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Static and Dynamic Analysis of Hyperboloidal Helix
Having Thin Walled Open and Close Sections
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Abstract—The static and dynamic analyses of hyperboloidal
helix having the closed and the open square box sections are
investigated via the mixed finite element formulation based on
Timoshenko beam theory. Frenet triad is considered as local
coordinate systems for helix geometry. Helix domain is discretized
with a two-noded curved element and linear shape functions are used.
Each node of the curved element has 12 degrees of freedom, namely,
three translations, three rotations, two shear forces, one axial force,
two bending moments and one torque. Finite element matrices are
derived by using exact nodal values of curvatures and arc length and
it is interpolated linearly throughout the element axial length. The
torsional moments of inertia for close and open square box sections
are obtained by finite element solution of St. Venant torsion
formulation. With the proposed method, the torsional rigidity of
simply and multiply connected cross-sections can be also calculated
in same manner. The influence of the close and the open square box
cross-sections on the static and dynamic analyses of hyperboloidal
helix is investigated. The benchmark problems are represented for the
literature.

Keywords—Hyperboloidal helix, squared cross section, thin
walled cross section, torsional rigidity

1. INTRODUCTION

ELICOIDAL bars are important and frequently used

members in civil engineering, mechanical engineering
and biomechanics. They have many different forms other than
their well known standard form. They have the ability to
absorb energy while deforming. Although a tremendous
amount of theoretical and numerical studies exists on the
static/dynamic analyses of elastic helixes, it can be observed
that only helices with limited number of cross-sections (e.g.,
circular and rectangular) were considered. The static analysis
with rectangular cross-section [1]-[3], and, the dynamic
analysis with circular cross section [4]-[7], thin-thick walled
circular cross section [8], and rectangular cross-section [9] are
studied.

It is straightforward to calculate the torsional rigidity of
helices having a circular cross section. In the case of non-
circular geometries, some special treatments have to be used
to determine the torsional rigidity. It is possible to find some
analytical formulas in the literature expressing the torsional
moment of inertia for various arbitrary cross-sections like
rectangular, ellipse and equilateral triangle [10]. Some
approximated analytical formulas [11], [12] and numerical
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solutions such as finite difference [13], [14], finite element
(FE) [15]-[20], and boundary element methods also exist [21],
[22].

In this study, the effects of the noncircular cross-sections on
the static and dynamic behavior of hyperboloidal helix are
considered. The torsional rigidities of used cross-sections are
calculated by FE solution of Poisson's equation proposed by
[20]. The mixed FE formulation comprising the Timoshenko
beam theory is employed. As a numerical investigation, the
influence of the cross-sections and the boundary conditions on
the static and dynamic analyses of the hyperboloidal helix is
performed via the mixed FE method.
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Fig. 1 Hyperboloidal helix and cross-sections

II. FORMULATION

A. Helix Geometry and Functional

The geometrical properties of the helix are x =R (¢)cos¢ ,
y=R(p)sing, z=p(p)p, p(p)=R(p)tana, where
denotes the pitch angle, R(p) and p(p) signify the

centerline radius and the step for unit angle, respectively, of
the helix as a function of the horizontal angle ¢ . By letting

c(p)=+/R*(p)+ p*(p) , the infinitesimal arc length becomes
ds = c(¢p)de . In the case of a hyperboloidal helix, its radius

R@=R_+R_—R _)(1-p/nz) (1)

where R and R . are the bottom radius and the central

radius, respectively (see Fig. 1).
The field equations for the elastic circular and non-circular
helices, which are based on Timoshenko beam theory and
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refer to the Frenet coordinate system, exist in [20], these
equations can be written in the form

-T,—q+pAu=0
X - @
-M —txT—m+pIQ=0
u +txQ-CT=0
)
Q -CM=0
where  u(u,,u,,u,) is the displacement vector,

Q(02,,02,,0,) is the rotational vector, T (T,,T,,T,) is the
force vector, M(M,,M,,M,) is the moment vector.ii and

Q are the accelerations of the displacement and rotations. p
is the material density. A is the area of the cross section, I is
the moments of inertia, C, and C, are compliance matrices. q
and m are the distributed external force and moment vectors,
respectively. In the dynamic analysis, the motion is considered
as harmonic and the conditions q=m =0 are satisfied.

