not need to include all constructs 
of the relational model (i.e. it can use only a portion of the 
relational model). 

 

 
 

Fig. 3 Simplified relational model 
 
Fig. 4 shows the basic idea behind our approach. 

Transformation of ontologies to relational databases is based 
on a set of rules called mapping rules that specify how to map 
constructs of the ontological model to the relational model. 
The mapping rules are then applied to an ontology (source) to 
produce a relational database (target). Since the mapping rules 
are specified on the model level, they are applicable to any 
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ontology that conforms to the ontological model. 
 

 
 

Fig. 4 Transformation of ontologies to relational databases 

A. Mapping Rules 
There are two types of properties that need to be 

considered: data type properties and object properties. In 
addition, properties can be single-valued or multivalued, 
required or optional; this has a great impact on the 
transformation. 

If a property is single-valued, then it means that each 
instance in a class may have at most one value for the 
property. A single-valued property is identified in the 
following cases: 

• Where a cardinality of the property has a (maximum) 
value of 1. 

• Where the property is (inverse) functional. 
In any other case, the property is multivalued. 
If a property is required, then it means that each instance in 

a class must have at least one value for the property. A 
required property is identified in the following cases: 

• Where a cardinality of the property has a (minimum) 
value greater than 0. 

• Where the property is restricted to have some values 
from another class. 

• Where the property is restricted to have a particular 
value. 

In any other case, the property is optional. 
Our approach maps constructs of an ontology to a relational 

database, applying the following rules: 
Rule 1: A named class (including subclasses and 

association classes) maps to a table. This table is named with 
the name of the class. The table is assigned a primary key. 

• A table that corresponds to an association class (i.e. the 
class that relates other classes) gets as its primary key a 
combination of foreign keys to all its related tables. 

• A table that corresponds to a subclass gets as its 
primary key a foreign key to its “superclass” table. 

• Any other table gets an “auto-number” primary key. 
This key is named with the name of the table suffixed 
with ID, such as EmployeeID for an Employee 
table. 

Rule 2: If a data type property is single-valued, then it 
maps to a column in the table that corresponds to the class 
specified as the domain of the data type property. This column 
is named with the name of the data type property. The column 
uses as its type the type specified as the range of the data type 

property converted from XSD to SQL (see Section B). 
Rule 3: If a data type property is multivalued, then it maps 

to a table. This table is named with the name of the data type 
property suffixed with Value, such as hobbyValue for a 
hobby data type property. The table gets as its primary key a 
combination of a corresponding column and a foreign key to 
the table that corresponds to the class specified as the domain 
of the data type property. 

E.g. a hobby data type property in Fig. 5 is multivalued 
(i.e. an employee can have zero or more hobbies). Since SQL 
does not support multivalued columns, a hobbyValue table 
is created. This table gets as its primary key a combination of 
an EmployeeID column (that is a foreign key to an 
Employee table) and a hobby column. If the hobby data 
type property were single-valued, then the hobbyValue 
table would not be created but just the hobby column in the 
Employee table. 

Rule 4: If an object property is both single-valued and 
optional, and there is a single-valued inverse of the object 
property (a one-to-zero-or-one relationship), then the inverse 
of the object property maps to a foreign key in the table that 
corresponds to the class specified as the range of the object 
property. This key references the primary key in the table that 
corresponds to the class specified as the domain of the object 
property. The name of the foreign key is the name of the 
inverse of the object property. (The object property does not 
map to any foreign key, because creating two foreign keys for 
the relationship would mean a circular dependency.) 

Rule 5: If an object property is single-valued and Rule 4 is 
not applied (a zero-or-one-to-one, one-to-one or many-to-one 
relationship), then the object property maps to a foreign key in 
the table that corresponds to the class specified as the domain 
of the object property. This key references the primary key in 
the table that corresponds to the class specified as the range of 
the object property. The name of the foreign key is the name 
of the object property. 

