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Abstract—Linear stochastic estimation and quadratic stochastic 

estimation techniques were applied to estimate the entire velocity 
flow-field of an open cavity with a length to depth ratio of 2. The 
estimations were done through the use of instantaneous velocity 
magnitude as estimators. These measurements were obtained by 
Particle Image Velocimetry. The predicted flow was compared 
against the original flow-field in terms of the Reynolds stresses and 
turbulent kinetic energy. Quadratic stochastic estimation proved to be 
more superior than linear stochastic estimation in resolving the shear 
layer flow. When the velocity fluctuations were scaled up in the 
quadratic estimate, both the time-averaged quantities and the 
instantaneous cavity flow can be predicted to a rather accurate extent. 

Keywords—Open cavity, Particle Image Velocimetry, Stochastic 
estimation, Turbulent kinetic energy.  

I. INTRODUCTION 
TOCHASTIC estimation was first presented by Adrian [1] 
as a means of estimating coherent structures in turbulent 

flows.  It was later used by researchers to estimate an entire 
velocity field through utilizing instantaneous velocity at 
chosen positions [2]-[5]. This was possible as it was proven 
that the best mean square estimate of velocity fluctuation at 
position x+r is the conditional average of the velocity 
fluctuation at position at x+r given the velocity fluctuation at 
position x in the same instant, denoted by <u(x+r,t)|u(x,t)> [6]. 
In the recent years, researchers have started to use pressure 
events as the predictors in place of the instantaneous velocity 
[7]-[11]. Experimental techniques such as Particle Image 
Velocimetry (PIV) are limited in their ability to obtain time-
resolved measurements. Hence, the ability to use pressure 
events to produce a low-dimensional, time-resolved 
description of flow through a small number of localized 
positions will contribute greatly to the ability of predicting and 
controlling the flow. 
 The current study employs instantaneous velocity 
magnitude at chosen reference positions as the estimators. 
 Using velocity magnitude to predict velocity flowfield has 
the advantage of utilizing only PIV images for the entire 
prediction process. This convenience brings about time and 
cost efficiency in the selection of estimator position since only 
1 set of PIV results needs to be taken and the rest of the 
calculations are done in post-processing. Different 
combinations of predictor positions can be tested out before 
selecting the optimal combination for the best predicted flow. 
Thereafter, velocity sensors can be used at the selected 
estimator positions for the prediction of time-resolved flow 
within the cavity. 
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 As a preliminary study, random predictor positions were 
first selected to be tested. Linear Stochastic Estimation 
(LSE) was first carried out using 5, 9 and 13 estimators to 
check if the number of estimators and the estimator locations 
used in each case were sufficient in reconstructing the time-
averaged features of the cavity flow. Thereafter, Quadratic 
Stochastic Estimation (QSE) was carried out on a chosen case 
to compare against the LSE results for additional flow features 
that could be resolved.  

II.  BACKGROUND 
 The current study aims to estimate the entire velocity 
flowfield based on the velocity magnitude at selected 
reference positions. This is done by first estimating the 
velocity fluctuations in the streamwise and vertical direction 
(represented by u and v respectively) separately before adding 
the fluctuations to the mean velocity. The least mean square 
estimate for u can be written as 
 

>ττ=<τ )(E|)(u)(u~ ijij                  (1) 
 
where the subscripts i and j denotes the position in the 2-
dimensional flow, E is the instantaneous velocity magnitude, 
Umag and the angle brackets denote averaging. In the 
estimation process, Umag has been normalized with the 
freestream velocity, U∞ to give a similar order of magnitude 
for the estimator and the estimated variables. The conditional 
average can then be estimated by a power series [2]: 
 

...)(E)(E)(EC

)(E)(EB)(EA)(u~

srqijqrs

poijopnijnij

+τττ

+ττ+τ=τ

          (2) 

 
where n refers to the number of estimators used.  
 The coefficients are obtained by minimizing the mean 
square error of the estimate, expressed as 
 

>−=< 2
ijijij ]uu~[e                       (3) 

 
where iju~ = )(EA nijn τ . By setting the derivation of the mean 
square error with respect to A to zero, the error can be 
minimized. This eventually reduces to 
 