Incorporating Gateaux differential with potential operator
concept [23] yields the functional in terms of (2), (3)

I(y)=~

dT dM 1
u,g}+[th,T]71E,Q}75{CKM,M]
,l[c TT]flpAa)z[u u]flpa)z[lﬂ Q]

2t g 2 ’ (@)
f[q,u]f[m,9]+[(Tf’i“),u] +

o

(MfI\A/[),Q

o

+{ﬁ,TL+[é,M]

e

where square brackets indicate the inner product, the terms
with hats are known values on the boundary and the subscripts
¢ and o represent the geometric and dynamic boundary
conditions, respectively.

B. Calculation of Torsional Rigidity via FEM

Let’s @ is a scalar field function. The governing equation
for the torsion problem is

(D,ll —HD,zz =-2 Q)

with @ =0 on I the boundary. Defining a vector field Z on
T
Q°f as E= {y/i %,y d)ez} and using the divergence theorem

the weak form of (5) can be constructed as,
[ (v @y, %) A =2 A + )y VO® - n¥dT® (6)

The boundary terms in (6) cancel out during the assemblage
of the FE equations for adjacent element edges in the cross-
section domain Q and they are also zero on the free edges
(edges without an adjacent element) to satisfy the boundary

condition of the torsion problem. The torsional constant |, of

the cross-section, in terms of the scalar field, is expressed as,
lo==[,(®,% +®,x,)dQ (7

which renders to the summation given with the following
equation over domain elements as,

wly==30 00 [, @ [ow][3] [X]w|det[] e ®)
where [8\|1] with the definition,

Oy, /0n Oy, /om,
oy, /0 oy, /0
[8‘4’] _ l//z: U ¥, : 1, )

Oy, /0my Oy, /0n,

where [J] (Jacobian matrix) is calculated with [3]=[X][oy],

[X] being the nodal coordinates matrix, and @ is the vector

with the scalar field nodal-values as its components.
Integrations are performed with the 3x3=9 point Gauss
quadrature rule. =G is the shear modulus and N is the

total number of elements.

C.The Mixed FE Method and Dynamic Analysis

¢, =(p;—p)/ Ap and ¢ =(¢—¢,)/Ag are linear shape
functions used in FE formulation where Ap=(¢; —¢,). The

subscripts represent node numbers of the curved element. The
curvatures are satisfied exactly at the nodal points and linearly
interpolated through the element. The curved bar element has
two nodes with 2x12 degrees of freedom. The variable vectors
per node are u, Q, T,M .

In the dynamic analysis, the problem of determining the
natural frequencies reduces to the solution of a standard
eigenvalue problem ([K]—wz[M]){u} :{0} where [K] is the
system matrix, [M] is the mass matrix u is the eigenvector
(mode shape) and @ is the natural angular frequency of the
system. Hence the explicit form of standard eigenvalue
problem in the mixed formulation is

{F}| _ {0
= 10
{{U}} {{0}} o

where {F} denotes the nodal force and the moment vectors
and {U}={u Q}7
rotation vectors. To attain consistency between (10) and
([K]— @?[M]){u} = {0}, the {F}is eliminated in (10), which
yields to the

['[K“] [Klz]]wzl[m [0]]
[Ky] [Kypl — [[0] [M]

signifies the nodal displacement and

condensed system matrix
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[K'1=[K;]—-[K;;]"[K;; T '[K;;]. The eigenvalue problem
in the mixed formulation becomes ([K*]—«?[M]){U} ={0}.

III. NUMERICAL EXAMPLES

The material and geometric properties of the hyperboloidal
helix are: the modulus of elasticity is E =210GPa , Poisson's
ratio is v = 0.3, the number of active turns is n= 7.5, the
height of the helix is H =75mm, the ratio of the minor
radius to the major radius of the helix is R /Ry =0.5
where R, =13mm. Closed and open square box sections
that range from thin to thick with four different thickness-to-
side ratiost/a (0.040,0.125,0.250,0.375) where a = 2mm
are employed (see Figs. 1 (a), (b)). The torsional rigidity
moments of these closed and open sections are calculated via
FE method which is verified in [20]. Referring to t/a (0.040
, 0.125, 0.250, 0.375) ratios, the computed torsional inertia
moments for closed square box section are |; =0.0366a*,

0.0923a*, 0.1305a*,0.1399a* and the computed torsional
moments for open square box sections are |y =82x107a*,
229.6x10a*, 1589.2x10°a* and 4455.5x1075a*,

respectively.

