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Stochastic Programming Model for Power
Generation

Takayuki Shiina

Abstract—We consider power system expansion planning under
uncertainty. In our approach, integer programming and stochastic
programming provide a basic framework. We develop a multistage
stochastic programming model in which some of the variables are
restricted to integer values. By utilizing the special property of the
problem, called block separable recourse, the problem is transformed
into a two-stage stochastic program with recourse. The electric power
capacity expansion problem is reformulated as the problem with first
stage integer variables and continuous second stage variables. The
L-shaped algorithm to solve the problem is proposed.

Keywords—electric power capacity expansion problem, integer
programming, L-shaped method, stochastic programming

I. INTRODUCTION

THIS paper is concerned with the capacity expansion
planning of power systems under uncertainty. The basic

objective of the capacity expansion planning is to determine
an investment schedule for the installation of new generation
plants and economic operations which ensure a reliable supply
to the electricity demand.

Stochastic programming (Birge and Louveaux [3]) deals
with optimization under uncertainty. Birge [2] is a state-of-
the-art survey in this field. A stochastic programming problem
with recourse is referred to as a two-stage stochastic problem.
In the first stage, a decision has to be made without complete
information on random factors. After the value of random
variables are known, recourse action can be taken in the second
stage. For the continuous stochastic programming problem
with recourse, an L-shaped method (Van Slyke and Wets [10])
is well-known. It came from the shape of the non-zeros in the
constraint matrix. The L-shaped method was used to solve
the stochastic concentrator location problems (Shiina [8], [9]).
For a multistage stochastic programming with recourse, nested
decomposition methods have been studied by Birge [1] in the
linear case and Louveaux [6] in the quadratic case. Louveaux
[7] introduced the concept of block-separable recourse. This
property is essential for capacity expansion as described later.
Birge et al. [4] explored a parallel implementation of the nested
decomposition algorithm.

An important problem has been left unsolved in model-
ing the capacity expansion problem. The capacity expansion
models we mentioned above are based on a stochastic linear
programming problem with continuous decision variables.
However, decision variables are restricted to integer values in
some real problems. For example, the decision to build new
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plants or not is represented by a binary variable. To evaluate
the exact investment and operation cost of power generation,
we develop a multistage stochastic programming problem in
which some of the decisions are binary variables

A stochastic integer programming problem is a difficult
problem to solve. If integer variables are involved in a recourse
problem, optimality cuts do not provide facets of the epigraph
of recourse function. It is difficult to approximate the recourse
function of a multistage problem, since it is necessary to
consider the nesting of integer programming problems. In
the capacity expansion problem, integer variables are involved
only in the decisions about the investment of new technology.
By utilizing the special property called block separable re-
course (Louveaux [7]), the decision variables are classified into
two categories, the aggregate level decision and the detailed
level decision. Binary decision variables are involved only in
aggregate level decision. The algorithm we develop exploits
this property and solves the problem efficiently.

II. MULTISTAGE STOCHASTIC PROGRAMMING PROBLEM

We consider a multistage stochastic linear programming
problem with stages t = 0, 1, . . . ,H as

(Multistage Stochastic Linear Programming Problem)
minc0x0 + Eξ1 [minc1x1 + · · · + EξH |ξ1···ξH−1 [mincHxH ] · · ·]
subject to
W 0x0 = h0

T 0x0 + W 1x1 = h1, a.s.
...
T H−1xH−1 + WHxH = hH , a.s.
x0 ≥ 0, xt ≥ 0, t = 1, . . . ,H, a.s.,

where c0 is a known vector in �n0 , h0 is a known vector in
�m0 , and each W t is a known mt × nt matrix. Bold face
vectors and matrices are possibly stochastic, where ct, ht, T t

are in �nt ,�mt ,�mt × �nt , respectively. Let xt denote
decision vector in �nt for stage t, t = 1, . . . ,H . They are
chosen so that the constraints hold almost surely (denoted a.
s.).

We assume the stochastic elements are defined over a
finite discrete probability space (Ξ, σ(Ξ), P ), where Ξ =
Ξ1×· · ·×ΞH is the support of the random data in each stage
with Ξt = {ξt

s = (T t
s , ht

s, c
t
s), s = 1, . . . , kt} and (T t

s , ht
s, c

t
s)

is a realization of (T t, ht, ct). The possible sequences of
the realization of random variables (ξ1, . . . , ξH) are called
scenario. The scenarios are often described using a scenario
tree as shown in Fig. 1. In stages t ≤ H , we have limited
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Fig. 1. Scenario tree

number of possible realizations which we call the stage t
scenarios.

