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Abstract—This paper presents an overview of the methodologies 
and algorithms for statistical texture analysis of 2D images. Methods 
for digital-image texture analysis are reviewed based on available 
literature and research work either carried out or supervised by the 
authors.
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I. INTRODUCTION 

EXTURE is a property that represents the surface and 
structure of an Image. Generally speaking, Texture can be 

defined as a regular repetition of an element or pattern on a 
surface.

Image textures are complex visual patterns composed of 
entities or regions with sub-patterns with the characteristics of 
brightness, color, shape, size, etc. An image region has a 
constant texture if a set of its characteristics are constant, 
slowly changing or approximately periodic [1]. Texture can be 
regarded as a similarity grouping in an image [2]. 

II. TEXTURE ANALYSIS 

Because texture has so many different dimensions, there is 
no single method of texture representation that is adequate for 
a variety of textures. Here, we provide a brief description of a 
number of texture analysis techniques and some examples.  

Texture analysis is a major step in texture classification, 
image segmentation and image shape identification tasks. 
Image segmentation and shape identification are usually the 
preprocessing steps for target or object recognition in an 
image. 

Texture analysis refers to a class of mathematical 
procedures and models that characterize the spatial variations 
within imagery as a means of extracting information. Texture 
is an areal construct that defines local spatial organization of 
spatially varying spectral values that is repeated in a region of 
larger spatial scale. Thus, the perception of texture is a 
function of spatial and radiometric scales.  

 G.N.Srinivasan is Assistant Professor with the Information Science and 
Engineering Department, R.V.College of Engineering, Bangalore-59, 
Karnataka, India (phone : +91-80-67178086, e-mail: gnsri@yahoo.com). 

 Shobha G., PhD, is Director with the Master of Computer Applications 
Department, R.V.College of Engineering, Bangalore-59, Karnataka, India
(phone : +91-80-67178086, e-mail: shobhatilak@rediffmail.com). 

Descriptors providing measures of properties such as 
smoothness, coarseness and regularity are used to quantify the 
texture content of an object. 

Since an image is made up of pixels, texture can be defined 
as an entity consisting of mutually related pixels and group of 
pixels. This group of pixels is called as texture primitives or 
texture elements (texels). 

III. APPROACHES TO TEXTURE ANALYSIS 

Mathematical procedures to characterize texture fall into 
two major categories, 

1. Statistical and
2. Syntactic

Statistical approaches compute different properties and are 
suitable if texture primitive sizes are comparable with the 
pixel sizes. These include Fourier transforms, convolution 
filters, co-occurrence matrix, spatial autocorrelation, fractals, 
etc.

Syntactic and hybrid (Combination of statistical and 
syntactic) methods are suitable for textures where primitives 
can be described using a larger variety of properties than just 
tonal properties; for example shape description. Using these 
properties, the primitives can be identified, defined and 
assigned a label. For gray-level images, tone can be replaced 
with brightness. 
This papers discusses some of the statistical approaches for 
texture analysis  

IV. STATISTICAL APPROACHES 

Statistical methods analyze the spatial distribution of gray 
values, by computing local features at each point in the image, 
and deriving a set of statistics from the distributions of the 
local features [3]. The reason behind this is the fact that the 
spatial distribution of gray values is one of the defining 
qualities of texture.  

Depending on the number of pixels defining the local 
feature, statistical methods can be further classified into first-
order (one pixel), second-order (two pixels) and higher-order 
(three or more pixels) statistics [3]. The basic difference is that 
first-order statistics estimate properties (e.g. average and 
variance) of individual pixel values, ignoring the spatial 
interaction between image pixels, whereas second- and higher-
order statistics estimate properties of two or more pixel values 
occurring at specific locations relative to each other.  
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Statistical approaches yield characterizations of textures as 
fine, coarse etc. Thus one measure of texture is based on the 
primitive size, which could be the average area of these 
primitives of relatively constant gray level. The average could 
be taken over some set of primitives to measure its texture or 
the average could be about any pixel in the image. If the 
average is taken within a primitive centered at each pixel in 
the image, the result can be used to produce a texture image in 
which a large gray level at a pixel indicates, for example, that 
the average primitive size is large in a region around that pixel 

The average shape measure of these primitives, such as 
P2/A, where P is the perimeter and A is the area of the 
primitive could also be used as texture measure. 