A. Static Analysis

The behavior of the closed and open square box sections,
ranging from thin to thick with four different thickness-to-side
ratios, on the nodal variables at the specific points of the
hyperboloidal helix are investigated. The fixed-free boundary
condition is used. The helix is subjected to an external load
acting at the tip of the helix (see Fig. 1, point B). The intensity
of the load is P, =107N . The hyperboloidal helix problem

having thin and thick with four different t/a ratios of the
closed and open square box sections are solved and the results
are presented in the Cartesian coordinate system. The
maximum displacements (U, ) and fixed end reactions (T, :

shear force, M, : moment) for closed and open sections are

tabulated in Tables I, II. These results are verified using the
commercial program SAP2000and its Section Designer
module.

In the closed square box cross-section, with respect to the
maximum displacements for the t/a=0.04 ratio, the
reductions for the next three t/a (0.125,0.250,0.375) ratios
are 59.9%, 71.5% and 73.4% (Table I). Similarly, in the open
square box cross-section, with respect to the maximum
displacements for the t/a = 0.04 ratio, the reductions for the
next three ratios are 96.4%, 99.5% and 99.8% (Table II). It is
observed that the open square box sections are more sensitive
the changing of the thickness-to-side ratios (Tables I, II). For
the maximum displacements of the helicoidal helix, the results
of the closed square box section for eacht/a ratio are
decreased by 99.7%, 96.7%, 84.2%, and 61.2% with respect to
the open square box cross-section results (Tables I, II).

TABLE 1
THE DISPLACEMENTS, SHEAR FORCES AND MOMENTS OF HYPERBOLOIDAL
HELIX HAVING THE THIN-THICK SQUARE BOX SECTIONS

ta W W My
(x10°mm)  (x10*N)  (x10”° Nm)
this study 1.955 9.983 2.591
0.040  SAP2000 1.961 10.00 2.600
diff.% -0.31 -0.17 -0.35
this study 0.784 9.983 2.591
0.125  SAP2000 0.789 10.00 2.600
diff.% -0.64 -0.17 -0.35
this study 0.557 9.983 2.591
0.250  SAP2000 0.557 10.00 2.600
diff.% 0.00 -0.17 -0.35
this study 0.520 9.983 2.591
0.375  SAP2000 0.516 10.00 2.600
diff.% 0.77 -0.17 -0.35

diff. % = (This study-SAP2000)>100/This study)

TABLE IT
THE DISPLACEMENTS, SHEAR FORCES AND MOMENTS OF HYPERBOLOIDAL
HELIX HAVING THE THIN-THICK OPEN SQUARE BOX SECTIONS

t/a (uz)max (Tz )max (M y)max
(x10°mm)  (x10*N)  (x10° Nm)

this study 653.7 9.983 2.591
0.040 SAP2000 648.1 10.00 2.600
diff.% 0.86 -0.17 -0.35
this study 23.55 9.983 2.591
0.125  SAP2000 23.34 10.00 2.600
diff.% 0.89 -0.17 -0.35
this study 3.520 9.983 2.591
0.250 SAP2000 3.490 10.00 2.600
diff.% 0.85 -0.17 -0.35
this study 1.340 9.983 2.591
0.375 SAP2000 1.330 10.00 2.600
diff.% 0.75 -0.17 -0.35

diff. % = (This study-SAP2000)>100/This study)

B. Dynamic Analysis

The objective of this example is to investigate the effects of
the thickness-to-side ratios of the closed and open sections and
the boundary conditions on the dynamic behavior of the
hyperboloidal helix. The fixed-fixed and fixed-free boundary
conditions are employed. The density of material is
p =7850kg/m>. For the fixed-fixed and the fixed free

boundary conditions, the first six natural frequency results of
the helicoidal helix having the closed and open sections are
presented in Tables III-VI. The results are also verified with
SAP2000 and its Section Designer module.