In a scenario tree, the stage t scenario connected to the
stage t − 1 scenario s is referred to as a successor of stage
t − 1 scenario s. The set of all successors of stage t − 1
scenario s is denoted by Dt(s). Similarly, the predecessor of
stage t scenario s is denoted by α(s, t). These relationships
are illustrated in Fig. 2.
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Fig. 2. Successor and predecessor

We can formulate a deterministic equivalent problem for the
multistage stochastic linear programming problem by replicat-
ing the constraints for each possible event in Ξt, t = 1, . . . ,H
since the probability space is finite and discrete. To solve the
deterministic equivalent problem, the nested decomposition
method (Birge [1], Birge et al. [4]) can be used. But this
problem becomes large as the number of stages or the number
of realizations increase. However in some problems, we can
avoid difficulty in solving the problem if the problem has a
special structure. The concept of block separable recourse was
introduced by Louveaux [7].

Definition 2.1: A multistage stochastic linear program has
block separable recourse if for all stages t = 1, . . . ,H the
decision vectors xt can be written as xt = (wt, yt) where wt

represents aggregate level decisions and yt represents detailed
level decisions. The constraints also follow these partitions:

1) The stage t objective contribution is ctxt =
rtwt + qtyt.

2) The constraint matrix W t is block diagonal: W t =(
At 0
0 Bt

)
, where At is associated to the vector wt

and Bt to the vector yt.

3) The other components of the constraints are random
but we assume that T t and ht can be written: T t =

(
Rt 0
St 0

)
and ht =

(
bt

dt

)
to conform with the

(wt, yt) separation.
If the problem has block separable recourse, the problem can
be rewritten as follows.

(Multistage Stochastic Linear Programming Problem
with Block Separable Recourse)

min r0w0 + q0y0

+Eξ1 [min(r1w1 + q1y1)
...
+EξH |ξ1...ξH−1 [min(rHwH + qHyH)] · · ·]

subject to A0w0 = b0, B0y0 = d0

R0w0 + A1w1 = b1, a.s.
S0w0 + B1y1 = d1, a.s.
...
RH−1wH−1 + AHwH = bH , a.s.
SH−1wH−1 + BHyH = dH , a.s.
w0 ≥ 0, wt ≥ 0, t = 1, . . . ,H, a.s.
y0 ≥ 0, yt ≥ 0, t = 1, . . . ,H, a.s.

The equivalence of multistage programs with block-
separable recourse and two-stage programs was shown in
Louveaux [7].

Proposition 2.1 (Louveaux [7]): A multistage stochastic
program with block separable recourse is equivalent to a two
stage stochastic program, where the first-stage is the extensive
form of the aggregate level problems, and the value function
of the second stage is the sum (weighted by the appropriate
probabilities) of the detailed level recourse functions for all
stage t scenarios, t = 1, . . . ,H .

From the proposition, the multistage stochastic program
with block separable recourse can be transformed into the two
stage stochastic program with recourse. The electric power
capacity expansion problem turns out to be the problem that
has first stage integer variables and continuous second stage
variables.

The deterministic equivalent problem for the multistage
stochastic programming problem with block-separable re-
course can be written as

(Deterministic Equivalent for Multistage Stochastic
LP Problem with Block Separable Recourse)
min r1,0w1,0 + q1,0y1,0

+

K1∑
s=1

p1
sr

s1ws1 + . . . +

KH∑
s=1

pH
s rsHwsH

+

K1∑
s=1

p1
sQ

1
s(w

1,0) + . . . +

KH∑
s=1

pH
s QH

s (wα(s,H),H−1)

subject to
A0w1,0 = b0, B0y1,0 = d0

Rα(s,1),0ws0 + A1ws1 = bs1, s = 1, . . . ,K1

...
Rα(s,H),H−1ws,H−1 + AHwsH = bsH , s = 1, . . . ,KH

w0 ≥ 0, wst ≥ 0, s = 1, . . . ,Kt, t = 1, . . . ,H
Qt

s(w
α(s,t),t−1)

