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Abstract—We present analysis of spatial patterns of generic 

disease spread simulated by a stochastic long-range correlation SIR 
model, where individuals can be infected at long distance in a power 
law distribution. We integrated various tools, namely perimeter, 
circularity, fractal dimension, and aggregation index to characterize 
and investigate spatial pattern formations. Our primary goal was to 
understand for a given model of interest which tool has an advantage 
over the other and to what extent.  We found that perimeter and 
circularity give information only for a case of strong correlation—
while the fractal dimension and aggregation index exhibit the growth 
rule of pattern formation, depending on the degree of the correlation 
exponent (β). The aggregation index method used as an alternative 
method to describe the degree of pathogenic ratio (α). This study may 
provide a useful approach to characterize and analyze the pattern 
formation of epidemic spreading 
 

Keywords—spatial pattern epidemics, aggregation index, fractal 
dimension, stochastic, long-rang epidemics   

I. INTRODUCTION 
 ATTERN formation phenomena, occurring via the 
aggregation process or clustering of particles, has been the 

subject of increased interest [1]. Spatial pattern analysis plays 
an important role in many fields of research, ranging from the 
microscopic to macroscopic scale, including bacteria colonies 
[2],  epidemiology [3], forests, and ecology [4]. Spatial 
technology enables epidemiologists to create detailed maps 
and employ spatial cluster statistics to garner insights about 
patterns of disease [3]. There has been significant 
development in creating predictive models to better 
understand the pattern formation of epidemics; see reviews [5-
7]. The mathematical epidemiological model usually takes the 
form of a deterministic model, which consists of a system of 
ordinary differential equation (ODE) models describing 
changes in the number of susceptible, infected, and recovered 
individuals in a given population [8]. Typically, the ODE 
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deterministic model neglects spatial correlation by assuming 
that the system is spatially homogeneous; this is also termed 
the mean field approximation approach [9]. In addition, the 
ODE deterministic model can exactly determine the transient 
evolution of the system once the initial condition is given.  
However, for epidemical phenomena where there is a large 
degree of spatial organization or pattern formation of 
spreading, the ODE deterministic model may be unrealistic. 

It is important to account for spatial variation and to study 
the landscape as well as the pattern formations of epidemic 
phenomena. With regard to spatial pattern driven forces such 
as diffusion, deterministic partial differential equation (PDE) 
models are well known conventional tools for analyzing 
dynamical aspects [10], but such models do not take into 
account the noises or stochastic fluctuations associated with 
spatiotemporal dynamics. Consequently, stochastic partial 
differential equation (SPDE) models, such as the Langevin 
equation, are needed [11].  However, it usually is difficult to 
obtain analytical solutions to compare with experimental data. 
Therefore, computer simulations can be of great help in 
investigating spatial patterns that are typically due to the effect 
of noise. One of the most efficient is the Monte Carlo based 
spatial cellular automata model.  

In our current work, we were interested in studying the 
spatial pattern formation of epidemic spreading using the 
Monte Carlo simulation approach. Even though the model of 
interest is generic; we believe that our findings could be useful 
in understanding how diseases spread, and how to prevent 
epidemic spreading.  

To characterize the spatial pattern of epidemics, there are 
many parameters that can be used to analyze the patterns—for 
example, area, perimeter [12], circularity [12, 13], fractal 
dimension [14], and aggregation index [15]. These parameters 
provide different information at least to some extent. Area and 
perimeter measurements are very familiar and straight forward 
to understand. More interesting is circularity, which is a 
numerical quantity representing the degree to which a shape is 
compact. It is calculated from the perimeter, which is defined 
as a path surrounding an area. This measurement of a region is 
a common technique used to characterize pattern patchiness 
and compactness [12]. Topologically, the circularity value 
should be invariant under similarity transformations of the 
shape, such as scaling, rotation and translation. However this 
measurement can be used to describe the interaction between 
individuals.  