In the case of the fixed-fixed boundary condition and the
closed square box section, with respect to the fundamental
natural frequency for the t/a =0.04 ratio, the reductions for
the next three t/a (0.125,0.250,0.375) ratios are 6.9%,
16.0% and 22.3% (Table III). Similarly, in the case of the
fixed-free boundary condition and the closed square box
section, with respect to the fundamental natural frequency for
the t/a=0.04 ratio, the reductions for the next three t/a
ratios are 6.7%, 15.7% and 22.1% (Table IV). In the case of
the fixed-fixed boundary condition and the open closed square
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box section, with respect to the fundamental natural frequency
for the t/a = 0.04 ratio, the increases for the next three t/a (
0.125,0.250,0.375) ratios are 213.3%, 527.2% and 831.2%
(Table V). Similarly, in the case of the fixed-free boundary
condition and the open closed square box section, with respect
to the fundamental natural frequency for the t/a =0.04 ratio,

the increases for the next three t/a ratios are 208.1%,
500.0% and 748.6% (Table VI). For both closed and open
square box sections, when the influence of the boundary
conditions is considered the fundamental natural frequencies
of the fixed-free boundary condition decreased in the range of
78.6%~81.3% with respect to the fixed-fixed boundary
condition (Tables III-VI). For the fundamental natural
frequency of the hyperboloidal helix having fixed-fixed
boundary condition, the results of the open square box section
for eacht/a ratio are decreased by 94.7%, 82.2%, 60.4%, and
36.4% with respect to the closed square box cross-section
results (Tables III, V). For the fundamental natural frequency
of the hyperboloidal helix having fixed-free boundary
condition, the results of the open square box section for each
t/a ratio are decreased by 93.9%, 80.0%, 56.8%, and 33.9%
with respect to the closed square box cross-section results
(Tables IV, VI).

TABLE III
THE NATURAL FREQUENCIES OF HYPERBOLOIDAL HELIX HAVING THE THIN-
THICK SQUARE BOX SECTIONS WITH FIXED-FIXED BOUNDARY CONDITION

 (in Hz)
1 2 3 4 5 6

thisstudy  326.3 3362 359.7 6084 719.1 765.7

0.04  SAP2000 326.0 335.1 3562 608.6 717.6 764.4
diff.% 0.09  0.33 097 -0.03 021 0.17

this study ~ 303.8  312.5 338.0 5603 668.1 711.2

0.125 SAP2000 303.0 311.2 3340 560.2 6658 709.6
diff.% 026 042 1.18  -0.04 034 022
thisstudy  274.1 281.6 3072 5016 601.9 6408

0.25 SAP2000 2742 2813 3053 5014 601.2 641.1
diff.% -0.04  0.11 0.62  0.04 0.12 -0.05

this study  253.5 2604 2849 4628 556.6 592.7

0.375 SAP2000 254.0 260.5 2842 4624 556.6 593.7
diff.% -0.20  0.04 0.25 0.09 0.00  -0.17
diff. % = (This study-SAP2000)>100/This study)

t/a

0.574

05654

0.56

0.5554

0.557 »--e--amixed FEM
05454 —— §AP2000
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u, x 10-3 displacements (mm)
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Fig. 2 The convergence analysis for u, displacement of the

hyperboloidal helix having square box cross-section with fixed-free
boundary condition

TABLE IV
THE NATURAL FREQUENCIES OF HYPERBOLOIDAL HELIX HAVING THE THIN-
THICK SQUARE BOX SECTIONS WITH FIXED-FREE BOUNDARY CONDITION

