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Abstract—In this paper, performances of shuffled frog leaping 

algorithm was investigated on the stealth laser dicing process. Effect 

of problem on the performance of the algorithm was based on the 

tolerance of meandering data. From the customer specification it 

could be less than five microns with the target of zero microns. 

Currently, the meandering levels are unsatisfactory when compared 

to the customer specification. Firstly, the two-level factorial design 

was applied to preliminarily study the statistically significant effects 

of five process variables. In this study one influential process variable 

is integer. From the experimental results, the new operating condition 

from the algorithm was superior when compared to the current 

manufacturing condition. 

 

Keywords—Stealth Laser Dicing Process, Meandering, 

Metaheuristics, Shuffled Frog Leaping Algorithm. 

I. INTRODUCTION 

laser-based technique of stealth laser dicing process is 

one among various widely used silicon wafers dicing 

systems. There are two stages on the stealth laser dicing 

process [1]. Firstly, the beam is scanned with specific 

wavelengths along intended cutting lines. In the wafer there 

are defect regions with different levels of depths. Secondly, an 

underlying carrier membrane is radially expanded to induce 

fracture (Fig. 1). A high distortion density at the bottom is 

provided. In the stealth dicing process there are some 

advantages of no requirement of a cooling liquid and no debris 

generated. 

On the stealth laser dicing process, the level of meandering 

is of interest. The current meandering levels are slightly higher 

than the customer specification. This situation leads to high 

levels of product inspection with a large sample size with a 

high frequency. This brings the high levels of production cost 

and also consumed time and labor. Therefore, it is necessary 

to enhance the meandering quality in the stealth laser dicing 

process. This problem has still existed when there is an 

application of high technology machines. In this case, the deep 

detail of stealth dicing process should be investigated so that 

the optimal working condition would be determined. 

Consequently, the problem of interest would be dissolved. 
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Fig. 1 Stealth laser dicing process 

II. STEALTH LASER DICING PROCESS (SLDP) 

From processing the laser to wafers of the stealth laser 

dicing process (SLDP) there is no requirement of any cleaning 

subprocedure with water or other fluids. Consequently, there 

is no debris contamination on the wafer. The SLDP 

completely enables the dry processing with three major 

advantages of thinner wafer without chipping; no debris 

contamination and the completely dry process. In the SLDP, 

there are two operations on wafers. They are laser and wafer 
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separation processing steps. In this research we focus only on 

the first step of laser processing. In this step, the laser beam is 

focused on the interior of wafer work pieces. It follows by 

scanning along the dicing line. In the wafer the modified 

layers or SLDP layers are formed along the scanned line. At 

this step, the wafer still has not splitted into chips after the 

laser processing [2]. 

The data of defect of this process were summarized as in 

Table I accompanying with the pareto diagram as shown in 

Fig. 2. It was found that the highest defect data was the 

tolerance of meandering data. These result in higher level of 

cost from high defect rate. In this case, this research will aim 

to reduce the potential defect. By brainstorming from teams 

who work for the SLDP, e.g. quality engineer, product and 

process engineers found that the five process variables are 

declared and all of them can separate in two types as shown in 

Table II.  
 

TABLE I 

SUMMARIZATION OF DEFECT ITEMS OF INTEREST  

Defect Piece Proportion 

Meandering 967,983 68.74 

Scratch 308,006 21.87 

Contamination 68,447 4.86 

Particle 25,753 1.83 

Missing Die 21,147 1.5 

Crack 9,177 0.65 

Front Side Chipping 3,872 0.27 

Back Side Chipping 3,779 0.26 
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Fig. 2 Pareto of defect items of interest 
 

TABLE II 

FIVE PROCESS VARIABLES AND THEIR TYPES 

Process Variable Description Type of Data 

A Scanning High Qualitative 

B Scanning Power 1 Quantitative 

C Scanning Power 2 Quantitative 

D Beam Shape Qualitative 

E Scanning Speed Quantitative 

 

The problem of interest is the drift of meandering data in 

the stealth laser dicing process. The meandering data is then 

measured and compared with the customer specification. The 

tolerance has to be less than five microns with the target of 

zero microns. In order to optimize the response of meandering 

that might be influenced by several process variables the 

shuffled frog leaping algorithm is then applied to determine 

the preferable levels of these process variables. In this 

research, there are five process variables and the objective is 

to focus on the only one response of meandering data. 