4.1 First-order statistics based approach 
First order texture measures are statistics calculated from 

the original image values, like variance, and do not consider 
pixel neighborhood relationships 

Histogram based approach to texture analysis is based on 
the intensity value concentrations on all or part of an image 
represented as a histogram. Common features include 
moments such as mean, variance, dispersion, mean square 
value  or average energy, entropy, skewness and kurtosis.  

Variance in the gray level in a region in the neighborhood of 
a pixel is a  measure of the texture. For example in a 5 X 5 
region, the variance is 
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Where s and t are the positional differences in the x, y 
direction However, the Standard Deviation could also be used 
instead of variance. 

The histogram of intensity levels is thus a concise and 
simple summary of the statistical information contained in the 
image. Calculation of the grey-level histogram involves single 
pixels. Thus the histogram contains the first-order statistical 
information about the image (or its fragment). Dividing the 
values h(i) by the total number of pixels in the image one 
obtains the approximate probability density of occurrence of 
the intensity levels. 

The histogram can be easily computed from the image. The 
shape of the histogram provides many clues to the 
characteristics of the image. For example, a narrowly 
distributed histogram indicated the low-contrast image. A 
bimodal histogram often suggests that the image contained an 
object with a narrow intensity range against a background of 
differing intensity. Different useful parameters (image 
features) can be worked out from the histogram to 
quantitatively describe the first-order statistical properties of 
the image. 

Texture analysis based solely on the gray level histogram 
suffers from the limitation that it provides no information 
about the relative position of pixels to each other. For 

example, 2 completely different images each with a 50% black 
and 50% white pixels (such as a checkerboard and a Salt & 
Pepper noise pattern) may produce the same gray level 
histogram. Therefore we cannot distinguish between them 
using first order statistical analysis. 

4.2 Spatial frequencies based Texture Analysis 
Image texture can also be represented as a function of the 

tonal and structural relationships between the primitives. Tone 
is based mainly on pixel intensity (gray values) properties in 
the primitives while the structure is the spatial (location) 
relationship between the primitives. 

Each pixel can be characterized by its tonal and location 
properties. A texture primitive is a contiguous set of pixels 
with some tone and/or local property and can be described by 
its average intensity, maximum and minimum intensity, size, 
shape etc. The spatial relationship between the primitives can 
be random or can be pair wise dependent or some number of 
primitives can be mutually dependent. Image texture is thus 
defined as the number and types of primitives (texels) and 
their spatial relationships. Texture always displays both tone 
and structure. Texture tone and structure are not independent. 
Tone can be considered as tonal properties of primitives 
considering primitive spatial relationship also. Similarly 
Structure refers to spatial relationship considering their tonal 
properties as well. 

However, it is to be noted that the same number and same 
type of primitives does not necessarily give the same texture 
(Fig 1a and 1b). Similarly, the same spatial relationship does 
not guarantee same texture (Fig 1a and 1c). 

Fig. 1 Artificial Structures 
Depending on the primitive’s tonal and structure 

characteristics textures can be classified as Fine texture and 
coarse texture.  

A fine texture characteristic is that the primitives in the 
image are small and the tonal difference between neighboring 
primitives is large such as a mixture of salt and pepper. A 
coarse texture results when the texture primitives are larger 
and consist of several pixels. However, coarse/fine texture 
characteristics are relative terms.  

The strength of a texture can be described by the frequency 
of primitives appearing in the neighborhood. A weak texture is 
one with small spatial interaction between primitives and can 
be described by the low frequency pattern of primitives 
appearing in some neighborhood.  In strong textures, the 
spatial relationship between primitives is usually regular 

Another measure of texture is based on run length. For this, 
the number of intensity levels in an image needs to be limited 
using one or more thresholds. Then the image is scanned line 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4295

by line. The length of line in pixels is noted. Then the 
relationship between the run lengths is identified. The 
relationship and the statistical parameters of all these run 
length gives a pattern. This pattern is a measure of the texture. 
For example, the average of all the line lengths (in pixels) in a 
region is a measure of coarseness of the texture. The Statistical 
distributions, like variance in the length of lines of a specific 
threshold could be used to detect subtle differences in the 
texture. The relative sequences such as frequency of 
appearance of line length of threshold 2 followed by a line 
length of threshold 5 could also be used depending on how 
these features vary amongst the texture classes to be 
discriminated or identified. 

An extension of the above process into two dimensions, i.e. 
from line measure to an area measure will give spatial 
frequency of gray values. Spatial frequency is a measure of the 
repetitive placement of identical texture elements (texels) in 
the image. Spatial frequency gives spatial distribution of gray 
values.  