= min{qstyst|Sα(s,t),t−1wα(s,t),t−1 + Btyst = dst, yst ≥ 0},
s = 1, . . . ,Kt, t = 1, . . . , H,
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where:

Kt = Cumulative number of realizations through stage t,
Kt = k0 × k1 × · · · × kt, t = 1, . . . ,H, k0 = 1,

(rst, qst) = Realization of random objective coefficents
(rt, qt) for stage t scenario s, s = 1, . . . ,Kt, t = 0, . . . ,H,
(r1,0, q1,0) ≡ (r0, q0) for the sake of simplicity,

(Rst, Sst) = Realization of random technology matrix
(Rt, St) for stage t scenario s,
s = 1, . . . ,Kt, t = 0, 1, . . . ,H − 1,

wst = Aggregate decision vector to take in stage t
for stage t scenario s, s = 1, . . . ,Kt, t = 0, 1, . . . , H,

yst = Detailed level decision vector to take in stage t
for stage t scenario s, s = 1, . . . ,Kt, t = 0, 1, . . . , H,

pt
s = Probability that stage t scenario s occurs,
s = 1, . . . ,Kt, t = 1, . . . ,H,

α(s, t) = The predecessor or parent of stage t scenario s,
s = 1, . . . ,Kt, t = 1, . . . ,H.

III. ELECTRIC POWER GENERATION

We consider the application of the multistage stochastic
programming problem to the electric power generation prob-
lem. The basic objective of the problem is to determine an
investment schedule of new technology and to operate power
plants to ensure an economic and reliable supply to electricity
demand.

The load patterns are modeled by load cycles or load dura-
tion curves. For long-range planning, block approximations of
load duration curves are used. A load duration curve represents
the number of hours in which the load equals or exceeds the
given load value.

Load

MW

0 8760 hour

�

�

Fig. 3. Yearly load duration curve

In this problem, the investment cost, the operation cost or
the electricity demand are regarded as random. The problem
is formulated as a multistage stochastic programming problem
in which the decision to install new technology or not is
represented by a binary variable. Let

• t = 0, 1, . . . ,H index the period of stages;
• i = 1, . . . , n index the available types of plants;
• j = 1, . . . ,m index the operating modes in the load

duration curve.
We also define the following:

• ai = availability factor of plant i;
• gt

i = existing capacity of plant i at stage t, decided
before t = 0;

• Ct
i = maximum capacity of plant i that can be installed

at stage t;

• rt
i = unit investment cost of plant i at stage t;

• f t
i = fixed investment cost of plant i at stage t;

• qt
i = unit production cost of plant i at stage t;

• dt
j = maximal power demanded in mode j at stage t;

• τ t
j = duration of mode j at stage t.

We consider the set of decisions as:

• xt
i = new capacity made available for plant i at stage t;

• wt
i = total capacity of plant i available at stage t;

• vt
i =

{
1, if new capacity type i is installed at stage t;
0, otherwise;

• yt
ij = generation level of plant i at stage t in mode j.

The multistage stochastic electric power capacity expansion
problem is formulated as follows.

(Multistage Stochastic Electric Power Generation Problem)

min
n∑

i=1

(r0
i w0

i + f0
i v0

i )

+Eξ1 [min
n∑

i=1

(r1
i w

1
i + q1

i

m∑
j=1

τ 1
jy

1
ij + f1

i v
1
i )

...

+EξH |ξ1...ξH−1 [min
n∑

i=1

(rH
i wH

i + qH
i

m∑
j=1

τH
j yH

ij + fH
i vH

i )] · · ·]

subject to
w0

i = x0
i , i = 1, . . . , n

w1
i = w0

i + x1
i , i = 1, . . . , n, a.s.

wt
i = wt−1

i + xt
i, i = 1, . . . , n, t = 2, . . . ,H, a.s.

x0
i ≤ C0

i v0
i , i = 1, . . . , n

xt
i ≤ Ct

iv
t
i, i = 1, . . . , n, t = 1, . . . ,H, a.s.

n∑
i=1

yt
ij = dt

j , j = 1, . . . ,m, t = 1, . . . ,H, a.s.

m∑
j=1

yt
ij ≤ ai(g

t
i + wt−1

i ), i = 1, . . . , n, t = 1, . . . ,H, a.s.

v0
i ∈ {0, 1},vt

i ∈ {0, 1}, i = 1, . . . , n, t = 1, . . . ,H, a.s.
w0

i ≥ 0,wt
i ≥ 0, i = 1, . . . , n, t = 1, . . . ,H, a.s.

x0
i ≥ 0, xt

i ≥ 0, i = 1, . . . , n, t = 1, . . . ,H, a.s.
yt

ij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m, t = 1, . . . ,H, a.s.