Fractal dimension (Df) can be defined as a measure of 
structural complexity [1]. It has attracted considerable 
attention from many mathematicians because its fractional 
quality is in sharp contrast to the integer dimensions (zero, 
one, two, and three) of Euclidean geometry. It is an index used 
to indicate how completely a fractal appears to fill spaces, as 
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one zooms down to finer and finer scales. The term fractal is 
used to describe fractured shapes, which possess repeating 
patterns when viewed at magnified resolution. This special 
value of scale invariance, which shows up in many natural 
patterns, can be identified and quantified by a parameter called 
the fractal dimension [16]. Lastly, an aggregation index (AI), 
which is used to represent the quantitative measurement of 
aggregation levels of spatial patterns, is class specific and 
independent of landscape composition [15]. Characteristically, 
the AI is used to describe the level of aggregation by 
considering adjacent matrixes or the contact perimeters.  From 
our review, most published research works solely apply one or 
at most two parameters in characterizing the spatial pattern of 
epidemic spreading [17-19]. For example, Tan and co-workers 
used only the fractal dimension to investigate epidemic 
spreading [18]. Likewise, Hagerhall and co-worker used only 
the fractal dimension with empirical evidence in seeking 
connections between landscape preferences [16]. In our 
opinion, multi-quantifications tend to provide better insight 
into the problems associated with the dynamics of the 
epidemic process. To our knowledge no (or very few) 
researchers have used the aggregation index to indicate the 
aggregation level for epidemic spreading. Hence in our work, 
we applied various quantitative spatial characterizations to 
analyze the spatial pattern of a spreading epidemic. These 
include: perimeter, circularity, fractal dimension, and 
aggregation index. Our primary goals were to provide the 
information obtained by each of these measurements; 
characterize the most effective measurement; describe the 
advantages or disadvantages associated with each 
measurement; and establish how many parameters need to be 
combined in order to provide the best description of epidemic 
pattern formation.  

With regards to the model of interest, we considered the 
stochastic SIR model with long range interaction, as seen in 
example Ref. [18]; in this model the disease can transmit 
according to distance, r, in a power law distribution [20]. 
Therefore, the spread of the disease is essentially dependent 
on two main parameters: 1) The pathogenic ratio, which 
describes the ability of an organism, a pathogen, to produce an 
infectious disease in another organism; and 2) The pathogen 
level, which depends on the type of organism, e.g. influenza 
virus [21], HIV virus [22], and fungi [23]. 

II. MODEL AND SIMULATION 

A. Model 
The pattern formation for epidemic spreading was studied 

by using Monte Carlo (MC) simulations. We considered a 
square lattice LxL, which for each site can be either empty or 
occupied by two types of individuals. The empty site 
represents a susceptible individual (S). The occupied particles 
are either infected (I) or immune (R) individuals.  Therefore, 
the three state models are: S, I, and R, respectively.  

For simplicity and without the loss of generality, we began 
by placing the infected or I individual at the origin and 
otherwise empty sites (susceptible or S individual) in the 
square lattice. To incorporate the disease transmission 
dynamics, S individuals were chosen randomly and converted 

into an I individual with probability αP, or to R with 
probability (1-α)P, as schematically shown below: 

(1 )

P

P

S I
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α

α−

⎯⎯→
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where α is the pathogenic ratio and P is the total infected 
probability. The pathogenic ratio represents the pathogenicity 
of the virus or bacteria of interest. The spreading system that 
has the highest value of pathogenic ratio (α=1) corresponds to 
the spreading system, which doesn’t have R individuals, and 
where the S individuals that have contact with infected 
individuals can change to only infected individuals. The 
spreading system that has the lowest value of pathogenic ratio 
(α=0) is the spreading system where the disease can not 
spread within the system because the S individuals that are in 
contact with infected individuals can only change to I 
individuals. The pathogenic ratio also describes how easily S 
individuals can be infected by the sick population.  