Rule 6: If an object property is multivalued and there is a 
single-valued inverse of the object property (a one-to-many 
relationship), then the inverse of the object property maps to a 
foreign key in the table that corresponds to the class specified 
as the range of the object property. This key references the 
primary key in the table that corresponds to the class specified 
as the domain of the object property. The name of the foreign 
key is the name of the inverse of the object property. 

Rule 7: If an object property is multivalued and Rule 6 is 
not applied (a many-to-many relationship), then the object 
property maps to a table. This table is named with the name of 
the object property. The table gets as its primary key a 
combination of two foreign keys. One foreign key references 
the primary key in the table that corresponds to the class 
specified as the domain of the object property. Another 
foreign key references the primary key in the table that 
corresponds to the class specified as the range of the object 
property. 

Rule 8: A value restriction on a data type property maps to 
a CHECK constraint on the corresponding column. 
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Rule 9: An inverse functional property maps to a UNIQUE 
constraint on the corresponding column. 

Rule 10: A required property maps to a NOT NULL 
constraint on the corresponding column. 

Rule 11: An enumerated data type maps to a CHECK 
constraint with enumeration. 

Rule 12: An instance in a class maps to a row in a 
corresponding table. 

In addition, to support multilingual ontologies, a 
RDFSProperty table is created for multilingual strings to 
store multilingual labels and comments of classes and 
properties. 

B. Data Type Conversion 
Most of the transformation of data type properties has to do 

with converting data types from XSD to SQL. Unlike SQL, 
OWL does not have any built-in data types. Instead, it uses 
XSD data types such as string, integer, float, 
boolean, time and date. 

 
TABLE I 

DATA TYPE CONVERSION 
XSD data type SQL data type 

short SMALLINT 
unsignedShort SMALLINT 

integer INTEGER 
positiveInteger INTEGER 
negativeInteger INTEGER 

nonPositiveInteger INTEGER 
nonNegativeInteger INTEGER 

int INTEGER 
unsignedInt INTEGER 

long INTEGER 
unsignedLong INTEGER 

decimal DECIMAL 
float FLOAT 

double DOUBLE PRECISION 
string CHARACTER VARYING 

normalizedString CHARACTER VARYING 
token CHARACTER VARYING 

language CHARACTER VARYING 
NMTOKEN CHARACTER VARYING 

Name CHARACTER VARYING 
NCName CHARACTER VARYING 

time TIME 
date DATE 

datetime TIMESTAMP  
gYearMonth DATE 
gMonthDay DATE 

gDay DATE 
gMonth DATE 
boolean BIT 

byte BIT VARYING 
unsignedByte BIT VARYING 

hexBinary CHARACTER VARYING 
hexBinary CHARACTER VARYING 

anyURI CHARACTER VARYING 
 
Table I shows how to convert data types from XSD to SQL. 

This conversion is simple for the XSD data types that directly 
correspond to SQL data types. E.g. if XSD data type is 
string, then SQL data type is CHARACTER VARYING. 
However, the conversion becomes a challenge for 
“unsupported” data types. E.g. a ssn data type property in 

Fig. 5 uses positiveInteger as its range. However, there 
is no positiveInteger in SQL. Therefore, a ssn column 
uses INTEGER as its type, combined with a CHECK 
constraint: CHECK (ssn > 0). 

C. Example 
To illustrate the transformation, Fig. 5 shows an ontology 

and a relational database that is produced from this ontology, 
applying the mapping rules. 