Since the problem has the property of block separa-
ble recourse from Proposition 1, the decision variables
v0

i , vt
i, w

0
i ,wt

i, x
0
i , x

t
i, i = 1, . . . , n, t = 1, . . . ,H and yt

ij ≥
0, i = 1, . . . , n, j = 1, . . . ,m, t = 1, . . . ,H correspond to
the aggregate level decisions and the detailed level decisions,
respectively.

We assume the stochastic elements in bold face are defined
over a finite discrete probability space (Ξ, σ(Ξ), P ), where
Ξ = Ξ1 × · · · ×ΞH is the support of the random data in each
period with Ξt = {ξt

s = (rt
i , f

t
i , q

t
i , d

t
j , τ

t
j ), s = 1, . . . , kt} and

(rt
i , f

t
i , q

t
i , d

t
j , τ

t
j ) is a realization of (rt

i, f
t
i, q

t
i, d

t
j , τ

t
j).

The deterministic equivalent problem for the multistage
stochastic electric power capacity expansion problem can be
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written as

(Deterministic Equivalent for
Multistage Stochastic Electric Power Generation Problem)

min
n∑

i=1

(r1,0
i w1,0

i + f1,0
i v1,0

i )

+

K1∑
s=1

p1
s

n∑
i=1

(rs1
i ws1

i + fs1
i vs1

i )

+ . . . +

KH∑
s=1

pH
s

n∑
i=1

(rsH
i wsH

i + fsH
i vsH

i )

+

K1∑
s=1

p1
sQ

1
s(w

1,0) + . . . +

KH∑
s=1

pH
s QH

s (wα(s,H),H−1)

subject to
w1,0

i = x1,0
i , i = 1, . . . , n

wst
i = w

α(s,t),t−1
i + xst

i , i = 1, . . . , n, s = 1, . . . ,Kt,
t = 1, . . . ,H

xst
i ≤ Ct

iv
st
i , i = 1, . . . , n, s = 1, . . . ,Kt, t = 0, 1, . . . ,H

vst
i ∈ {0, 1}, i = 1, . . . , n, s = 1, . . . ,Kt, t = 0, 1, . . . ,H

wst
i ≥ 0, i = 1, . . . , n, s = 1, . . . ,Kt, t = 0, 1, . . . , H

xst
i ≥ 0, i = 1, . . . , n, s = 1, . . . ,Kt, t = 0, 1, . . . ,H
Qt

s(w
α(s,t),t−1)

= min {
n∑

i=1

m∑
j=1

qst
i τst

j yst
ij |

n∑
i=1

yst
ij = dst

j , j = 1, . . . ,m

m∑
j=1

yst
ij ≤ ai(g

t
i + w

α(s,t),t−1
i ), i = 1, . . . , n

yst
ij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m},

s = 1, . . . ,Kt, t = 1, . . . ,H,

where:

Kt = Cumulative number of realizations through stage t,
Kt = k0 × k1 × · · · × kt, t = 1, . . . ,H, k0 = 1,

(rst, qst, fst) = Realization of random objective coefficent
vectors (rt, qt,f t) for stage t scenario s,
s = 1, . . . ,Kt, t = 0, 1, . . . , H,
(r1,0, f1,0) ≡ (r0, f0) for the sake of simplicity,

(τ st, dst) = Realization of random duration and demand
vectors (τ st, dt) for stage t scenario s,

s = 1, . . . ,Kt, t = 1, . . . , H,
wst = Total capacity decision vector to take in stage t

for stage t scenario s, s = 1, . . . ,Kt, t = 0, 1, . . . ,H,
xst = New capacity decision vector to take in stage t

for stage t scenario s, s = 1, . . . ,Kt, t = 0, 1, . . . ,H,
vst = Binary decision vector to take in stage t

for stage t scenario s, s = 1, . . . ,Kt, t = 0, 1, . . . ,H,
yst = Generation level decision vector to take in stage t

for stage t scenario s, s = 1, . . . ,Kt, t = 1, . . . ,H,
pt

s = Probability that stage t scenario s occurs,
s = 1, . . . ,Kt, t = 1, . . . , H,

α(s, t) = The predecessor or parent of stage t scenario s,
s = 1, . . . ,Kt, t = 1, . . . , H.

