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Stabilization of the Bernoulli-Euler Plate Equation:
Numerical Analysis

Carla E. O. de Moraes, Gladson O. Antunes, Mauro A. Rincon

Abstract—The aim of this paper is to study the internal
stabilization of the Bernoulli-Euler equation numerically. For this,
we consider a square plate subjected to a feedback/damping force
distributed only in a subdomain. An algorithm for obtaining an
approximate solution to this problem was proposed and implemented.
The numerical method used was the Finite Difference Method.
Numerical simulations were performed and showed the behavior of
the solution, confirming the theoretical results that have already been
proved in the literature. In addition, we studied the validation of the
numerical scheme proposed, followed by an analysis of the numerical
error; and we conducted a study on the decay of the energy associated.
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I. INTRODUCTION

THE aim of this paper is to study the internal stabilization
of the Bernoulli-Euler plate equation numerically. So, we

consider a square plate subjected to a feedback/damping force
distributed only in a subdomain.

The stabilization of this equation has been studied by many
researchers and we can mention, for example, the following
articles: [1] and [2].

However, constructing finite dimensional systems that are
accurate is not a simple task. The approximate systems
obtained using the Finite Element Method (FEM) or Finite
Difference Method (FDM), in general, are not uniformly stable
with respect to the discretization parameter [3]. Some works
have been done proposing new ideas to avoid this problem,
for example, [4] and [5].

To overcome this adversity, an idea proposed in the literature
is to add a numerical viscosity term to the numerical problem
[6].

Thus, we proposed and implemented an algorithm, based
on the Finite Difference Method, for obtaining an approximate
solution to this problem.

II. PROBLEM

First of all, it is necessary to define the domain. Consider
the square Ω = (0, π)× (0, π) and let O ⊂ Ω be the rectangle
[a, b] × [c, d], 0 < a < b < π and 0 < c < d < π, as shown
in Fig 1.
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Denoting the characteristic function of O by χO, we will
study the problem modelled by:⎧⎨
⎩

ω̈(t) + Δ2ω(t) + χOω̇(t) = 0 , x ∈ Ω, t ≥ 0,
ω(t) = Δω(t) = 0, x ∈ ∂Ω, t ≥ 0,
ω(x, 0) = ω0(x), ω̇(x, 0) = ω1(x), ∀x ∈ Ω,

(1)
where ( ˙ ) denotes the derivative with respect to time and
Δ2ω is the bilaplacian operator. Notice that the damping term
χOω̇(t) acts only in the subset O ⊂ Ω and the last two
relations of (1) are the initial and boundary conditions of the
problem.

Fig. 1. Problem Domain

The proof of existence and uniqueness of solution can be
found in [6]. And, also, it is known that the energy of this
system at instant t is given by:

E(t) =
1

2

{
‖ω̇(t)‖2L2(Ω) + ‖Δω(t)‖2L2(Ω)

}
. (2)

III. NUMERICAL ASPECTS

Since we are interested in studying (1) numerically, as in
[6], to discretize the spatial domain, we consider a uniform
mesh:

h =
π

m+ 1
, m ∈ .

To represent the rectangle O, assume that there exist integers
1 ≤ a(h), b(h), c(h), d(h) ≤ m such that:

a = a(h)h, b = b(h)h, c = c(h)h, d = d(h)h.

We denote by ωj,k the approximate solution ω of the above
system at the point xj,k = (jh, kh), j, k = 0, . . . ,m+ 1.

We consider the second order finite difference
approximation for the Laplacian, ∀j, k ∈ {1, 2, . . . ,m}:

Δω(jh, kh) ≈ 1

h2
(ωj+1,k + ωj−1,k + ωj,k+1 + ωj,k−1 − 4ωj,k) .
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Let ωh ∈ Vh = �m2

define the vector whose components
are ωj,k, 1 ≤ j, k ≤ m, i.e., the mesh nodes in which we need
to calculate an approximation for the solution.

