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Abstract – A new approach based on the consideration that 
electroencephalogram (EEG) signals are chaotic signals was 
presented for automated diagnosis of electroencephalographic 
changes. This consideration was tested successfully using the 
nonlinear dynamics tools, like the computation of Lyapunov 
exponents. This paper presented the usage of statistics over the set of 
the Lyapunov exponents in order to reduce the dimensionality of the 
extracted feature vectors. Since classification is more accurate when 
the pattern is simplified through representation by important features, 
feature extraction and selection play an important role in classifying 
systems such as neural networks. Multilayer perceptron neural 
network (MLPNN) architectures were formulated and used as basis 
for detection of electroencephalographic changes. Three types of  
EEG signals (EEG signals recorded from healthy volunteers with 
eyes open, epilepsy patients in the epileptogenic zone during a 
seizure-free interval, and epilepsy patients during epileptic seizures) 
were classified. The selected Lyapunov exponents of the EEG signals 
were used as inputs of the MLPNN trained with Levenberg-
Marquardt algorithm. The classification results confirmed that the 
proposed MLPNN has potential in detecting the 
electroencephalographic changes. 

Keywords – Chaotic signal, Electroencephalogram (EEG) 
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I. INTRODUCTION 

The electroencephalogram (EEG) signals reflect the 
electrical activity of the brain. The study of the brain electrical 
activity, through the electroencephalographic records, is one 
of the most important tools for the diagnosis of neurological 
diseases [1], [2]. The traditional analysis relies, mainly, on the 
detection of spectral power changes, supervised by the visual 
inspection of the physician: different frequency bands are 
considered, and the corresponding spectral powers are 
computed, whose changes are related to both functions and 
disfunctions of the central nervous system [3], [4]. In many 
studies, the underlying systems generating the observed EEG 
signals are believed to be nonlinear or consisting of 
subsystems in which nonlinear mechanisms play an important 
role. Even when they are analyzed from healthy individuals, 
they manifest chaos in the nervous system [5], [6]. Linear 
modeling techniques, though they allow us to deal with 
simplified problems, can represent the underlying system only 
partially, without taking into account the nonlinear 
contribution. Even though fairly good results have been 
obtained using linear modeling techniques, they seem to 
provide only a limited amount of information about the signal 
because they ignore the underlying nonlinear signal dynamics 
[1], [3], [4].  In recent years, there has been an increasing 

interest in applying techniques from the domains of nonlinear 
analysis and chaos theory in studying the behavior of a 
dynamical system from an experimental time series such as 
EEG signals [5], [6]. The purpose of these studies is to 
determine whether dynamical measures especially Lyapunov 
exponents can serve as clinically useful parameters. 
Estimation of the Lyapunov exponents is computationally 
more demanding, but estimates of these parameters are more 
readily interpreted with respect to the presence of chaos, as 
positive Lyapunov exponents are the hallmark of chaos [7].      

Medical diagnostic decision support systems have become 
an established component of medical technology. The main 
concept of the medical technology is an inductive engine that 
learns the decision characteristics of the diseases and can then 
be used to diagnose future patients with uncertain disease 
states. Neural networks have been used in a great number of  
medical diagnostic decision support system applications 
because of the belief that they have greater predictive power 
[8], [9]. Various methodologies of automated diagnosis have 
been adopted, however the entire process can generally be 
subdivided into a number of disjoint processing modules: 
preprocessing, feature extraction/selection, and classification 
(Fig. 1). Signal/image acquisition, artefact removing, 
averaging, thresholding, signal/image enhancement and edge 
detection are the main operations in the course of 
preprocessing. The accuracy of signal/image acquisition is of 
great importance since it contributes significantly to the 
overall classification result. The markers are subsequently 
processed by the feature extraction module. Feature extraction 
methods are subdivided into: 1) statistical characteristics and 
2) syntactic descriptions. The module of feature selection is an 
optional stage, whereby the feature vector is reduced in size 
including only, from the classification viewpoint, what may be 
considered as the most relevant features required for 
discrimination. The classification module is the final stage in 
automated diagnosis. It examines the input feature vector and 
based on its algorithmic nature, produces a suggestive 
hypothesis [8]. 

In the present study, the computation of Lyapunov 
exponents was the basis for feature extraction from the EEG 
signals. More specifically, the EEG signals [10] were 
modelled using multilayer perceptron neural network 
(MLPNN). In order to reduce the dimensionality of the 
extracted feature vectors, statistics over the set of the 
Lyapunov exponents were used. The selected Lyapunov 
exponents defining the behavior of the EEG signals were used 
as inputs of the MLPNN. The MLPNN presented in this study 
was trained, cross validated and tested with the selected 
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Lyapunov exponents of the EEG signals (set A - EEG signals
recorded from healthy volunteers with eyes open, set D - EEG
signals recorded from epilepsy patients in the epileptogenic
zone during a seizure-free interval, and set E - EEG signals
recorded from epilepsy patients during epileptic seizures). In
order to improve convergence rate, the presented MLPNN
trained with the Levenberg-Marquardt algorithm.