However, in this study there are some qualitative process 

variables of A and D that need to be in forms of integer 

whereas the remaining process variables are quantitative. 

III. SHUFFLED FROG LEAPING ALGORITHM 

There are some difficulties associated with solving large-

scale mathematical optimization problems. Alternatives have 

been proposed to solve these problems. They are based on 

simulations, learning, adaptation and evolution. Biologically-

based algorithms of metaheuristics are introduced. One among 

them is shuffled frog leaping algorithm (SFLA) recently 

introduced by Eusuff and Lansey [3]. It is a stochastic search 

process and mimics group of frog behavior. There are some 

combined benefits from both algorithms of the genetic-based 

memetics (MAs) and the social behavior-based particle swarm 

(PSO) [4]. In the SFLA there is a balance between a deep 

search of promising locations and a wide search of a large 

solution space for a global optimum. 

In the SFLA, the whole population or candidate solutions in 

optimization consist of a set of P frogs. Each frog has a fitness 

value. The frogs are then ranked in a descending order 

according to their fitness values. They are divided into M 

subgroup or memeplexes. Each frog has the same solution 

structure as in the genetic algorithm (GA) technique. Each 

subgroup has different cultures by performing a local search. 

These different memeplexes are then considered as different 

cultures at different places and they will perform their own 

deep local search. Within each memeplex, each frog has its 

own idea and can be influenced by the ideas of other frogs 

within their memeplex during the iterative shuffling process of 

memetic evolution. In each memeplex, the position of any frog 

is adjusted according to the different between the worst and 

the best frogs. 

The reposition process is used to produce a new frog. If 

there is a frog with better fitness from the repositioning 

process, it replaces the worst frog. Otherwise, the process is 

repeated with respect to the global best frog with the best 

fitness value across the memeplexes. When there is no 

improvement, a new frog is randomly generated to replace the 

worst frog. The local stochastic search and the shuffling 

process or a global relocation continue until a preset 

convergence criteria is satisfied. The pseudo code of the SFLA 

is briefly provided in Fig. 3. As stated before, the 

recommended algorithm parameter levels of P, I, M and G are 

in the ranges of [50,150], [10000, 100000], [15, 30] and [15], 

respectively. 
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Procedure ofSFLA() 

Begin; 

Define algorithm parameters:  

P: preset number of frog (population) 

M: preset number of memeplexes 

I: preset number of shuffling iterations 

Randomly generate a P population of frogs 

For each individual i-frog; evaluate the i-frog fitness value 

Sort the P population in descending order of their fitness values 

Partition P into Mmemeplexes 

Foreach memeplex 

Forj = 1 to I 

Determine the best and worst frogs 

Modify the worst frog position via position change and new 

position 

If better, then replace this worst frog with the new one 

Else  

Randomly generate the new frog 

End if 

End for 

End for 

Combine the evolved memeplexes 

Sort the P population in descending order of their fitness values 
Check for the convergence termination  

End 
End procedure 

Fig. 3 Pseudo code of the SFLA metaheuristic [4] 

IV. EXPERIMENTAL RESULTS 

In the preliminary study, a 2
k
 experimental design was 

performed to determine the statistically significant from five 

process variables which consist of the scanning height (A), 

scanning power # 1 (B), scanning power # 2 (C), beam shape 

(D) and scanning speed (E). The feasible ranges, the current 

operating condition and type of process variables are provided 

in Table III. 
 

