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State Dependent Riccati Equation Based Roll
Autopilot for 122mm Artillery Rocket
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Abstract—State-dependent Riccati equation based controllers are
becoming increasingly popular because of having attractive
properties like optimality, stability and robustness. This paper focuses
on the design of a roll autopilot for a fin stabilized and canard
controlled 122mm artillery rocket using state-dependent Riccati
equation technique. Initial spin is imparted to rocket during launch
and it quickly decays due to straight tail fins. After the spin phase, the
roll orientation of rocket is brought to zero with the canard deflection
commands generated by the roll autopilot. Roll autopilot has been
developed by considering uncoupled roll, pitch and yaw channels.
The canard actuator is modeled as a second-order nonlinear system.
Elements of the state weighing matrix for Riccati equation have been
chosen to be state dependent to exploit the design flexibility offered
by the Riccati equation technique. Simulation results under varying
conditions of flight demonstrate the wide operating range of the
proposed autopilot.

Keywords—Fin stabilized 122mm artillery rocket, Roll
Autopilot, Six degree of freedom trajectory model, State-dependent
Riccati equation.

I. INTRODUCTION

OLL autopilot design for guided artillery rockets that can

ensure stable performance over the full flight envelope is a
challenging task primarily because of flexible nature of the
airframe, cross coupling, uncertainty in aerodynamic
parameters, external disturbances, and inaccuracies in
measurements obtained from onboard sensors. As per the
conventional practice of classical linear control techniques,
dynamic models of rockets are linearized around several
operating points in flight envelope and then the gain scheduled
autopilots are designed. However, the performance of these
classical autopilots can only be guaranteed within a narrow
range of variations in flight conditions and model
uncertainties. This has necessitated the application of
nonlinear control techniques in order to maintain the
operability of controllers over a wider range of operating
conditions.

The advent of powerful low-cost micro-processors has
equipped the designers with an effective tool to meet the
challenges in applications of nonlinear control. The most
recent applications, particularly in aerospace and military
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applications, now demand stringent accuracy and cost
requirements in nonlinear control systems. This has expedited
the development of nonlinear control theory for application to
challenging, complex, dynamical real-world problems,
particularly those that bear major practical significance in
military industries. Researchers are striving to develop control
algorithms that are simple, and yet produce optimal
performance in the sense of control effort and state errors.

State-dependent Riccati equation (SDRE) control is a highly
promising and very attractive practical tool for obtaining
approximate solutions to infinite-time horizon nonlinear
optimal control problems in feedback form. The SDRE
method provides an attractive alternative to solving the
Hamilton Jacobi Bellman partial differential equation,
allowing for the systematic and effective design of nonlinear
feedback controllers for a variety of applications. The
potential of this method is characterized by possessing the
crucial ~features of stability, optimality, real-time
implementation, and inherent robustness with respect to
parametric uncertainties.

Although application potential of the SDRE nonlinear
control technique in practical nonlinear control problems is
well recognized, the industry acceptance of the technique has
not been appreciable. The main reasons for this being the
SDRE approach requires advanced numerical methods for its
implementation, and the perception that this technique may
not be computationally feasible for real-time implementation
on commercial off-the-shelf processors. P. K. Menon et al [1],
using software based on the Schur algorithm and the Kleinman
method, showed that SDRE control laws can be implemented
at speeds up to 2 kHz sample rates using commercial off-the-
shelf processors, for problems of the size commonly
encountered in missile flight control applications. The
potential of SDRE technique for flight control applications has
been demonstrated by researchers in [2]-[9]. Cimen provided
a comprehensive overview of the present state of the art of
SDRE control technique in [10] and [11], and addressed the
systematic design of nonlinear controllers via SDRE method
in [12]. Controllability and stability issues of SDRE technique
are well addressed in [13]-[17].

This paper focuses on the design of a SDRE based roll
autopilot for a canard controlled 122mm artillery rocket. The
rocket having front canards and folded straight tail fins is
given initial spin at the time of launch. Tails fins are deployed
immediately after launch and offer high roll damping moment
thereby reducing the spin rate to zero within six seconds of
flight. The canards are then deployed and the roll orientation
of rocket is regulated to zero with the canard deflection
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commands generated by the SDRE based roll autopilot. The
designed controller produces promising results for the subject
application. Extensive simulations have been carried out and
the results corrugate the efficacy of the proposed autopilot
over a wide range of flight conditions.