Since the model that we are using is a long-range 
correlation, each S individual can be infected from any I 
individual. We let event Ai be an event that a given S 
individual is infected from the ith I individual. So the total 
probability that a given S individual will be infected from any 
I individual is the probability of the union of all Ai 
events,

1
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N

i
i
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=
U where N is the total number of I individuals—

since the infected event iA  is an independent event, i.e.  
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Substituting eq. (1) in eq. (2), we then obtain 
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Eq. (3) thus can be rearranged and becomes 
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Accordingly the total infected probability P is 
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where N is the number of I individuals in existence—see also 
ref. [18, 24]—and where ip  is the infected probability from 
the ith I individual. Note that the probability formulae given in 
eq. (5) is used to find the total probability of many multi-event 
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problems; for example, the risk of infection of the total dose of 
infectivity in which each dose acts independently [25] and can 
be used to find the probability of Trypanosoma cruzi 
transmission to opossums by independent events of predation 
[26].  

To incorporate the dynamics of how each type of 
population changes over time and what are the subsequent 
spatial pattern formations, in this model we let an S individual 
be infected by the ith I individual, where the correlation 
probability pi is expressed with long-range correlation [18, 
27], which decays algebraically with the distance ir . A flow 
chart of the simulation is shown in Fig. 1. We randomly chose 
an empty site located within a radius L/2 of a chosen infected 
individual such that the probability of infection by the ith I 

individual is pi, and the uninfected probability is 1-pi. The 
correlation probability pi as a power law probability is: 

1
i

i

p
rβ= ,           (6) 

where ir  is the distance from the chosen empty site to the ith I 
site and β (β≥0) is the correlation exponent that relates to the 
way viruses spread and represents the correlation between 
individuals.  

B. Measurements and characterization 
To analyze spatial patterns, we measured four parameters: 

perimeter, circularity, fractal dimension, and aggregation 
index to investigate epidemic spreading. 

Circularity is frequently included as a pattern formation in 
diverse formation analysis processes, and it has been used as 
the main property to evaluate morphological change in 
biological entities. The circularity measurement of a region 
(sometimes called the compactness) is used to measure the 
perimeter and the area of region and compute the following 
formula [28]:  

2

4 .region
AreaC

Perimeter
π ⋅

=         (7) 

Circularity equal to 1.0 denotes a perfect circle. As the value 
approaches 0.0, it indicates an increasingly elongated shape. 
This measure is independent of scale, as both nominator and 
denominator are proportional to the square of the perimeter for 
a given shape. A perimeter is a path that surrounds an area. 
Computationally, we used ImageJ software version 1.41o 
(http://rsb.info.nih.gov/ij/) to measure the circularity and 
perimeter. 

For fractal dimension, we used the box-counting method, 
which was used by Hamburger et al to study a random set in a 
box. [29]. For a low occupied fraction, the apparent fractal 
behavior is observed between physically relevant cutoffs. The 
lower cutoff ro is given by the length of particles (ro=d), while 
the upper cutoff r1 is given by the average gap between 
adjacent particles (r1=ρ -1/2-d) where ρ is the population 
density [17, 29]. In this study we used the commercial 
software Benoit 1.3 [16], which is specifically designed to 
analyze fractal dimension. In Benoit software, the fractal 
dimension is defined as the exponent Df , where the relation is:  

  
       {log , log ( )}fD slope r N r= − .      (8) 

 
As to the aggregation index (AI), it quantifies aggregation 
levels within a single class. An AI value is class specific and 
independent of landscape composition. Therefore the AI index 
can be used to quantify the level of aggregation of spatial 
patterns [15]. The highest level of aggregation (AI = 1) is 
comprised of pixels that share the most possible edges, 
whereas the lowest level of aggregation (AI = 0) is comprised 
of pixels that do not share edges. An AI was designed wherein 
landscapes were divided into a square grid. If ei,j represents the 
total edges of class i adjacent to class j, and ei,i is the total 
edges shared by class i itself, the actual level of the 
aggregation index of class i is defined as: 