The electric power capacity expansion problem can be
transformed to the problem that has first stage integer variables
and continuous second stage variables. To solve the problem,

the following master problem is formulated.

(Master Problem for
Multistage Stochastic Electric Power Generation Problem)

min
n∑

i=1

(r1,0
i w1,0

i + f1,0
i v1,0

i )

+

K1∑
s=1

p1
s

n∑
i=1

(rs1
i ws1

i + fs1
i vs1

i )

...

+

KH∑
s=1

pH
s

n∑
i=1

(rsH
i wsH

i + fsH
i vsH

i )

+

K1∑
s=1

p1
sθ

1
s + . . . +

KH∑
s=1

pH
s θH

s

subject to
w1,0

i = x1,0
i , i = 1, . . . , n

wst
i = w

α(s,t),t−1
i + xst

i , i = 1, . . . , n, s = 1, . . . ,Kt,
t = 1, . . . , H
xst

i ≤ Ct
iv

st
i , i = 1, . . . , n, s = 1, . . . ,Kt, t = 0, 1, . . . ,H

vst
i ∈ {0, 1}, i = 1, . . . , n, s = 1, . . . ,Kt, t = 0, 1, . . . ,H

wst
i ≥ 0, i = 1, . . . , n, s = 1, . . . ,Kt, t = 0, 1, . . . ,H

xst
i ≥ 0, i = 1, . . . , n, s = 1, . . . ,Kt, t = 0, 1, . . . ,H

θt
s ≥ Qt

s(w
α(s,t),t−1), s = 1, . . . ,Kt, t = 1, . . . ,H

In this formulation, the recourse functions
Qt

s(w
α(s,t),t−1), s = 1, . . . ,Kt, t = 1, . . . , H are not

known explicitly in advance. Therefore, the optimality
cuts are added to approximate θt

s ≥ Qt
s(w

α(s,t),t−1).
The optimal solution to the master problem is obtained
by solving the mixed integer programming problem. Let
v∗st

i , w∗st
i , x∗st

i i = 1, . . . , n, s = 0, 1, . . . ,Kt, t = 1, . . . ,H,
θ∗t

s , s = 1, . . . ,Kt, t = 1, . . . ,H, be the optimal solution to
the master problem. Then the recourse problem for stage t
scenario s is solved at the optimal solution of the master
problem, w

∗α(s,t),t−1
i , i = 1, . . . , n.

(Recourse Problem for Stage t Scenario s)
Qt

s(w
α(s,t),t−1)

= min{
n∑

i=1

m∑
j=1

qst
i τst

j yst
ij |

n∑
i=1

yst
ij = dst

j , j = 1, . . . ,m

m∑
j=1

yst
ij ≤ ai(g

t
i + w

α(s,t),t−1
i ), i = 1, . . . , n

yst
ij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m},

s = 1, . . . ,Kt, t = 1, . . . ,H

If the recourse problem is infeasible, the feasibility cut is
added to the formulation of the master problem. If the solution
of the master problem and the recourse problem do not satisfy
the inequality θ∗t

s ≥ Qt
s(w

∗α(s,t),t−1), the optimality cut
which approximates Qt

s(w
α(s,t),t−1) is added to the master

problem. The dual problem to the recourse problem for stage
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t scenario s is described as follows.

(Dual to Recourse Problem for Stage t Scenario s)

max
m∑

j=1

dst
j λst

j −
n∑

i=1

ai(g
t
i + w

α(s,t),t−1
i )μst

i

subject to λst
j − μst

i ≤ qst
i τst

j , j = 1, . . . ,m, i = 1, . . . , n
μi ≥ 0, i = 1, . . . , n

If Qt
s(w

∗α(s,t),t−1) = +∞, then w∗α(s,t),t−1 is not feasible
with respect to all constraints of the multistage stochastic
electric power capacity expansion problem. By the duality
theory, we have λ̃st