One method of measuring spatial frequency is to evaluate 
the autocorrelation function of a texture. The autocorrelation 
function of an image can be used to assess the amount of 
regularity as well as the fineness/coarseness of the texture 
present in the image. 

In an autocorrelation model, texture spatial organization is 
described by the correlation coefficient that evaluates linear 
spatial relationship between primitives.  

In the following, we will use  
10,0),,({ NyNxyx

to denote an N X N image with G gray levels. Formally, the 
autocorrelation function of an image I(x, y) is defined as in Eq 
(3) 
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Where x, y is the positional differences in the u, v direction. 
If the texture primitives are relatively large, the 
autocorrelation function value decreases slowly with 
increasing distance, while it decreases rapidly if texture 
consists of small primitives. If primitives are placed 
periodically in a texture, the autocorrelation increases and 
decreases periodically with distance. 

4.3 Co-occurrence matrices 
Spatial gray level co-occurrence estimates image properties 
related to second-order statistics which considers the 
relationship among pixels or groups of pixels (usually two).  

Haralick [4] suggested the use of gray level co-occurrence 
matrices (GLCM) which have become one of the most well-
known and widely used texture features. This method is based 
on the joint probability distributions of pairs of pixels. GLCM 
show how often each gray level occurs at a pixel located at a 
fixed geometric position relative to each other pixel, as a 

function of the gray level. The (1,3) entry in a matrix for right 
neighbors, for example, would show the frequency or 
probability of finding gray level 3 immediately to the right of 
pixel with gray level 1. 

Fig 2 shows 3 X 3 image and its 4 gray level co-occurrence 
matrices. The number of threshold levels is 4. The 2 in the co-
occurrence matrix indicates that there are two occurrences of a 
pixel with gray level 3 immediately to the right of pixel with 
gray level 1.  

 1 2 3 4 
 1 0 0 2 1 

1 3 2  2 1 0 0 0 
3 1 3  3 1 0 0 0 

i j 2 1 4  4 0 1 0 0 
(a)

Template 
(b) 

Original 
image 

(c)
Co-occurrence 

matrix 
Fig 2 

The size of co-occurrence matrix will be the number of 
threshold levels. When we consider neighboring pixels, the 
distance between the pair of pixels is 1. However, each 
different relative position between the two pixels to be 
compared creates a different co-occurrence matrix.  

If the edges between the neighboring elements (texels) are 
slightly blurred, nearby neighbors may be very similar in gray 
level, even near the edges of the texels. In such cases it will be 
better to base the co-occurrence matrix on more distant 
neighbors. For example, the matrix entry mij could represent 
the number of times gray level j was found 3 pixels to the right 
of gray level i in the region.  

Rather than using gray level co-occurrence matrix directly 
to measure the textures of images and regions, the matrices 
can be converted into simpler scalar measures of texture. For 
example, in an image where the gray level varies gradually, 
most of the non-zero entries for the right neighbors will be 
near the main diagonal because the gray levels of neighboring 
pixels will be nearly equal. A way of quantifying the lack of 
smoothness in an image is to measure the weighted average 
absolute distance d of the matrix entries from the diagonal of 
the matrix. 

The example in Fig 3 is for a gradually changing vertical 
edge and hence all the non-zero entries tend to concentrate 
towards the diagonal with the result |i-j| = 0 for each entry and 
d = 0 for all the entries. 
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Where i, j are the size (No. of rows and columns) of the co-
occurrence matrix and d is the absolute distance of the matrix 
entries from the diagonal of the matrix. 

If the neighbors tend to have very different gray levels, most 
of the entries will be far from the diagonal and the value of d 
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will be large, which indicates an uneven edge which can be 
used to represent a terrain (Haralick) 

0 1 2 3 4 
0 1 2 3 4 0 0 1 0 0 0 

  1 0 0 1 0 0 
  2 0 0 0 1 0 
  3 0 0 0 0 1
  4 0 0 0 0 0 

Fig 3a : Original 
Matrix (Picture) with 
Gradual Variation in 
horizontal gray level  

Fig 3b : Co-occurrence 
matrix; Non-Zero entries 
concentrated near the main 
diagonal 

4.4 Edge frequency based Texture Analysis 
The total length of all the edges in a region could also be 

used as a measure of the coarseness or complexity of a texture. 
Edges can be detected either as micro edges using small edge 
operator masks or as micro edges using large masks [5]. 
Operators like Robert’s operator or sobel’s operator can be 
used for this purpose. Using gradient as a function of distance 
between pixels is another option [6]. The distance dependent 
texture description function g(d) can be computed for any sub-
image f defined in a neighborhood N for a variable distance d 
is

g (d) = |F0-F1| + |F0-F2| + |F0-F3| + |F0-F4|  (5) 

Where F0 = f (i, j), F1 = f (i+d, j) 

 F2 = f (i-d, j) F3 = f (i, j+d) and 

 F4 = f (i, j-d) 

The function g(d) is similar to the negative autocorrelation 
function, its minimum corresponds to the maximum of the 
autocorrelation function and its maximum corresponds to the 
autocorrelation minimum. 