      ,

,max_
i i

i
i i

e
AI

e
= ,         (9) 

with max_ei,i being the largest number of possible edges 

Fig. 2 shows the baseline of AI values ranging from 0 to 1 

Fig. 1 shows the simulation diagram of epidemic spreading 
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shared for class i. The value of ei,i is also known as the 
‘contact perimeter’ [30]. The calculation of max_ei,i is based 
on the largest square integer n2, which is smaller than the area 
Ai of class i. The AI values under various levels of aggregation 
are shown in Fig. 2. The binary landscapes are used with 0 for 
the background class (white) and 1 for class 1 (black). In this 
study, we used IAN: Image Analyzer version 1.0.16 software 
to find the values of the AI for a spreading pattern of 
population on a square lattice [15]. 

III. RESULTS AND DISCUSSION 
To study the spatial spread of the disease in a population 

where the spread of the infection is around a point source of 
infection, we firstly analyzed the distribution of I and R 
populations on the square lattice site L=500. The occupied 
fraction is, unless otherwise stated, 0.003= N/πL2. We studied 
various pattern formations by varying the pathogenic ratio (α) 
and correlation exponent (β) of the long-range correlation 
model. We can classify the pattern of the I&R population into 
3 formations as shown in Fig. 3: a) When the pattern exhibits 
spreading over a space lattice (no-clustering) for β∈[0,2), b) 
When the pattern features clustering but not very packed 
(semi-cluster) for β∈[2,5), and c) When the pattern is highly 
clustered and pack centered at the origin for β∈[5,10]. In the 
case of the small β (β∈[0,2)), the correlation between 
individuals is small or weak. The I&R population can spread 
randomly on the 2D lattice, as was expected and is shown in 
Fig. 3, β=0.5. As β increases there is, correspondingly, a 
stronger correlation; and when β is large enough (β>5), the 
correlation becomes very strong and the population can no 
longer spread randomly any more. The dispersed distributed 
pattern will thus change into partially dense patterns, where 
the population can only grow on the neighbor sites, leading to 
a cluster population. The compact clusters associated with a 
large (β>5) seem to be a self-affine front [1]. Moreover, the 
density of R population decreases as α increases. It should be 
pointed out though that these results are still qualitative. More 
quantitative analysis is needed and is discussed as follows. 

To quantify the spatial structure of disease spread in a 
spatially distributed population density of I, R, and I&R 
population, we integrated the population density in radius r 
with 10rΔ = , as shown in Fig. 4, by varying α = 0.4, 0.6, 0.8, 
and 1.0 and β = 0.5, 3.00, and 7.50. These measures describe 
how the density of the surrounding population varies as a 
function of the distance from the origin. 

Each figure represents three population densities: I, R, and 
I&R population, respectively. In Fig. 4 (1st column), the 
populations become more homogenous as the radius 
increases. This indicates that the population can spread 
uniformly and randomly from the center of the lattice system. 
It was observed that for small β (or weak correlation), I 
population radial structures are barely distinguishable even 
when α increases, while the means of R and I&R population 
density increase. However, the distinction between I 
population radial structures when α values are different is 
more pronounced when β is large enough. These results imply 

that for the weak correlation α does not affect pattern 
formation. For the analysis of the curve in Fig. 4 (2nd column), 
we tried to fit the curves with the Lorentz function [31]:  

  
0 2 2

2( )
4( )c

A Wy x y
x x Wπ

⎡ ⎤
= + ⎢ ⎥− +⎣ ⎦

,              (10) 

where xc
 is the mean value, W is the full width at half 

maximum, and A is the area under the graph. The fitting 
parameters are shown in table 1 and correspond to Fig. 4 (2nd 
column). For I population density, the population densities 
with radii = 10 to 30 increase as α increases, while the R 
population densities decrease. The explanation for this is that 
since the probability (1-α)P is lower when α is greater, it 
results in a decrease in the number of  S individuals eventually 
becoming R individuals. These results are consistent with 
those given in Fig. 3.  