Il. SDRE CONTROL METHODOLOGY

A.SDRE Problem Formulation

Consider the autonomous, infinite-horizon, nonlinear
regulator problem for minimizing the performance index

0

J=%j(xT(t)Q(x)x(t)+uT(t)R(x)u(t))dt (1)

0

with respect to the state x and control u subject to the
nonlinear differential constraints:

{0)=/(1)+Bu(), (0= @

where Q(x) > 0 (positive definite) and R(x) > 0 (semi-positive
definite) for all x and where

Condition 1. f{x) is a continuously differentiable function of x,
ie.

f(x)eCl 3)

Condition 2
f(0)=0 4)

Under the specified conditions, a control law
u(x):k(x):—K(x)x, k(O):O (5)

is sought that (approximately) minimizes the cost function in
(1) subject to the input affine nonlinear differential constraint
in (2) while regulating the system to the origin for all x, such
that lim,_.x(t) = 0. This is the basic idea of the SDRE method
for nonlinear regulation [10].

B. SDRE Controller Structure

The SDRE approach as outlined in [10] and [18] for
obtaining a suboptimal, locally asymptotically stabilizing
solution of (1) and (2) is:

1) Use direct parameterization to factorize nonlinear system
dynamics into a linear like structure which contains the
state-dependent coefficient (SDC) matrices

2)

=
—_
~
~—
Il

A(x)x(t)+B(x)u(t), x(O) =x, (6)

f(x):A(x)x @)

If the condition, f{x) € Cl, is satisfied then there is an

infinite number of ways to factor f{x) into A(x)x and that
A(x) can be parameterized as A(x,a), where a is a vector
of free design parameters. In order to obtain a valid
solution of the SDRE, the pair {4(x, &), B(x)} must meet
the condition of point wise stability in the linear sense for
all x in the domain of interest.

3) Solve the algebraic state-dependent Riccati equation

AT (x)P(x)+P(x)A(x) ®)
BT

—P(x)B(x)R’l(x) (x)P(x)+0(x)=0

to obtain P(x) > 0. P(x) is the unique, symmetric, positive-
definite solution of the algebraic state-dependent Riccati
equation i.e. (8), and hence the name SDRE control.
4) The nonlinear feedback controller equation is given by
5)

u(x) =—R? (x) BT (x)P(x)x 9)

and the resulting SDRE controlled trajectory is the solution of
the quasi-linear closed-loop dynamics

i(0) =] A(x)-B(x) R (x) BT (x) P(x) ]x(t)  (10)
The SDC matrix for the closed loop dynamics is
Acr () = A(x) = B(x) K () (11)

and the state feedback gain for minimizing the cost function
(1) is

K(x) =R71(x)BT (x)P(x) (12)

The SDRE solution to (1) and (2) is a true generalization of
the infinite-horizon time-invariant linear quadratic regulator
(LQR) problem, where all of the coefficient matrices are state-
dependent. At each instant of computing the control action,
the method treats the state-dependent coefficient matrices as
being constant, and computes a control action by solving a
linear quadratic optimal control problem. As is evident from
(8), the resulting controller relies on a solution, point wise in

R", of an algebraic Riccati equation thereby leading to the
SDRE terminology.

If the coefficient and weighting matrices are selected as
constant, the nonlinear regulator problem becomes the LQR
problem and the SDRE control method matches the steady-
state linear regulator.

In order to perform tracking / command following, the
SDRE controller can be implemented as an integral servo-
mechanism as explained and demonstrated in [3],[10], and
[18]. The procedure is outlined here briefly. The state x is
decomposed as
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x {XT } (13)
XN

where it is desired for the vector components of x; to track a
reference command r.. Augment the state vector x with x;, the
integral states of x;:

i=|x; (14)

where
0 1:0

Ao | PO €

and the SDRE integral servo controller is given by

Xy —J.rcdt
u=-R(%)B" (¥)P(%)| xp-r, a7

C. SDC Parameterization

There are many systems that do not conform to the structure
or conditions given in (2) to (4) and the SDRE technique
cannot be directly applied. In these cases, there is an art in
converting the given system to a conforming system so that an
effective SDRE design can be carried out. References [11] and
[18] present several cases where the system is non-
conforming, and show in each case how to convert the system
to a conforming one.