Dimensionality of the texture description feature space is 
given by the number of distance values d used to compute the 
edge gradient. 

Several edge properties may be derived from first order and 
second-order statistics of edge distributions [7]. They are 

Coarseness : Edge density is a measure of coarseness. The 
finer the texture, the higher the number of edges present in the 
texture edge image. 

Contrast : High-Contrast textures are characterized by large 
edge magnitude. 

Randomness : Randomness may be measured as entropy of 
the edge magnitude histogram. 

Directivity : An approximate measure of directivity may be 
determined as entropy of the edge direction histogram. 
Directional textures have a significant number of histogram 
peaks, directionless textures have a uniform edge direction 
histogram. 

Linearity : Texture linearity is indicated by co-occurrence of 
edge pairs with the same edge direction at constant distances 
and edges are positioned in the edge directions 

Periodicity : Texture periodicity can be measured by co-
occurrence of edge pairs of the same direction at constant 
distance in a direction perpendicular to the edge directions 

Size : Texture size measure may be based on co-occurrences 
of edge pairs with opposite edge directions at constant 
distance in a direction perpendicular to the edge directions 

The first three measures are derived from first order 
statistics and the last three are derived from the second order 
statistics.

Another approach to texture recognition involves detection 
of borders between homogeneous textured regions. A 
hierarchical algorithm for textured image segmentation is 
described in [8] and a two-stage contextual classification and 
segmentation of texture, based on a coarse-to-fine principle of 
edge detection is given in [9] 

4.5 primitive length texture analysis 
A texture can be described by the features of gray level, 

length and direction of the pixels and primitives. The direction 
in the above can be described as the continuous probabilities 
of length and the gray-level of primitives in the texture.  

Thus the texture description features can be based on the 
continuous probabilities of length and the gray-level of 
primitives in the texture. [10]. The steps are as below, 

1. Find primitives of all gray levels, all lengths and all
directions in the texture image. 

2. Compute the texture features

4.6 law’s texture energy measures 
Image texture has a number of perceived qualities which 

play an important role in describing texture. Laws [11] 
identified the following properties as playing an important role 
in describing texture: uniformity, density, coarseness, 
roughness, regularity, linearity, directionality, direction, 
frequency, and phase. 

Laws texture energy measures determine texture properties 
by assessing Average Gray Level, Edges, Spots, Ripples and 
Waves in texture. The measures are derived from three simple 
vectors. L3 = (1,2,3) which represents averaging; E3 = (-1,0,1) 
calculating first difference (edges); and S3 = (-1,2,-1) 
corresponding to the second difference (spots). After 
convolution of these vectors with themselves and each other, 
five vectors result: 

Level  L5 =  [1, 4, 6,  4, 1] 
Edge  E5 =  [-1,-2, 0, 2, 1] 
Spots  S5 =  [-1, 0, 2, 0,-1] 
Ripples R5 =  [1, -4, 6,-4, 1] 
Waves W5 =  [-1, 2, 0,-2,-1] 

Mutual Multiplying of these vectors, considering the first 
term as a column vector and the second term as row vector, 
results in 5 X 5 Matrix known as Law’s Masks.  

By convoluting the Law’s Mask with Texture image and 
calculating energy statistics, a feature vector is derived that 
can be used for texture description. 
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Fractal based texture analysis was introduced in [12]. 
Fractals measure geometric complexity, which could be used 
to describe many spatial patterns of textures [13]. 
Conceptually, the word `fractal' refers to complex patterns that 
recur at various scales but are independent of scales. Since 
most textures involve patterns with certain degree of self-
similarity at different scales, fractal metrics could provide 
measures of these patterns for texture description. Fractal 
dimension is the defining property in the study of textual 
analysis.