For of the case of large β=7.5 (see Fig. 4 (3rd column)), we 
found that the population densities may be described by the 
Gaussian function 

2

0 2

( )( ) exp ,
22

cx xAy x y
σπσ

⎡ ⎤−
= + −⎢ ⎥

⎣ ⎦
                (11) 

Fig. 3 shows the pattern spreading of long-range correlation of the 
I&R population. White area, Blue spot, and Red spot represent S, I, 

and R individuals, respectively where α = 0.4, 0.6, 0.8, and 1.0 and β 
= 0.5, 3.0, and 7.5 
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where xc  is the median of curve and σ is the standard 
deviation. These parameters are shown in table 2. From further 
curves analysis; it was found that the variations characterized 
by σ decrease when α increases. Note that 2σ is the width of 
fitting curve. When considering I and I&R population 
densities, we found that 2σ values decrease when α values 
increase from 0.40 to 1.00. These findings reflect that the 
spatial patterns tend to be more packed or clustered for high 
pathogenic ratio scenarios. Furthermore, when we compared 
the results of I population densities of β between 3.0 and 7.5, it 
was found that the higher correlation of the epidemic spread 
drives the spatial pattern to become more packed. So far, it can 
be seen that when pathogens are very easily spread (which 
corresponds to the weak correlation case), the disease can be 
transmitted long distances, while the distribution of I and R 
individuals are dispersed. This situation could correspond to a 
disease spread that is mediated by such things as wind, air 
travel [32], or the migration of birds [33]. In contrast, when 
diseases can only spread at short range, this situation may be 
related to a strong correlation spread. The corresponding 
epidemics for these cases are mainly those which are 

transmitted by surface contact, body fluids, or sexual contact 
[34]. 

A. Perimeter and Circularity 
To characterize the dynamic of the spatial pattern, we used 

perimeter, circularity, fractal dimension, and the aggregation 
index to analyze the distribution population on a square lattice 
site L=500.  In those cases where there was the strong 

correlation β=10 (for the clustered patterns) and α varied from 
0.3 to 1.0, Fig. 5 shows the R/I ratio of the population, the 
perimeter, and the circularity, respectively. With regards to the 
R/I ratio of the population, it was found that this ratio 
decreases as α increases. The perimeter, which is a length that 
surrounds a cluster or the circumference of a pattern, also 
decreases as α increases from 0.3 to 0.7 for the I and I&R 
populations. This implies that the pattern formation tends to be 
more clustered or packed as α gets larger. For α<0.6, the 
perimeter of the I population is greater than the I&R 
population. This is because the clusters of the I population 
consist of many small clusters which can spread out over a 
very long distance. Generally, a larger perimeter implies that it 
is difficult to prevent the epidemic from spreading and limit 
transmission to a finite control range or endemic limit. When 
compared with the lower perimeter value, the spreading 
pattern is more clustered to a finite site although the α value is 
small. For this situation it is not difficult to control the disease 
spread. For the perimeter of R population, the results show it 
increases as α is higher until about α =0.6, because once again 
the total probability (1-α)P is smaller. Consequently, a lesser 
number of S individuals become R individuals, which results 
in small clusters.  

For the circularity results, which relates to the roundness of 
the spreading pattern, we can divide the curve into two parts 
like a perimeter measure. The circularity increases when we 
increase α in the range 0.3-0.6. For α>0.6, the circularity 
becomes steady at about the value of 0.25. It can be seen that 
the circularity values are very low for α = 0.3-0.7 and seldom 
for α>0.7, implying that the patterns are not a perfect circle 
and that the disease cannot spread in the same radius from the 
center. These results indicate that the epidemic spread cannot 