 
<owl:Class rdf:ID="Employee"/> 
<owl:Class rdf:ID="Project"/> 
<rdf:ObjectProperty rdf:ID="involves"> 
  <rdfs:domain rdf:resource="#Project"/> 
  <rdfs:range rdf:resource="#Employee"/> 
</rdf:ObjectProperty> 
<rdf:ObjectProperty rdf:ID="involvedIn"> 
  <owl:inverseOf rdf:resource="#involves"/> 
</rdf:ObjectProperty> 
<rdf:ObjectProperty rdf:ID="manages"> 
  <rdfs:domain rdf:resource="#Employee"/> 
  <rdfs:range rdf:resource="#Project"/> 
</rdf:ObjectProperty> 
<rdf:ObjectProperty rdf:ID="managedBy"> 
  <owl:inverseOf rdf:resource="#manages"/> 
</rdf:ObjectProperty> 
<owl:Class rdf:ID="Project"> 
  <rdfs:subClassOf> 
    <owl:Restriction> 
  <owl:onProperty 

rdf:resource="#managedBy"/> 
    <owl:cardinality 

rdf:datatype="&xsd;nonNegativeInteger">1/> 
    </owl:Restriction> 
  </rdfs:subClassOf> 
</owl:Class> 
<owl:DatatypeProperty rdf:ID="ssn"> 
  <rdfs:domain rdf:resource="#Employee"/> 
  <rdfs:range 
rdf:resource="&xsd;positiveInteger"/> 
</owl:DatatypeProperty> 
<owl:InverseFunctionalProperty rdf:ID="ssn"/> 
<owl:DatatypeProperty rdf:ID="hobby"> 
  <rdfs:domain rdf:resource="#Employee"/> 
<rdfs:range rdf:resource="&xsd;sting"/> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:ID="sex"> 
  <rdfs:domain rdf:resource="#Employee"/> 
  <rdfs:range> 
    <owl:DataRange> 
    <owl:oneOf> 
      <rdf:List> 
        <rdf:first 

rdf:datatype="&xsd;string">Male/>        
        <rdf:rest> 
          <rdf:List> 
            <rdf:first 

rdf:datatype="&xsd;string">Female/>         
            <rdf:rest 

rdf:resource="&rdf;nil"/>        
          </rdf:List> 
        </rdf:rest> 
      </rdf:List> 
    </owl:oneOf> 

    </owl:DataRange> 
  </rdfs:range> 
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</owl:DatatypeProperty> 
<owl:Class rdf:ID="SoftwareProject"> 
  <rdfs:subClassOf rdf:resource="#Project"/> 
</owl:Class> 
<owl:DatatypeProperty rdf:ID="type"> 
  <rdfs:domain 
rdf:resource="#SoftwareProject"/> 
  <rdfs:range rdf:resource="&xsd;string"/> 
</owl:DatatypeProperty> 
<owl:Class rdf:ID="SoftwareProject"> 
  <rdfs:subClassOf> 
    <owl:Restriction> 
  <owl:onProperty rdf:resource="#type"/> 
    <owl:hasValue rdf:resource=Software/>    

    </owl:Restriction> 
  </rdfs:subClassOf> 
</owl:Class> 

↓ 
CREATE TABLE Employee( 
  EmployeeID INTEGER PRIMARY KEY, 
  ssn INTEGER CHECK (ssn > 0) UNIQUE, 
  sex VARCHAR CHECK IN (‘Male’, ‘Female’)) 
CREATE TABLE Project( 
  ProjectID INTEGER PRIMARY KEY, 
  managedBy INTEGER REFERENCES Employee NOT 
NULL) 
CREATE TABLE involves( 
  EmployeeID INTEGER REFERENCES Employee, 
  ProjectID INTEGER REFERENCES Project, 
  PRIMARY KEY(EmployeeID, ProjectID)) 
CREATE TABLE hobbyValue( 
  hobby VARCHAR, 
  EmployeeID INTEGER REFERENCES Employee, 
  PRIMARY KEY (hobby, EmployeeID)) 
CREATE TABLE SoftwareProject( 
   ProjectID INTEGER PRIMARY KEY REFERENCES 
Project, 
   type VARCHAR CHECK (type=‘Software’)) 

 
Fig. 5 Example of transformation of ontology to relational database 

VI. IMPLEMENTATION 
Our approach is implemented in a utility called QUALEG 

DB. This utility is capable of automatic transformation of an 
ontology (written in OWL) to a relational database (written in 
SQL). 