Intuitively, the fractal dimension is a statistical quantity that 
gives a global description of how complex or how irregular a 
geometric object is. The fractal dimension D of any object in 
2D space is in the range of 0 - D - 2. A point has a fractal 
dimension of 0, any smooth curve has a fractal dimension of 1, 
and a completely filled rectangle has a fractal dimension of 2, 
which are the same as their integer topological dimensions. 
Irregular sets have a fractional dimension between 0 and 2. 
Most man-made geometric objects have an integer fractal 
dimension D, while most objects in nature have a fractional 
fractal dimension. It has been found that textures in nature do 
encode fractal dimension, information which reflects the 
irregularity of textures. Hence the fractal dimension gives a 
measure of the roughness of a surface. Intuitively, the larger 
the fractal dimension, the rougher the texture is. 

4.8 Other statistical methods 
A powerful tool for structural texture analysis is provided by 

mathematical morphology. The mathematical morphology 
approach looks for spatial repetitiveness of shapes in a binary 
image using structure primitives. Thus this approach stresses 
the shape properties of the texture primitives. Due to the 
assumption of the binary textured images, this approach is 
often successful for granulated materials, which can be 
segmented by thresholding. 

The texture transform represents another approach for 
texture analysis. The general idea is to construct an image I 
where the pixels I(x,y) describe a texture in some 
neighborhood of the pixel f(i, j) in the original textured image 
f. In addition, a priori knowledge can be used to guide the
transformation and subsequent texture recognition and 
segmentation. 

Another method used for texture analysis is Auto regression 
Method. In this method, Linear estimates of gray levels in 
texture pixels are used for texture description. Pixel gray 
levels are estimated from gray-levels in their neighborhood. 
The model give consistent results for coarse structures though 
it may vary substantially for fine structures [14]. 

The peak and Valley Method is based on detection of local 
extrema of the brightness function in vertical and horizontal 
scans of a texture image. Fine structures have a large number 
of small sized extrema , coarse textures have a smaller number 
of larger sized local extrema – Higher peaks and deeper 
valleys.  

A modified peak and valley approach is to consider the 
sequence of peaks and valleys above as a Markov Chain in 

which the transition probabilities of an mth order chain 
represent (m-1)th order Statistics of textures [15] 

Texture description is highly scale dependant. To decrease 
the scale sensitivity, a texture may be described in multiple 
resolutions and an appropriate scale may be chosen to achieve 
the maximum texture discrimination. 

For calculating multiscale features, various time-frequency 
methods known as spectral methods are adopted. The most 
commonly used are Fourier, Gabor functions, and wavelet 
transforms. 

Fourier [16], Gabor [17], [18] and wavelet transforms [19], 
[20], [21] represent an image in a space whose co-ordinate 
system has an interpretation that is closely related to the 
characteristics of a texture (such as frequency or size).  

Methods based on the Fourier transform perform poorly in 
practice, due to its lack of spatial localization. Gabor filters 
provide means for better spatial localization; however, their 
usefulness is limited in practice because there is usually no 
single filter resolution at which one can localize a spatial 
structure in natural textures. Compared with the Gabor 
transform, the wavelet transforms feature several advantages 
make the wavelet transform attractive for texture 
segmentation. They are: 

– Varying the spatial resolution allows it to represent
textures at the most suitable scale, 

– There is a wide range of choices for the wavelet
function, so one is able to choose wavelets best suited for 
texture analysis in a specific application. 

Many of the texture description methods mentioned above 
are interrelated. The Fourier, Gabor, Wavelet transforms, auto-
regression and auto-correlation models represent the same 
subset of second order statistics. 

Though identical second order statistics do not guarantee 
identical textures, higher than second order statistics contain 
little information that can be used for texture discrimination. 

V. CONCLUSION 

This article mainly discussed various statistical approaches 
of image texture description and analysis. There are 3 
principal statistical approaches used in image processing to 
describe the texture of a region: Basic or First Order, structural 
or Second Order and spectral approaches. 

The Basic Statistical approaches yield characterizations of 
textures as smooth, coarse, grainy, and so on. One of the 
simplest approaches for describing texture is to use moments 
of the gray-level histogram of an image or region. 

Structural approaches deal with the arrangement of image 
primitives. They use a set of predefined texture primitives and 
a set of construction rules to  define how a texture region is 
constructed with the primitives and the rules. 

Spectral approaches to texture analysis techniques are based 
on properties of the Fourier spectrum, Gabor and wavelet 
based  and are used primarily to detect global periodicity in an 
image by identifying high energy, narrow peaks in the 
spectrum. Spectral techniques are ideally suited for describing 
the directionality of periodic or almost periodic 2-D Patterns 
in an image. 

4.7 Fractal based texture analysis 
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