j , j = 1, . . . ,m, μ̃st
i (≥ 0), i = 1, . . . , n

so that
∑m

j=1 dst
j λ̃st

j −∑n
i=1 ai(g

t
i +w

∗α(s,t),t−1
i )μ̃st

i > 0 and
λ̃st

j − μ̃st
i ≤ 0. For any feasible wα(s,t),t−1, there must exist a

yst ≥ 0 such that
∑n

i=1 yst
ij = dst

j , j = 1, . . . ,m,
∑m

j=1 yst
ij ≤

ai(g
t
i + w

α(s,t),t−1
i ), i = 1, . . . , n. Scalar multiplication of

these constraints by λ̃st
j , j = 1, . . . ,m, μ̃st

i , i = 1, . . . , n yields

m∑
j=1

dst
j λ̃st

j −
n∑

i=1

ai(g
t
i + w

α(s,t),t−1
i )μ̃st

i

≤
m∑

j=1

n∑
i=1

λ̃st
j yst

ij −
n∑

i=1

m∑
j=1

μ̃st
i yst

ij

=
m∑

j=1

n∑
i=1

(λ̃st
j − μ̃st

i )yst
ij ≤ 0

which cuts off w∗α(s,t),t−1, since
∑m

j=1 dst
j λ̃st

j −∑n
i=1 ai(g

t
i +

w
∗α(s,t),t−1
i )μ̃st

i > 0.

Feasibility Cut:
m∑

j=1

dst
j λ̃st

j −
n∑

i=1

ai(g
t
i + w

α(s,t),t−1
i )μ̃st

i ≤ 0

(1)
If Qt

s(w
∗α(s,t),t−1) is finite, we have the optimal primal

solution y∗st
ij , i = 1, . . . , n, j = 1, . . . ,m and the optimal dual

solution λ∗st
j , j = 1, . . . ,m, μ∗st, i = 1, . . . , n. The following

inequality holds.

θt
s ≥ Qt

s(w
∗α(s,t),t−1)

= max{
m∑

j=1

dst
j λst

j −
n∑

i=1

ai(g
t
i + w

∗α(s,t),t−1
i )μst

i |

λst
j − μst

i ≤ qst
i τ st

j , j = 1, . . . ,m,
i = 1, . . . , n

μi ≥ 0, i = 1, . . . , n}

=

m∑
j=1

dst
j λ∗st

j −
n∑

i=1

ai(g
t
i + w

∗α(s,t),t−1
i )μ∗st

i

To approximate the recourse function, the optimality cut which
cuts off (w∗α(s,t),t−1, θ∗t

s ) so that θ∗t
s < Qt

s(w
∗α(s,t),t−1) is

added to the formulation of the master problem.

Optimality Cut: θt
s ≥

m∑
j=1

dst
j λ∗st

j −
n∑

i=1

ai(g
t
i+w

α(s,t),t−1
i )μ∗st

i

(2)

The algorithm of the L-shaped method for multistage stochas-
tic electric power capacity expansion problem is shown as
follows.

• Step 1. Solve Master Problem
Solve the mixed integer programming master prob-
lem by branch and bound method. Let w∗st

i , i =
1, . . . , n, s = 0, 1, . . . ,Kt, t = 1, . . . ,H, θ∗t

s , s =
1, . . . ,Kt, t = 1, . . . ,H be the optimal solution to
the master problem.

• Step 2. Solve Recourse Problem
Solve the recourse problem for stage t scenario
s, s = 1, . . . ,Kt, t = 1, . . . ,H .

• Step 3. Add Feasibility Cuts
If the recourse problem for stage t scenario s is
infeasible, the feasibility cut (1) is added to the
formulation of the master problem. Go to Step.1.

• Step 4. Add Optimality Cuts
Calculate Qt

s′ (w∗s,t−1), ∀s
′ ∈ Dt(s), s =

1, . . . ,Kt, t = 0, . . . ,H − 1. If θ∗t
s′ < (1 −

ε)Qt
s′ (w∗s,t−1), s

′ ∈ Dt(s), the optimality cut (2)
is added to the formulation of the master problem
(ε > 0: tolerance). Go to Step 1.

• Step 5. Convergence Check
If no optimality cuts are added, then stop.

Since all of the integer variables are aggregate level decision
variables, the master problem becomes a mixed integer pro-
gramming problem. The upper bound for the optimal objective
value is calcurated as follows.