[A]=[E]-1[V]                     (4) 
 
where [A] consists of a set of coefficients for every i, j and n 
chosen, [E] consists of the two-point correlation for Umag and 
[V] is the correlation of Umag with u. 
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TABLE I 
 ESTIMATOR LOCATIONS IN TEST CASES 

Estimator 
# 

Case 1 Case 2 Case 3 
x(mm) y(mm) x(mm) y(mm) x(mm) y(mm) 

1 8 -38 8 -38 8 -38 
2 24 -38 24 -38 24 -38 
3 40 -38 40 -38 40 -38 
4 56 -38 56 -38 56 -38 
5 72 -38 72 -38 72 -38 
6 - - 2 -16 2 -16 
7 - - 2 -8 2 -8 
8 - - 78 -16 78 -16 
9 - - 78 -8 78 -8 
10 - - - - 2 -32 
11 - - - - 2 -24 
12 - - - - 78 -32 
13 - - - - 78 -24 

C. Particle Image Velocimetry  
The Particle Image Velocimetry (PIV) system used consists 

of a double pulsed Nd:YAG laser (EverGreen, Quantel), a 
HiSense MkII (Dantec Dynamics) camera and a system hub 
(FlowMap). The laser delivers 150mJ of energy per pulse at 
532nm. The HiSense camera consists of a high resolution 
Hamamatsu C8484-05 digital CCD chip. This chip contains 
1280 X 1024 light sensitive cells and an equal number of 
storage cells. The FlowMap System hub consists of a 
correlator unit, input buffer and a synchronization unit. The 
correlation unit determines the vector maps from the incoming 
image maps while the synchronization unit provides 
communication links between the processor and other 
elements in the PIV system such as the laser and camera. 

The software FlowManager was installed on a computer to 
control the entire process of PIV measurement. When 
triggered by the user, a signal will be sent to the System Hub 
which will then fire the laser and acquire the images from the 
camera simultaneously. The System Hub hence synchronizes 
the laser with the camera. The time between a pair of laser 
pulses was set to be 200μs in FlowManager.  

A schematic diagram of the PIV set up is shown in Fig. 4. 
The light sheet shines downwards through the test section 
ceiling to illuminate the centre plane of the cavity. A camera 
was positioned at the side of the test section to capture the 
flow in this plane. 

The seeding particles used here was olive oil. These 
droplets are generated through a TSI Oil Drop Generator, 
where pressurized air atomizes oil in the generator reservoir. 
The droplets have a size of about 1μm. 
 A total of 700 pairs of time-independent images were 
obtained for the test case. For this total number of images, the 
values of Reynolds stresses at several positions along the 
cavity lip line (i.e. y=0) have been checked for statistical 
convergence. Each pair of images were adaptive correlated 
successively starting from an initial interrogation window size 
of 64 by 64 pixels to a final size of 16 by 16 pixels with a 50% 
overlap ratio. Subsequent post-processing of the PIV data was 
carried out in MATLAB. 
 

 
Fig. 4 Schematic of PIV set-up 

D. Test Conditions 
 The experiments were carried out at a free stream velocity 
of 15m/s with ReD=40000. The boundary layer was tripped by 
a 1mm thick tape 40cm upstream of the leading edge of the 
cavity. The turbulent boundary layer thickness was 14mm, and 
the momentum thickness was 1.5mm.  

IV. RESULTS AND DISCUSSION 
 The estimated flowfield was reconstructed in each LSE test 
case and time-averaged quantities were calculated. These 
included the x-velocity (U) and y-velocity (V) contours, in-
plane streamlines, normalized turbulent velocities in x and y 
directions (u'/U∞ and v'/U∞), Reynolds shear stress and 
turbulent kinetic energy, 0.5(u'2+v'2). The U and V contours, 
as well as the in-plane streamlines for the LSE cases resemble 
that of the original PIV data. This is due to the prediction 
process, which involves predicting the velocity fluctuations 
before adding back the mean flow. As such, these 3 plots are 
only presented for the original PIV data. Fig. 5 and Fig. 6  
show the plots for the original PIV data and the 3 LSE test 
cases respectively. Note that the scale for the contour plots 
differs in each case. 
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the flow field within an entire cavity. Hence, it should be 
possible to predict the time-resolved cavity flow if time-
resolved velocity magnitudes are available. This could 
possibly facilitate and enhance active flow control since any 
change in the cavity flow may be detected through velocity 
changes at the selected position. 
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