Fig. 1. Functional modules in a typical computerized
electroencephalographic system

II. LYAPUNOV EXPONENTS

Lyapunov exponents are a quantitative measure for
distinguishing among the various types of orbits based upon
their sensitive dependence on the initial conditions, and are 
used to determine the stability of any steady-state behavior,
including chaotic solutions. The reason why chaotic systems
show aperiodic dynamics is that phase space trajectories that
have nearly identical initial states will separate from each 
other at an exponentially increasing rate captured by the so-
called Lyapunov exponent [11], [12]. This is defined as 
follows. Consider two (usually the nearest) neighboring points
in phase space at time 0 and at time , distances of the points
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The existence of a positive Lyapunov exponent indicates
chaos. This shows that any neighboring points with
infinitesimal differences at the initial state abruptly separate
from each other in the i -th direction. In other words, even if
the initial states are close, the final states are much different.
This phenomenon is sometimes called sensitive dependence
on initial conditions. Numerous methods for calculating the 
Lyapunov exponents have been developed during the past
decade. Generally, the Lyapunov exponents can be estimated 
either from the equations of motion of the dynamic system (if
it is known), or from the observed time series. The latter is 
what is of interest due to its direct relation to the work in this
paper. The idea is based on the well-known technique of state
space reconstruction with delay coordinates to build a system
with Lyapunov exponents identical to that of the original
system from which our measurements have been observed.
Generally, Lyapunov exponents can be extracted from
observed signals in two different ways. The first is based on
the idea of following the time-evolution of nearby points in
the state space. This method provides an estimation of the
largest Lyapunov exponent only. The second method is based
on the estimation of local Jacobi matrices and is capable of 
estimating all the Lyapunov exponents. Vectors of all the
Lyapunov exponents for particular systems are often called
their Lyapunov spectra [11], [12].
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III. EXPERIMENTAL RESULTS

A. Feature Extraction by Computing Lyapunov Exponents

Selection of the artificial neural network (ANN) inputs is 
the most important component of designing the neural
network based on pattern classification since even the best
classifier will perform poorly if the inputs are not selected
well. Input selection has two meanings: 1) which components
of a pattern, or 2) which set of inputs best represent a given
pattern. A rectangular window, which was formed by 256
discrete data, was selected so that it contained a single EEG
segment. For each EEG segment, 128 Lyapunov exponents
were computed. The following statistical features were used to 
reduce the dimensionality of the Lyapunov exponents:

1. Mean of the absolute values of the Lyapunov
exponents in each segment.

2. Maximum of the absolute values of the Lyapunov
exponents in each segment.

3. Average power of the Lyapunov exponents in each 
segment.

4. Standard deviation of the Lyapunov exponents in
each segment.

5. Distribution distortion of the Lyapunov exponents in
each segment.

Features 1-5 represent the Lyapunov exponents
distribution of the EEG signals. These feature vectors
calculated for each segment were used for classification of the
EEG signals. 
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B. Application of MLPNN to EEG Signals

ANN architectures are derived by trial and error and the
complexity of the neural network is characterized by the
number of hidden layers. There is no general rule for selection
of appropriate number of hidden layers. A neural network with
a small number of neurons may not be sufficiently powerful to
model a complex function. On the other hand, a neural
network with too many neurons may lead to overfitting the
training sets and lose its ability to generalize which is the main
desired characteristic of a neural network. The most popular
approach to finding the optimal number of hidden layers is by
trial and error. In the present study, after several trials it was 
seen that two hidden layered network achieved the task in high
accuracy. The most suitable network configuration found was 
10 neurons for each hidden layer. In the hidden layers and the
output layer, sigmoidal function was used, which introduced
two important properties. First, the sigmoid is nonlinear,
allowing the network to perform complex mappings of input
to output vector spaces, and secondly it is continuous and
differentiable, which allows the gradient of the error to be
used in updating the weights. The MLPNN was trained by 
using the Levenberg-Marquardt algorithm. For the Levenberg-
Marquardt algorithm, the Marquardt parameter ( ) was set to 