Upper Bound =
n∑

i=1

(r1,0
i w∗1,0

i + f1,0
i v∗1,0

i )

+

K1∑
s=1

p1
s

n∑
i=1

(rs1
i w∗s1

i + fs1
i v∗s1

i )

...

+

KH∑
s=1

pH
s

n∑
i=1

(rsH
i w∗sH

i + fsH
i v∗sH

i )

+

K1∑
s=1

p1
sQ

1
s(w

∗1,0)

...

+

KH∑
s=1

pH
s QH

s (w∗α(s,H),H−1) (3)

The value of upper bound for the optimal objective value can
be adopted as the approximate optimal objective value.

IV. NUMERICAL EXPERIMENTS

The L-shaped method for the multistage stochastic electric
power generation problem was implemented using AMPL
[5] (CPU: Intel core 2 duo E8500, 3.16GHz). The whole
framework of the algorithm was coded in AMPL. The
mathematical programming problems were solved by linear
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programming/branch-and-bound solver CPLEX 10.0. We con-
sider the following two problems.

• Problem 1. n = 20,m = 4,H = 4,K4 = 8.
• Problem 2. n = 60,m = 4,H = 6,K6 = 16.

In both problems, the load patterns are modeled by yearly load
duration curves. The scenarios are generated from the power
demand of stage 1 scenario 1 by adding an increase in demand
as shown as follows.

TABLE I
DEMAND INCREASES FOR DIFFERENT SCENARIOS

Problem 1 stage
Scenario Probability 1 2 3 4

1 0.125 0 0 0 +10%
2 0.125 0 0 +10% +20%
3 0.125 0 +10% 0 +10%
4 0.125 0 +10% +10% +20%
5 0.125 +10% 0 0 +10%
6 0.125 +10% 0 +10% +20%
7 0.125 +10% +10% 0 +10%
8 0.125 +10% +10% +10% +20%

Problem 2 stage
Scenario Probability 1 2 3 4 5 6

1 0.0625 0 0 0 +10% +10% +20%
2 0.0625 0 0 0 +10% +30% +30%
3 0.0625 0 0 +10% +20% +10% +20%
4 0.0625 0 0 +10% +20% +30% +30%
5 0.0625 0 +10% 0 +10% +10% +20%
6 0.0625 0 +10% 0 +10% +30% +30%
7 0.0625 0 +10% +10% +20% +10% +20%
8 0.0625 0 +10% +10% +20% +30% +30%
9 0.0625 +10% 0 0 +10% +10% +20%
10 0.0625 +10% 0 0 +10% +30% +30%
11 0.0625 +10% 0 +10% +20% +10% +20%
12 0.0625 +10% 0 +10% +20% +30% +30%
13 0.0625 +10% +10% 0 +10% +10% +20%
14 0.0625 +10% +10% 0 +10% +30% +30%
15 0.0625 +10% +10% +10% +20% +10% +20%
16 0.0625 +10% +10% +10% +20% +30% +30%

The structure of the scenario trees of Problem 1 and 2 are
shown as follows.
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Fig. 4. Scenario tree of problem 1 and 2

The L-shaped method is applied to the master problem.
We set ε = 0.01(%) in step 4 of the L-shaped method. In
solving the master problem or the deterministic equivalent
problem using branch-and-bound, the search is terminated
when the best value of lower bound times (1+10−4) is greater
than or equal to the best integer objective value. From the
optimal solution of the master problem, the upper bound for
the optimal objective value can be calculated. The results of
the numerical experiments are shown as follows.

TABLE II
RESULTS FOR PROBLEM 1

Iteration Master Problem Number of
Number Optimal Objective Value Added Cuts

1 66375.0 4 feasibility cuts
2 69610 22 optimality cuts
3 98043 11 optimality cuts
4 98099 0 cuts

Optimal Cost 98103

TABLE III
RESULTS FOR PROBLEM 2

Iteration Master Problem Number of
Number Optimal Objective Value Added Cuts

1 118799 28 feasibility cuts
2 142859 54 optimality cuts
3 170384 2 optimality cuts
4 170391 0 cuts

Optimal Cost 170393

V. CONCLUSION

We developed a multistage stochastic programming model
for the electric power generation problem. By utilizing the
property of block separable recourse, the L-shaped method
solves the problem effectively.
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