Fig. 4 show the density of I (upper), R (middle), and I&R (lower) 
population that integrate with dr= 10 where r is radius from the 

center with vary α = 0.4 ( ), 0.6 ( ), 0.8 ( ), and 1.0 ( ) and β = 
0.5(1st column), β = 3.0(2nd column) with the fitting Lorentz function

d

TABLE I 
THE FITTING PARAMETERS OF LORENTZ FUNCTION 

α  0.4   0.6  
 I R I&R I R I&R 

y0 -0.0043 -0.0073 -0.0116 -0.0033 -0.0032 -0.0064
xc(mean) 10.00 10.00 10.00 10.00 10.00 10.00 
W(width) 48.14 48.97 48.65 38386 43.31 40.49 
A(area) 25.80 39.18 64.99 27.13 18.42 45.48 

H(height) 0.34 0.51 0.84 0.44 0.27 0.71 
R-square 0.998 0.998 0.998 0.999 0.994 0.999 

 
α  0.8   1.0  
 I R I&R I R I&R 

y0 -0.0017 -0.0005 -0.0022 -0.0057  -0.0060
xc(mean) 10.00 10.00 10.00 10.00  10.00 
W(width) 34.08 34.75 34.21 36.79  36.85 
A(area) 27.12 6.65 33.77 31.64  31.70 

H(height) 0.50 0.12 0.63 0.54  0.54 
R-square 0.995 0.998 0.995 0.998  0.997 

 

TABLE II 
THE FITTING PARAMETERS OF GAUSSIAN FUNCTION 

α  0.4   0.6  
 I R I&R I R I&R 

y0 0 0 0 0 0 0 
xc(mean) 20.07 20.05 20.06 19.58 18.99 19.34 
σ (std.) 22.07 21.86 21.95 16.21 16.33 16.26 
A(area) 22.85 34.17 57.02 26.44 17.79 44.23 

H(height) 0.41 0.62 1.036 0.65 0.43 1.08 
R-square 0.995 0.995 0.995 0.987 0.987 0.987 

 
α  0.8   1.0  
 I R I&R I R I&R 

y0 0 0 0 0  0 
xc(mean) 18.00 17.91 17.98 16.94  16.49 
σ (std.) 13.54 13.98 13.63 12.33  12.33 
A(area) 30.17 7.58 37.76 33.71  33.71 

H(height) 0.89 0.22 1.10 1.09  1.09 
R-square 0.985 0.985 0.985 0.988  0.988 
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spread to infinite for the strong correlation; therefore the 
cluster of epidemic spreading is on the finite scale, and it can 
see that α plays an important role in the spread of the disease. 

B. Fractal Dimension 
To analyze the dynamic process of I population spreading, 

we used the fractal dimension to express the geometric 
properties. The fractal dimension (Df) of a spreading epidemic 
can be calculated by the box-counting method [29], as shown   

Df is a quantity that gives information as to how completely 
a spatial representation appears to fill space [35]. Df also 
provides a measure of the degree of correlation between 
individuals over space and is used to analyze fragmented 
spatial phenomena in terms of self-similarity or self-affine. 
From this result, it was found that the Df value increases from 
0.71 to 1.84 when β increases. And it has a transition pattern at 
β≈2. This result agrees with the previous work of Tan and co-
workers [18, 19]. They showed that when β rises from 0 to 
infinite, the fractal dimension sharp step appears at β≈2. The 
small value Df (0.71) relates to the occupied fraction [29]. As 
to percolation space, it seems that site percolation occurs for 
any α [36]. This implies that at each step of simulation, the 

pattern formation grows with weak correlation (0<β<2), and 
that the I population can disperse randomly in percolation 
space.  

When the Df value increases the pattern formation changes 
to Leath percolation [37]. Leath percolation is useful for 
studying the structure of percolation clusters. The pattern 
formation here is more packed and grows from the nearest 
neighbor of the initial site. Because between individuals there 
exists a strong correlation (β>5), they can grow in a short-
range correlation. When β →∞, the Df value approaches 2 and 

the dynamics reduces to the Eden model [1, 38], which is just 
the growth rule of dense cluster growth. However, it was 
found that Df cannot be used to discriminate or indicate the 
pattern dynamics for any α when β>5. This result shows the 
limitation of considering pattern formations when varying α. 
This measurement can describe the dynamic pattern for just 
the β parameter. The α parameter though is important to 
epidemic spreading because disease epidemics have difference 
pathogenic levels, which impacts the speed and violence of an 
epidemic’s spread.   

