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Abstract—Stochastic resonance (SR) is a phenomenon whereby 

the signal transmission or signal processing through certain nonlinear 
systems can be improved by adding noise. This paper discusses SR in 
nonlinear signal detection by a simple test statistic, which can be 
computed from multiple noisy data in a binary decision problem based 
on a maximum a posteriori probability criterion. The performance of 
detection is assessed by the probability of detection error Per . When 
the input signal is subthreshold signal, we establish that benefit from 
noise can be gained for different noises and confirm further that the 
subthreshold SR exists in nonlinear signal detection. The efficacy of 
SR is significantly improved and the minimum of Per can 
dramatically approach to zero as the sample number increases. These 
results show the robustness of SR in signal detection and extend the 
applicability of SR in signal processing. 
 

Keywords—Probability of detection error, signal detection, 
stochastic resonance. 

I. INTRODUCTION 
TOCHASTIC resonance (SR) is a phenomenon whereby 
the signal transmission or signal processing through certain 

nonlinear systems can be improved by adding noise. Most 
occurrences of SR involve a signal, which is subthreshold 
(weak signal) and is too weak to elicit a strong response from a 
single nonlinear system. Addition of noise then brings 
assistance to the subthreshold signal in eliciting a stronger 
beneficial response from the single nonlinear system [1]-[3], 
SR has been observed in a diverse range of physical and 
biological systems, including neurons and neuron models. The 
study of SR in signal detection has also received some 
attentions [4]-[11]. This paper discuss SR by a simple test 
statistic, which can be computed from multiple noisy data in a 
binary decision problem based on a maximum a posteriori 
probability (MAP) criterion. The performance of detection is 
assessed by the probability of detection error Per . Recently, an 
equivalent test statistic has been used to improve signal 
detection in non-Gaussian noise [12]. We calculate the 
detection error Per  for four representative noises. We 
establish that benefit from noise can be gained and confirm 
further that the subthreshold SR exists in nonlinear signal 
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detection. When the sample number is raised, the efficacy of SR 
is significantly improved and the minimum of Per can 
dramatically approach to zero. These results show the 
robustness of SR in signal detection and extend the applicability 
of SR in signal processing.      

II. NONLINEAR SIGNAL DETECTION 
Let x  is a random signal which assumes values 1s  

(hypothesis 1H ) or 0s  (hypothesis 0H ) with the prior 
probability 1P  and 10 1 PP −= , η  is threshold white noise,  u  
is a fixed threshold level, y  is a binary output: 
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. The binary output y  is sampled so as 

to yield the binary data set ( Nyyy ,,2,1 L ). We want to use 
these data ( Nyyy ,,2,1 L ) to detect x . Recently, an important 

and simple test statistic: ∑
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1  has been used to improve 

signal detection in non-Gaussian noise [12]. Here, we use an 

equivalent test statistic ∑
=
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i
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1
, which assumes integer values 

between 0  and N ( },,1,0{ NRy L=∈ ). A given detector will 
decide hypothesis 0H  whenever the observation y  falls in 
region 0R  ( R⊂ ) or decide 1H  when y  falls in the 
complementary region 1R  ( RRR =∪ 10 ). In doing so, the 
detector achieves the probability of detection error erP  given 
by: 

)|()|(
1 000 11 ∑∑ ∈∈ =+== Rn rRn r HnyPPHnyPPPer .  (1) 

Where  )|Pr( 1Hny =  (respectively )|Pr( 0Hny = ) is the 
conditional probability for observing y  when 1H  
(respectively 0H ) holds. Since 0R  and 1R  are 
complementary, so we have  

∑∑ ∈∈ =−==
1 10 1 )|Pr(1)|Pr( RnRn HnyHny .                (2) 

Substituted in (1) yields 
                        

)]|Pr()|Pr([ 1101 01 HnyPHnyPPP Rner =−=+= ∑ ∈ .     (3) 

To minimize erP , we let all and only those y , which make 
)|Pr()|Pr( 1100 HnyPHnyP =−=  be negative, compose 1R . 

This gives the optimal detector, also known as the maximum a 
posterior probability (MAP) detector, which implements the 
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the MAP detector of (3) is expressed as: 
)]|(Pr),|Pr(min[ 1100 HnyPHnyPP Rner === ∑ ∈  

)|Pr()|Pr(|
2
1

2
1

1100 HnyPHnyPRn =−=−= ∑ ∈ .            (4) 

The second equality is by ||
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III. SR AND NOISE IMPROVE SIGNAL DETECTION 
Given the white noise η  is with probability density 

function )(xfη  and cumulative distribution function )(xFη . 