As shown in Fig. 6, the utility is a transformation engine 
that parses an OWL file (that contains an ontology), performs 
consistency and error checks, and generates an SQL script. 
This script is then executed via an ODBC driver by a 
relational database management system to create a relational 
database. 

  
 
 

 
 

Fig. 6 Software architecture of QUALEG DB 
 
The utility requires minimum user interaction. The only 

thing users need to do is to select or specify the name for an 
OWL file and the name for an SQL script, as shown in Fig. 7. 

 

 
 

Fig. 7 Graphical user interface of QUALEG DB 
 
When parsing an ontology, the utility checks the ontology 

to ensure that the ontology meets all requirements of the 
relational database management system and is consistent. This 
checking is important because it prevents certain kinds of 
errors in the resulting relational database. Examples of 
consistency and error checks include the following: 

• Class and property names should not exceed 15 
characters. 

• Class and property names should not contain any other 
character except a letter, a digit and an underscore. 

• Individuals in an enumerated class should be unique. 
• Values in an enumerated data type should be unique. 
• Both a domain and a range should be specified for a 

property unless the property is an inverse of an object 
property. (For the inverse of the object property, the 
domain and the range can be inferred from the object 
property.) 

Violation of any of these checks will lead to errors. If the 
utility encounters any error during transformation, it will 
display the error to the user (as shown in Fig. 8) and continues 
the transformation unless the error is terminal. The “incorrect” 
construct that has caused the error will be excluded from the 
transformation. 
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Fig. 8 Consistency and error checks 

VII. QUALITY OF TRANSFORMATION 
Since a relational model does not support all constructs of 

an ontological model, some of the constructs in an ontology 
will necessarily be lost when transforming the ontology to a 
relational database. Therefore, we need to analyze structure 
loss caused by this transformation. One way to do this is to 
retransform the resulting relational database to an ontology 
and see if the transformation is reversible. By reversible, we 
mean that transformation of an ontology to a relational 
database followed by reverse transformation of the resulting 
relational database to an ontology will yield the original 
ontology. 

Let T1 be transformation of an ontology O1 to a relational 
database R. Let T2 be reverse transformation of the relational 
database R to an ontology O2. The transformation T1 is said to 
be reversible if the ontology O2 is equivalent to the ontology 
O1. That is, T1(O1) = R ∧ T2(R) = O2 ⇒ O2 ≡ O1. The 
ontology O2 is said to be equivalent to the ontology O1 if a 
lexical overlap measure [11] denoted as L(O1, O2) takes a 
value of 1. That is, L(O1, O2) = 1 ⇒ O2 ≡ O1. The lexical 
overlap measure is calculated as follows: L(O1, O2) = |L1 ∩ L2| 
/ |L1|, where L1 is a set of all constructs in the ontology O1 and 
L2 is a set of all constructs in the ontology O2. 

VIII. CONCLUSION AND FUTURE WORK 
We have proposed a novel approach to automatic 

transformation of ontologies to relational databases, where the 
quality of transformation is also considered. Our approach has 
been implemented in the QUALEG DB utility. This utility can 
be applied to any relational database management system that 
supports the standard SQL, because the utility does not rely on 
any SQL dialect. The utility can map all constructs of an 
ontology to a relational database, with the exception of those 
constructs that have no correspondences in the relational 
database (e.g. subproperties). The utility names the constructs 
of an ontology using the names of relational database 
constructs (converting the names as appropriate or required by 
name length restrictions in the relational database 
management system). 

The main problem with our approach is the naming 

strategy, in particular, when an ontology that imports another 
ontology is transformed into a relational database. Unlike 
OWL, SQL does not support namespaces. A simple solution 
to this problem is to keep class names unique over multiple 
ontologies (as done in the QUALEG DB utility), but a more 
sophisticated naming strategy needs to be developed in the 
future. 
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