D. Selection of Q and R Matrices

The solution to the Riccati Equation depends on selection of
the state and control weighting matrices O and R, respectively.
Q is a matrix of weighting coefficients used to penalize any
state from becoming too large. Similarly, R is used to penalize
the control action to remain within bounds. These matrices are
design parameters that also affect the overall performance of
the closed loop system. A remarkable design flexibility
offered by SDRE approach is that by penalizing the
appropriate states or control action, the designer can set
constraints on the system. Elements of QO and R matrices
should be selected such that the corresponding states and
inputs which should be restrained from becoming arbitrarily
large, are penalized the most. From simple to complicated, the
elements of matrices Q and R can simply be constant or can be
chosen as functions of states with their values varying
throughout the control process depending upon the state

values. Reference [12] proposed a procedure for selecting the
state dependent elements of Q and R matrices. Although there
are no rigorous methods for selecting these matrices, some
guidelines for their selection based on good practices as
mentioned in [19] are useful.

Ill. ROCKET CONFIGURATION

Rocket configuration being studied has following salient
features:

1) Rocket comes out of launch tube with spin rate of 5.8
revolutions per second.

2) Fixed tail having straight fins as shown in Fig. 1. Rear
view of the rocket is shown in Fig. 2. The tail fins open
up once the rocket comes out of launch tube/canister.
These straight fins provide a high roll damping moment
and retard the spin rate of rocket body.

3) Deployable canards for control purposes. During launch,
canards remain folded inside rocket body and are
deployed only after 6 seconds of launch.

The main physical parameters of the subject artillery rocket
are summarized in Table I. The rocket leaves the muzzle with
initial spin rate of 5.8 revolutions per second. This initial spin
mitigates the effects of mass and configuration asymmetries.
The straight tail fins offer high roll damping moment and the
spin rate of rocket reduces to zero within first six seconds of
flight. Canards are deployed at the time of six seconds after
launch and are used to bring the roll orientation of rocket to
zero, later these canards can be used for aerodynamic
maneuvering to facilitate guidance and control of the rocket.

Fig. 1 Canard controlled 122mm rocket with straight tail fins

nozzle exit

folded fin rests on this
flat surface

foldable tail fin

Fig. 2 Rear view of the rocket
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TABLE |
PHYSICAL PARAMETERS OF 122MM ARTILLERY ROCKET

Rocket Parameters Value
caliber 122mm
overall length 2.87m
total mass 66.0kg
propellant mass 20.5kg
propellant burning time 1.67s
mean thrust 23600N
initial center of gravity from nose tip 1.374m
final center of gravity from nose tip 1.264m
initial axial moment of inertia 0.1499kg.m?
final axial moment of inertia 0.1238kg.m?
initial lateral moment of inertia 41.58kg.m?
final lateral moment of inertia 33.83kg.m?
launch velocity 26.7m/s
initial spin rate 2088°/s

IV. Six DEGREE OF FREEDOM TRAJECTORY MODEL

A computer code is developed which models the flight
dynamics of fin stabilized and canard controlled 122mm
projectile. The code considers the projectile as a rigid, six
degree-of-freedom body and solves the equations of motion in
a body coordinate system. The muzzle conditions are used as
initial conditions in the calculations. A body-fixed reference
frame is chosen for this study since the dynamic behavior of
the vehicle is the main object of study. The equations of
motion are developed using a body-fixed coordinate system as
shown in Fig. 3. The origin of the body axes is the vehicle
center of mass, O. The angular velocity of the body relative to
an inertial frame is w,(wp,, wp, ;) and the components of the
translational velocity, ¥, in body frame are (u, v, w).

Y, X,

=
/

Fig. 3 Orientation of rocket body axes

The earth is treated as spherical and non-rotating in this
study since the time of flight for such type of vehicles is of the
order of few tens of seconds. Equations used for generating six
degree of freedom trajectory model are summarized in the
following lines.

S,.C S.Cye T,
_QD r A_Q ¢~ Ac _,’_Lb_i_GXb (18)
m

U ==y, W+ @),V - -

.DC), ]

. S,
v:—a)bzu+a)bxw+QD | Cy o+
m 2V,

(19)
+—QDSCCN5 (0p +a)+G,,
- )

w,DC
W= —a)xv+a)yu+QDSr [CNﬂﬂ+y2TNﬂJ
m ab (20)
S.C
2 (5, - p)+c,

where Jp is pitch channel canard deflection angle, Jz is yaw
channel canard deflection angle, Cy, is normal aerodynamic
force coefficient for rockety body, Cys is normal aerodynamic
force coefficient due to canards, D is reference diameter of
rocket body, S, is reference area of rocket, S. is surface area of
canard. Dynamic pressure, QOp, is calculated by the expression

1
O =5pr,, (21)

where ¥, is the magnitude of aerodynamic velocity expressed
in body frame. 7, is calculated as following

|

Vs =V Vo (22)

where I7b is the rocket velocity in body frame, with respect to
earth, and I7w,, is the wind velocity in body frame. Wind

velocity is I7wb is usually given in local vertical frame(North,

East, Down). It has to be transformed to body frame before
being used in (22).