Note that iy  is a Bernoulli random variable, taking on values 
zero and one with Bernoulli probabilities, and y is binomially 
distributed. The Bernoulli probabilities depend on the 
hypothesis 0H  or 1H . We have the conditional 
probabilities )|0Pr( 0Hyi = )Pr( 0 us <+= η )( 0suF −= η

0q= and )|1Pr( 0Hyi = 01 q−= , )|0Pr( 1Hyi =
)Pr( 1 us <+= η )( 1suF −= η 1q=  

and )|1Pr( 1Hyi = 11 q−= . The conditional probability 
)|Pr( 0Hny =  and )|Pr( 1Hny =  then follow, according to 

the binomial distribution, as  
nNn qq
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 is the binomial coefficient. The probability of error 

Per  of (4) follows directly from (5) and (6) for a specific noise 

with density function )(xfη  and cumulative 

distribution )(xFη . Here, we discuss four representative noises 

whose density function is with zero symmetry axes: Uniform 

noise (finite support PDF), Gaussian noise (thin-tailed PDF), 

Laplace noise (heavy-tailed PDF), and Cauchy noise 

(impulsive PDF without mean and variance).  

A. Uniform Noise 

The Uniform PDF with zero mean and variance 2σ  has the 

form
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B. Gaussian Noise 

The Gaussian PDF with zero mean and variance 2σ has the 

form )
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C. Laplace Noise 

The Laplace PDF with zero mean and variance 2σ has the 
form 
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D. Cauchy Noise 
The Cauchy PDF with zero location and finite dispersion 
2σ (but infinite variance) has the form  
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Fig. 1 Per is a function of standard deviation for different threshold 

levels for Uniform noise with zero mean 

 
Fig. 2 Per is a function of standard deviation for different threshold 

levels for Gaussian noise with zero mean 

 
Fig. 3 Per is a function of standard deviation for different threshold 

levels for Laplace noise with zero mean 

 
Fig. 4 Per is a function of standard dispersion for different threshold 

levels for Cauchy noise with zero mean 
 

For different noise distributions, Figs. 1-4 show the variation 
of Per  for different threshold levels and give the Monte Carlo 
computer simulation ( data points), where the parameters 
are 1,0 10 == ss  and 5.010 == PP . When the input signal is 
not subthreshold signal, Per  increases monotonously from 
zero at zero noise intensity (standard deviation or dispersion). 
This show the performance of detection degenerates with the 
addition of noise. However, when the input signal is 
subthreshold signal (weak signal), SR is observed, Per  
decreases from initial value 0.5 (because 5.010 == PP ) at zero 
noise intensity to a minimum, where the noise intensity is 
optimal, and then increases. This show the performance of 
detection is improved with the addition of noise. 
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Fig. 5 Per is a function of standard deviation for different sample 

numbers for Uniform noise with zero mean 

 
Fig. 6 Per is a function of standard deviation for different sample 

numbers for Gaussian noise with zero mean 

 
Fig. 7 Per is a function of standard deviation for different sample 

numbers for Laplace noise with zero mean 

 
Fig. 8 Per is a function of standard deviation for different sample 

numbers for Cauchy noise with zero mean 
 

For a fixed threshold level 2.1=u , Figs. 5-8 give the 
theoretical results and the Monte Carlo computer simulation 
results of Per  for different sample number N . The efficacy of 
SR is significantly enhanced and the minimum of Per can 
dramatically approach to zero as the sample number increases. 
The rate of approaching to zero is fastest for Uniform noise and 
is slowest for impulsive Cauchy noise. 

IV. DISCUSSION 
In this section, we shall simply discuss why SR is observed 

or not, and why the rate of approaching to zero is different for 
four different noises.  
When 1=N and 5.010 == PP , equation (4) becomes 
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For fixed threshold level 5.0=u and 2.1=u , Figs. 9-12 

present a similar change: the areas under the noise PDF 
between line a and line b decreases monotonously, which 
results that the Per increases monotonously and SR is not 
observed by (13). However, the areas under the noise PDF 
between line c and line d  firstly increases and then decreases 
as the noise intensity increases, which result Per varies 
nonmonotonously and SR is observed by (13).  
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Fig. 9 Uniform noise PDF between 5.0−=a  and 5.0=b , and 

between 2.0=c and 2.1=d for different noise intensity (sigma) 

 
Fig. 10 Gaussian noise PDF between 5.0−=a  and 5.0=b , and 
between 2.0=c and 2.1=d for different noise intensity (sigma) 

 
Fig. 11 Laplace noise PDF between 5.0−=a  and 5.0=b , and 

between 2.0=c and 2.1=d for different noise intensity (sigma) 

 
Fig. 12 Cauchy noise PDF between 5.0−=a  and 5.0=b , and between 

2.0=c and 2.1=d for different noise intensity (sigma) 
 

For a fixed threshold level 2.1=u and noise intensity 
(standard deviation or dispersion) 6.0=sigma , from Uniform 
noise, Gaussian noise, Laplace noise to Cauchy noise, Fig.13 
presents that the areas under the noise PDF between line a and 
line b decreases monotonously. The area variation brings that 
the efficacy of SR decreases by (13). This result in the rate of 
approaching to zero is different. The area under the noise PDF 
between line a and line b is biggest for Uniform noise and is 
smallest for Cauchy noise, so the rate of approaching to zero is 
fastest for Uniform noise and is slowest for Cauchy noise. 

 
Fig. 13 PDFs  between 2.0=a and 2.1=b , the noise 

intensity 6.0=sigma  
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