0.01. The MLPNN was implemented by using the MATLAB
software package (MATLAB version 6.5 with neural networks
toolbox).

The Lyapunov exponents of the typical segment of EEG
signals (set A - EEG signals recorded from healthy volunteers
with eyes open, set D - EEG signals recorded from epilepsy 
patients in the epileptogenic zone during a seizure-free 
interval, and set E - EEG signals recorded from epilepsy
patients during epileptic seizures) are given in Fig. 2(a)-(c),
respectively. It can be noted that the Lyapunov exponents of
the three types of EEG signals are different from each other.
From Fig. 2(a) one can see that all the Lyapunov exponents
are positive, which confirm the chaotic nature of the EEG 
signals recorded from healthy volunteers with eyes open. As it
is seen from Fig. 2(b) and 2(c) there are positive Lyapunov
exponents, which confirm the chaotic nature of the EEG 
signals recorded from epilepsy patients in the epileptogenic
zone during a seizure-free interval and epilepsy patients
during epileptic seizures. There is a significant increase in the
largest Lyapunov exponent values of the EEG signals
recorded from epilepsy patients in the epileptogenic zone
during a seizure-free interval comparing with the largest
Lyapunov exponent values of the EEG signals recorded from
healthy volunteers with eyes open and epilepsy patients during
epileptic seizures. The Lyapunov exponents were computed
using the MATLAB software package.

The feature vectors were calculated as explained in
section 3.1. For the three diagnostic classes (set A - EEG
signals recorded from healthy volunteers with eyes open, set D 
- EEG signals recorded from epilepsy patients in the
epileptogenic zone during a seizure-free interval, and set E -
EEG signals recorded from epilepsy patients during epileptic
seizures) training and test sets were formed by 1200 vectors
(400 vectors from each class) of 5 dimensions (selected
Lyapunov exponents).
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Fig. 2. Lyapunov exponents of the EEG segments (a) set A
(EEG signals recorded from healthy volunteers with eyes 
open), (b) set D (EEG signals recorded from epilepsy patients
in the epileptogenic zone during a seizure-free interval), (c) set
E (EEG signals recorded from epilepsy patients during
epileptic seizures) 
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The adequate functioning of ANN depends on the sizes of 
the training set and test set. The 600 vectors (200 vectors from 
each class) were used for training and the 600 vectors (200 
vectors from each class) were used for testing. A practical way 
to find a point of better generalization is to use a small 
percentage (around 20%) of the training set for cross 
validation. For obtaining a better network generalization 120 
vectors (40 vectors from each class) of training set, which 
were selected randomly, were used as cross validation set. 
Beside this, in order to enhance the generalization capability 
of the MLPNN, the training and the test sets were formed by 
data obtained from different subjects. For all of the segments, 
waveform variations were observed among the vectors 
belonging to the same class. When the error in the cross 
validation increased, the training was stopped because the 
point of best generalization had been reached. The MLPNN 
was trained in 700 epochs.    

The outputs of the MLPNN were represented by unit basis 
vectors:
[0 0 1] = healthy segments 
[0 1 0] = seizure free epileptogenic zone segments 
[1 0 0] = epileptic seizure segments 

The test performance of the MLPNN was determined by 
the computation of the following statistical parameters: 
Specificity: number of correct classified healthy segments / 
number of total healthy segments  
Sensitivity (seizure free epileptogenic zone segments): number 
of correct classified seizure free epileptogenic zone segments / 
number of total seizure free epileptogenic zone segments  
Sensitivity (epileptic seizure  segments): number of correct 
classified epileptic seizure segments / number of total epileptic 
seizure segments  
Total classification accuracy: number of correct classified 
segments / number of total segments 

The values of these statistical parameters are given in 
Table I. As it is seen from Table I, the MLPNN classified 
healthy segments, seizure free epileptogenic zone segments 
and epileptic seizure segments with the accuracy of 96.50%, 
95.50% and 97.00%, respectively. The healthy segments, 
seizure free epileptogenic zone segments and epileptic seizure 
segments were classified with the accuracy of 96.33%. 

TABLE I 
THE VALUES OF STATISTICAL PARAMETERS 

Statistical parameters Values 
Specificity 96.50%
Sensitivity (seizure free epileptogenic  
zone segments) 

95.50% 

Sensitivity (epileptic seizure segments) 97.00% 
Total classification accuracy 96.33%

IV. CONCLUSION 

For pattern processing problems to be tractable requires 
the conversion of patterns to features, which are condensed 
representations of patterns, ideally containing only salient 
information. Feature selection provides a means for choosing 
the features which are best for classification, based on various 
criteria. In the present study, feature extraction from the EEG 

signals was performed by the computation of Lyapunov 
exponents which determines the chaotic nature of the EEG 
signals. The dimensionality of the extracted feature vectors 
was reduced by the usage of statistics over the set of the 
Lyapunov exponents. The selected features were used as the 
inputs of the MLPNN trained with the Levenberg-Marquardt 
algorithm. The conclusions drawn in the applications 
demonstrated that the Lyapunov exponents are the features 
which are best representing the EEG signals and by the usage 
of the selected Lyapunov exponents best distinction between 
classes can be obtained. 
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