TABLE III 

PROCESS VARIABLES, FEASIBLE RANGES AND THE CURRENT OPERATING 

CONDITION 

Process 
Variable 

Feasible Range 
Current Type 

Lower Upper 

A (10,9) (16,3) (13,6) Qualitative 

B 0.12 0.48 0.24 Quantitative 

C 0.18 0.72 0.36 Quantitative 

D 1 3 1 Qualitative 

E 100 300 300 Quantitative 

 

At this step, the objective of using a factorial experimental 

design is to analyze both main and interaction effects of all 

process variables. The 2
5
 experimental designs with two 

replicates provide 64 treatments. The two level of low and 

high were selected cover values of feasible ranges from the 

actual operating conditions in production line and the 

responses were measured from the meandering data average of 

each cutting line. By using a general linear model from the 

analysis of variance (ANOVA), sources of variation focusing 

on the main and interaction effects are shown in Table IV and 

the residual analysis for all model assumptions of the 

normality, independence and constant variance is shown in 

Fig. 4 [5]. The significant process variables or associated main 

effect consist of A, B, C and D as the p-value is less than at 

95% confidence interval.  

On the numerical experiments, SFLA parameters of number 

of frog and number of memeplexes were 10 and 2, 

respectively. The process variable of E is now fixed at the 

current operating condition of 300. The algorithmic 

procedures of the SFLA as shown in the pseudo code are then 

applied for statistically significant process variables of A, B, C 

and D to determine the most preferable levels to the response 

of meandering (Table V). In this study as mentioned before 

there are some qualitative influential process variables of A 

and D that need to be in forms of integer whereas the 

remaining influential process variables of B and C are 

quantitative. The feasible region of influential process 

variables including the limitation of integer for process 

variables of A and D are carefully considered throughout the 

process improvement of three iterations. 
 

TABLE IV 
PROCESS VARIABLES AND THEIR P-VALUES 

Process Variable P-value 

A 0.000 

B 0.000 

C 0.000 

D 0.000 

E 0.093 
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Fig. 4 Model adequacy checking 

 

From the process settings for all influential process 

variables in Table V, the performance after the improvement 

for three iterations of the SFLA can be evaluated from the 

meandering data. After an implementation, it has been found 

that the average of the response from the new operating 

condition (NEW) is lower than the current manufacturing 

system (CUR) as described in a box-whisker plot (Fig. 5). 

ANOVA is applied to confirm experimental results in which a 

response of the meandering tolerance is measured under both 

operating conditions. It can also be seen that these 

experimental results on both scenarios were statistically 

significant with 95% confidence interval. The numerical 

results suggested that NEW provided the better performance 
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in terms of the average meandering tolerance. The goodness of 

the linear statistical model via experimental errors or residuals 

is also adequate. As the results, NEW is then applied to the 

manufacturing system under a consideration of the reduction 

of meandering tolerance achieved. 
 

TABLE V 
PREFERABLE LEVELS OF INFLUENTIAL PROCESS VARIABLE FROM THE 

CURRENT AND NEW SCENARIOS 

Process 

Variable 
Description 

Feasible Range 

Lower Upper 

A Scanning Height (13,6) (13,6) 

B Scanning Power 1 0.24 0.41 

C Scanning Power 2 0.36 0.50 

D Beam Shape 1 1 
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Fig. 5 Box-Whisker plot of meandering data from both scenarios 

V. CONCLUSIONS AND DISCUSSIONS 

From the SFLA, there are some qualitative process 

variables that need to be in forms of integer whereas the 

remaining variables are quantitative and one is fixed at the 

current operating condition. The experiments in this research 

were restricted to only three iterations. Consequently 

conclusions may not be the global process optimum. From the 

new process settings for all influential process variables 

shown in Table V, the process performance after the 

improvement can be evaluated from the defect and it brings 

the meandering close to the target and within specification. 

The tolerance is changed from 5.82899 microns to 3.16413 

microns. Consequently, this reduces the level of production 

cost and also time and labor. 
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