C. Aggregation Index 
From the previous results, we used the aggregation index to 

describe the pattern dynamics of I population spreading 
calculated by IAN software [15]. The AI measurement 
provides a quantitative basis from which to correlate spatial 
patterns with processes that are typically class specific. We 
found that when the correlation exponent rises from 0 to 10, 
AI increases from 0 to 0.9, and the sharp step appears at β=2, 
as seen in Fig. 7. These findings show the likely results of the 
fractal dimension method for varying α and β, which has a 
transition pattern at β≈2. 

We can divide the graph into 3 parts. In the first part the 
correlation exponent is less than 2. It was found that the AI did 
not change and was close to 0. This shows the result of the 
weak correlation between individuals and agrees with the 
previous results. The I individuals can spread randomly in 2D 
space, and they don’t have adjacent neighbors. The second 
part (for 2<β<5) shows the pattern transition, where the AI 
value increases when β increases for every range of α. The 

 
Fig. 5 show the R/I ratio of population (upper), the perimeter of I ( ) 
and I&R ( ) population (middle), and the circularity (lower) of the 
cluster of I+R population as α increases from 0.3 to1.0 for the β = 

10.00

 
Fig. 6 show the fractal dimension (Df) of the cluster I population as 

the β increase from 0.01 to 10.00 for epidemic spreading with vary α
from 0.4 to 1.0 
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final part (β>5) shows the stationary pattern, where the AI 
value becomes steady. When α increases, the probability that 
S individuals changing to R individuals ((1-α)P) decreases, so 
the S neighbors of pattern are more likely to change to I 
individuals and results in the increasing of AI. The epidemic 
spreading becomes clustered with a difference level that 
corresponds to α. It was found that the AI measurement can be 
used to distinguish the level of various α values that are 
different for the fractal dimension measurement [18]. This 
result could be well-fitted to the Gompertz function [39] 

       exp ( ).ck x xy be− − −=                          (11) 
These fitting parameters are shown in table 5, where -k is 

the rate of clustering and xc is the mean of the x parameter. 
Here b is the maximum value that can be reached with the 
β→∞ and  

lim ( ) .AI b
β

β
→∞

=                   (12) 

From the fitting results, we found that the b values can be 
fitted with the pathogenic ratio as shown in table 3.  Therefore, 
the AI parameters can reflect the α values when β>5. The α 
value is important in describing the virulence of bacteria or the 
virus that causes disease and the virulence of its spread. At 
low pathogenicity (e.g. influenza), a virus or bacteria usually 
causes only mild or undetected symptoms, but at high 
pathogenicity, they may spread more rapidly though 
intermediaries, as occurs with avian flu, SARS, dengue, and so 
no. Moreover, the AI results indicate the probability of having 
an adjacent neighbor and imply the possibility of infection 
among individuals. For the k parameter results, it was found 
that the high α has a greater rate of clustering when compared 

with the low α. None of these results can be obtained through 
previous methods, especially in terms of the fractal dimension. 

IV. CONCLUDING REMARKS 
Using the epidemic model with long-range correlation, we 

show the spatial pattern of a spreading epidemic and analyze it 
using the perimeter, circularity, fractal dimension, and 
aggregation index methods. The perimeter of the I, R, and I+R 
population and the circularity of I+R population describe the 
size and symmetric direction of the spreading pattern only for 
β=10. The fractal dimension describes only the growth rule of 
pattern formation in the I population with variable α and β 
parameters. However these methods cannot describe and 
distinguish the dynamics of the pathogenic level when β>5. To 
characterize the pathogenic ratio, we thus use the aggregation 
index method as an alternative method. Moreover, this method 
indicates the α parameter when β>5. This is the parameter 
used to describe the virulence of disease spreading.     
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