Angle of attack « and angle of side slip j, are calculated by
using components of 7,

Vs | =Vas :\/”51; +V2 + W, (23)
a=tan"(=vy, luy,) (24)
p=sin(w, 17,,) (25)

With the assumptions in (26) and (27), angular accelerations
are given in their simplest form in (28) to (31).

Ly=l,=I,=I,=I,=I,=0 (26)

I, =1 27)

0,8,D*C S.D*C,
_ =D l[?(wbx)+QD I (wby

Wpy =
2Valxx ZVaIxx (28)
S.d.Cys
+QD c]c NoS (§R)

XX
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. QDSrD a)byD
iy =2 CopB+(Ca+C, ) >
a

Yy

(29)
QDScchNb' (5Y_ﬂ) (Ixx _Izz)
- - Wy O,
Iyy IW
. 0pS.D w, D
Dp; _T Cmaa +(Cmq + Cmd) W
(30)
OpS.x.Cys (5P+a) (Iyy _]Xx)
+ - Wpy Oy,
IZZ IZZ
Lo Ly Lo, Ly, 1o Ly, I, I, and |,y are moments of inertia

about respective axis. Cy, is roll damping moment coefficient,
C;. is roll moment coefficient derivative with yaw rate, C, is
yawing moment coefficient, Cy, is, C,, is pitching moment
coefficient due to angle of attack, C,, is pitching moment
coeeficient due to pitch rate , oz is roll channel canrd
deflection, d, is lateral distance between center of pressure of
canard and rocket’s roll axis, x. is is longitudinal distance
between center of pressure of canard and rocket’s centre of
gravity. Attitude of the body frame with respect to launch
frame is determined by Euler angles &, ¥ and ¢ i.e pitch,
yaw and roll respectively. Euler angles are related to angular
velocity components of body frame according to the following
differential equations.

é= Wy, +(a)bysin¢+a)bzcos¢)tam// (31)
Y = @y, cos$ — wy,sing (32)
. |y, sing+ @, cosp
P cost) (33)
cosy

Equations (18) to (20) are integrated to obtain the velocity
components of the rocket referred to the body frame. The
coordinate transformation is used to determine velocity
components of the rocket referred to the launch frame, and
since the launch frame is not rotating, these velocity
components can be integrated directly to obtain the
displacements (rocket position) referred to the launch frame.
Following is the matrix for coordinate transformation from
body frame to launch frame.

CyCO S¢SyCO—-CpSO CopSyCO+SpS6
Ty =| CySO SPpSySO+CpCO CpSySO—SpCO | (34)
—Sy S¢Cy CoCy
C stands for cosine, and S stands for sine function. Velocity

vector in launch frame and three differential equations for
rocket position in launch frame are given by (35) to (38).

X; u
Vo= |=Tw| v (35)
Z; w
X =CyCO(u)+(SpSyCH-CHSH)(v) (36)
+(CgSyCO+5¢S0)(w)
¥, =CySO(u)+(SpSy SO+ CpCo)(v) (37
+(Cesiny SO - SgCO)(w)
2, ==Sy (u) +SpCy (v)+CoCy (w) (38)

V. TRAJECTORY SIMULATIONS

Nominal trajectories for the rocket under study have been
simulated for launch elevation angles ranging from 30° to 70°.
Aerodynamic data for 122mm rocket given in [20] has been
used for simulations. A plot of roll rate versus time for launch
angle of 50° is shown in Fig. 4(a). Figure 4(b) depicts the plot
of rocket altitude versus time, and the plot of altitude versus
downrange is shown in Fig. 4(c). It has been observed for all
cases of launch angles that the roll rate of rocket damps out to
zero within first six seconds of flight owing to the high roll
damping moment offered by straight tail fins, to be published
[21].