o (in Hz)
1 2 3 4 5 6

thisstudy 61.0 61.8 198.1 2554 322.1 330.0

0.040 SAP2000 60.8 61.6 196.6 2552 321.6 3288
diff.% 0.33 032 0.76 0.08 0.16 0.36

this study  56.9 57.6 186.4 2353 2995 3073

0.125 SAP2000 56.6 57.2 1845 2351 298.6 305.7
diff.% 053 042 1.18 -0.04 034 0.22

thisstudy 514 519 169.6 210.7 270.0 2773

0.250 SAP2000 513 51.8 1689 2105 2700 276.8
diff.% 0.19 0.19 041 0.09 0.00 0.18

this study 47.5 48.0 157.4 1944 2497 256.5

0375 SAP2000 47.5 480 1573 1942 2500 256.5
diff%  0.00 000 006 010 -0.12  0.00
diff. % = (This study-SAP2000)x100/This study)

t/a

TABLEV
THE NATURAL FREQUENCIES OF HYPERBOLOIDAL HELIX HAVING THE THIN-
THICK OPEN SQUARE BOX SECTIONS WITH FIXED-FIXED BOUNDARY
CONDITION

o (in Hz)
1 2 3 4 5 6

this study  17.3 23.0 24.0 49.1 55.6 57.9
0.040 SAP2000 17.3 23.1 239 48.9 55.4 58.5
diff.% 0.00 -043 042 0.41 036  -1.04
this study ~ 54.2 71.0 72.1 135.1  153.1 1752
0.125  SAP2000 543 71.4 71.8 1349 1526 176.6
diff.% -0.18  -0.56  0.42 0.15 033  -0.80
this study  108.5 134.8 137.1 261.0 300.0 324.4
0.250 SAP2000 108.6 1354 136.6 260.8 299.1 3264
diff.% -0.09 -045 036 0.08 030  -0.62
thisstudy  161.1  183.6 187.1 380.7 423.1 428.2
0.375 SAP2000 1614 183.8 186.7 3813 422.0 4285
dift.% -0.19  -0.11 021 -024 026 -0.07

diff. % = (This study-SAP2000)>100/This study)

t/a

TABLE VI
THE NATURAL FREQUENCIES OF HYPERBOLOIDAL HELIX HAVING THE THIN-
THICK OPEN SQUARE BOX SECTIONS WITH FIXED-FREE BOUNDARY
CONDITION
o (in Hz)
1 2 3 4 5 6
this study 3.7 3.9 9.6 20.6 21.4 249
0.040 SAP2000 3.7 39 9.6 20.6 21.3 -
diff.% 0.00 0.00 0.00 0.00 0.47 -
thisstudy 114  12.0 300 63.9 66.2 77.7
0.125 SAP2000 11.4 121 300 640 66.1 -
diff.% 0.00 -0.83 0.00 -0.16  0.15 -
thisstudy 222 233 602 122.7 1269 153.1
0.250 SAP2000 222 233 602 123.1 1267 -
dift.% 0.00 0.00 000 -033 0.16 —
thisstudy 314 32.6 898 1668 1753 202.4
0.375 SAP2000 31.4 326 89.8 167.0 175.1 202.6
diff.% 0.00 0.00 0.00 -0.12  0.11 -0.10

diff. % = (This study-SAP2000)>100/This study)

t/a
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Fig. 3 The convergence analysis for @ fundamental frequency of the
hyperboloidal helix having square box cross-section with fixed-fixed
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IV. CONCLUSIONS

Static and dynamic analyses of hyperboloidal helix having
the thin/thick closed and open square box cross-sections are
investigated via the mixed FE method. The torsional rigidity
of the used cross-sections is determined by the method
proposed by the authors [20]. The FE solutions are compared
using the commercial program SAP2000 and its Section
Designer module. The percent differences between these FE
models is in range of 0-1.18% in the case of 1000 elements by
SAP2000 and 200 elements by the present mixed model for
both the static and dynamic analyses, and, the thin/thick closed
and open square box sections. The convergence of the static
and dynamic analyses of two FE analyses is given in Figs. 2,
3. In mixed FE analysis, convergence of the vertical
displacement is upper bound and the fundamental natural
frequency is lower bound. This difference is due to the used
torsional rigidity of the cross-sections, besides the straight
SAP2000 elements and the curved elements of the present
study. The effects of the closed and the open square box
sections that range from thin to thick with four different
thickness-to-side ratios and the boundary conditions on the
static and the dynamic behavior of the hyperboloidal helix are
discussed extensively.
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