Roll rate (°/5)

T T
I I
[[——— T
| | | | | |
o — — — L A 4N
| | | | | | |
s — — — L/ L _N____ [
£ | | | | | | |
Bao — — — ¥ _ Ty . N
£ | | | | | | |
P v [ A N |
| | | | | |
1 | | I
I I I I
1 | I I
| | | |
| | | |
30 40
¢

|
|
08

1 12
Downrange (m) x10°

Fig. 4 (c) Rocket altitude versus downrange for 50° launch elevation
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Spinning of rocket in the initial phase helps to average out
the effects of configurational and mass asymmetries of the
rocket, and aids in reducing dispersion. Once the roll rate is
zero, the front canards are deployed which can be used for
aerodynamic maneuvering in order to execute guidance and
control function. Late deployment of canards is adopted in
order to avoid unnecessary drag during early part of trajectory
that may reduce the effective range of the rocket. After the
deployment of canards their foremost function is to bring the
roll orientation of rocket to zero degree so that pitch and yaw
controls can be appropriately managed at later stages. The
next section describes the SDRE model for roll autopilot
which generates actuator commands for canard deflection
required to orientate the rocket to zero roll position.

VI. SDRE BASED DESIGN MODEL FOR ROLL AUTOPILOT

Roll dynamics of the rocket under study are governed by
(39) and (40).

0pS,D*C S,D%C,
WOpy = > h)(wbx)+QD ! ( by)

W1 2,1, 39)
0pS.d,Cys
=) ; N5 (5,)
é=aw, +(wbysin¢+a)bz cosqﬁ) tany (40)

In order to develop the SDRE based roll autopilot these
equations have to be reformulated to become consonant with
the requisite SDRE structure. First we assume decoupled roll,
pitch and yaw dynamics leading to following simplified
equations for roll dynamics of the rocket.

b=d e

. OpS,D*Cp .\ 0,8.d.Cys
= + c ¢ S 42
L (#) () (42)
The canard actuator is modeled as a second-order nonlinear
system with natural frequency of w, = 150rad/s and damping
ratio ¢ = 0.7. Actuator dynamics are governed by following
equations

O =0g (43)

5R :_a’55R _24%5.13 +w§6Rc (44)

where Jg. is the commanded deflection and J; is the actual
canard deflection for roll channel.

Complete equations for roll dynamics taking into account
actuator dynamics is expressed in state space form consonant
with (6) as following

; 0 1 0 0 y
0
2
i o5, D°Cp  OpSd.Crns p 0 (44)
LI W, Ly 5. |t o |%re
1|0 0 0 1 ! 2
Sp R] 1@

0 0 -o? —2¢w,

The saturation limits of canard deflection angle and rocket
angular rate during the control phase are set to be 30° and
800°/s, respectively. All state variables are assumed onboard
measurable. The state weighting matrix Q is chosen to be
diagonal as in (45), and the elements are initially selected on
the basis of Bryson’s rule i.e. every diagonal element of Q
should be reciprocal of the square of maximum permissible
value of corresponding state, as it provides a good starting
point. However, the elements of Q matrix are tailored by trial
and error to obtain the appropriate response over the desired
operating range which is the flight envelope for the subject
rocket in our case. A wide operating range is achieved by
making the elements of Q matrix to be state dependent. This
makes the state weightings keep on varying at every instance
of calculating control action.

¢ 0 0 0
0 g 0 O
0 0 g O
0 0 0 gqu

0= (45)

Following choice of elements of Q matrix gave the control
performance within acceptable bounds.

i = %— (522) (46)
2 = (8010)2 " (1(]2)29) “n
4ss = (3;2) (48)

» =@ (49)

¢@; corresponds to the roll orientation of rocket when the roll
autopilot starts regulating the roll orientation. The first term of
¢1; remains constant throughout the control process, however
the second term keeps on decreasing as the roll error
decreases. Keeping the second term of ¢;; as negative helps to
avoid large deflection angle of the canard at the start of control
process, thereby eliminating the chance of canards going to
their saturation limits. Similarly the second term of ¢,
decreases as the roll rate generated due to deflection of
canards decreases. Matrix elements ¢;; and ¢,, are chosen as
constants to avoid unnecessary computational burden. At the
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end of spin phase, the foremost action to be taken by roll
autopilot is to nullify the residual roll error/orientation to zero.

During remaining phase of flight the task of the roll
autopilot is to keep the roll orientation stabilized to zero roll
position and continuously nullify any roll error occurring due
to disturbing roll moments. Usually these roll errors are not of
high order and remain within one to two tens of degrees. In
order to nullify disturbing roll errors, we selected diagonal
elements of Q matrix as in (50) to (53).

1 O

= - 50

G ¢i2 (3><107) (50)
1 ¢’ 51
2 307 (10° ey
933 =0 (52)

94q =0 (53)

The matrix element ¢;, has been chosen to be a function of
initial roll error and dynamic pressure. Since the dynamic
pressure depends on altitude and velocity of the rocket, the
element ¢;; being function of dynamic pressure enables the
autopilot to automatically adjust its performance while
performing at different altitudes. As the rocket traverses its
trajectory in ascending phase, its velocity and atmospheric
density decrease, thereby, reducing the dynamic pressure. This
leads to increase in the value of ¢, at low dynamic pressures
and comparatively larger canard deflection is produced to
compensate the effect of low aerodynamic force available at
low dynamic pressure.

VII. AUTOPILOT SIMULATION RESULTS

With the above mentioned choice of Q matrix (46) to (49),
simulations for SDRE based roll autopilot have been
performed for initial roll angles (or residual roll error of spin
phase) 90°, 122° and 150° considering the rocket launch
elevation angle to be 50° During standard trajectory
simulations it has been observed that residual roll error of spin
phase is about 115° to 125° for launch elevation angles
ranging from 30° to 70°, and it is 122° for launch elevation of
50°. We have considered the cases of 90° and 180° initial roll
errors as worst case scenarios. Performance of the autopilot is
depicted in simulation results shown in Fig. 5 to Fig. 7. The
results show that the proposed roll autopilot eliminates 90°
roll error in about 0.45 seconds, 122° roll error in 0.6seconds,
and 180° initial roll in 0.7seconds. Moreover, the canard
deflection angles and roll rates remain well within the
prescribed limits. Thus, the proposed roll autopilot
successfully performs the task of orientating the rocket to zero
roll position soon after the initial spin phase is over.

Roll angle (°)

5
Time (5)

g. 5 (a) Roll error decay profile for 90° initial roll error

ror

7 71 72 73 74 75
Time (5)

7
Time(s)

Fig. 6 (b) Canard deflection for correcting 122° initial roll error

(c) Roll rate generated for correcting 90° initial roll error

2649



109

109

109

189

2650

|

|

|

|

|
108

|
108

T I T
| | I I
| [ |
| [ |

I R e Bl i e S o
| | | |
| | | |
| | | |

T
i
|
|
-
|
|
|
r
|
|
L
|
|
|

I
|
|
|
i
|
|
L
|
|
|
-
|
|

|
[ I |
|
|
R
|
|
|
|
I
189

[
|
|
|
|
1
|
|
|
|
|
188

|

|

|

|

|
07

|

|

|

|

|
187

|

|

|

|

|
186

|
|
1
|
|
106
Time (5)
106
Time(s)

8
=

Time (5)

|
|
|
|
|
|
|
|
|
|
I
185

{5
]
>
2
£
© |
S |
S
S
<3
<
kS

at 4000m altitude

|
105

I

|
184

|
|
—— - ——
|
|
|
|
I
184

1
|
183

|
104

Time(s)

at 6000m altitude

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950
Vol:6, No:12, 2012

() aBue jjoy

Fig. 8 (a) Roll error decay profile for 10° roll error at 4000m altitude

Fig. 8 (b) Canard deflection for correcting 10° roll error
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Fig. 6 (c) Roll rate generated for correcting 122° initial roll error
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Fig. 7 (a) Roll error decay profile for 180° initial roll error
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Fig. 7 (b) Canard deflection for correcting 180° initial roll error

Time (5)

Fig. 7 (c) Roll rate generated for correcting 180° initial roll error

Fig. 9 (a) Roll error decay profile for 10° roll error at 6000m altitude

After eliminating the residual roll error of spin phase the
roll autopilot keeps the rocket in roll stabilized state at zero

degree roll. Performance of the proposed autopilot has also
been simulated for 10° roll error at flight altitudes of 4000m

6000m, and 7500m. The simulation results are presented in

() albue uonoayap preued

successfully eliminated at different altitudes by the designed
autopilot while remaining within performance bounds, thus

Fig. 8 to Fig. 10. The results show that the roll errors are
demonstrating the efficacy of the proposed scheme.

Fig. 9 (b) Canard deflection for correcting 10° roll error
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9 (c) Roll rate generated for correcting 10° roll error at 6000m
altitude

Roll angle (°)

Time (5)

Fig. 10 (a) Roll error decay profile for 10° roll error at 7500m

Fi

S

Fig.

[1]

[2]

[3]

altitude

Time (5)

. 10 (b) Canard deflection for correcting 10° roll error at 7500m

altitude

Roll rate (°/5)

Time (5)

10 (c) Roll rate generated for correcting 10° roll error at 7500m
altitude
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