We define the matrix A0h that represents the discretization
of the Bilaplacian operator, with hinged boundary conditions,
by its square root A

1
2

0h:
(
A

1
2

0hωh

)
j,k

=
1

h2
(ωj+1,k + ωj−1,k + ωj,k+1 + ωj,k−1 − 4ωj,k) ,

for 1 ≤ j, k ≤ m.
Thus, the semi-discrete system that will be studied is given

by:⎧⎨
⎩

ω̈j,k + (A0hωh)j,k + (χOω̇h)j,k + h2(A0hω̇h)j,k = 0,
1 ≤ j, k ≤ m , t ≥ 0 ,

ωh(0) = ω0h , ω̇h(0) = ω1h,
(3)

where A0h represents the second-order discretization of the
bilaplacian operator, considering the boundary conditions
given in (1). Notice that the term h2(A0hω̇h), that is, the
numerical viscosity term, has been added to the system (3).

Since the term χO denotes the characteristic function of O,
the term (χOω̇h)j,k in (3) corresponds to the vector whose
components are:

(χOω̇h)j,k =

{
ω̇j,k, a(h) ≤ j ≤ b(h) and c(h) ≤ k ≤ d(h),
0, otherwise.

According to [6], the family of systems defined by (3) is
uniformly exponentially stable and it is known that the energy
of the semi-discretized system at time t is given by:

Eh(t) =
1

2

{
‖ω̇h(t)‖2 + ‖A1/2

0h ωh(t)‖2
}
. (4)

Let Δt be the time step:

tn = nΔt , n = 0, 1, . . . , N,

i.e., t0 = 0 < t1 = Δt < t2 < . . . < tN = T = NΔt.
Using the second order approximations [7]:

ω̈n
j,k =

ωn+1
j,k − 2ωn

j,k + ωn−1
j,k

(Δt)2
+ O(Δt2), (5)

ω̇n
j,k =

ωn+1
j,k − ωn−1

j,k

2Δt
+ O(Δt2), (6)

and the Newmark Method with θ = 1
4 , that is, the mean below,

for the terms in which derivates don’t appear.

ωn
j,k =

1

4
ωn+1
j,k +

1

2
ωn
j,k +

1

4
ωn−1
j,k . (7)

From (3), (5), (6) and (7) , it comes that:

2ωn+1
j,k −4ωn

j,k+2ωn−1
j,k +2(Δt)2A0h

(1
4
ωn+1
j,k +

1

2
ωn
j,k+

1

4
ωn−1
j,k

)

+2(Δt)2(χOω̇)nj,k+h2Δt
(
A0h

(
ωn+1−ωn−1

)
j,k

)
= 0. (8)

So, there are two possibilities:
• If a(h) ≤ j ≤ b(h) and c(h) ≤ k ≤ d(h):

(
2+

(Δt)2

2
A0h+Δt+h2ΔtA0h

)
ωn+1
j,k = −(Δt)2A0hω

n
j,k

+4ωn
j,k+

(
−2− (Δt)2

2
A0h+Δt+h2ΔtA0h

)
ωn−1
j,k . (9)

• Otherwise:(
2 +

(Δt)2

2
A0h + h2ΔtA0h

)
ωn+1
j,k = −(Δt)2A0hω

n
j,k

+4ωn
j,k +

(
− 2− (Δt)2

2
A0h + h2ΔtA0h

)
ωn−1
j,k . (10)

This way, from (9) and (10), we obtain a linear system that
can be solved for each discrete time tn = nΔt and thus, it is
possible to obtain an approximate solution for the system (1).

To inicialize the method, considering n = 0, we used the
following approximation:

ω−1
j,k ≈ ω1

j,k − 2Δtω̇0
j,k, (11)

IV. RESULTS AND DISCUSSION

After implementing the algorithm mentioned in the previous
chapter, we are able to do numerical simulations. So, in
this section, we will present and discuss the results of some
simulations. It’s important to mention that the mesh nodes
were numbered from the left to the right, from the bottom to
the top.

A. Validation

Let ωe(x̄, t) = cos(t) sin(x) sin(y), where x̄ = (x, y), i.e.,
the usual coordinates x and y, be the exact solution of the
problem:⎧⎪⎪⎨
⎪⎪⎩

ω̈(t) + Δ2ω(t) + χOω̇(t) = f(x̄, t), x̄ ∈ Ω, t ≥ 0,
ω(t) = Δω(t) = 0, x̄ ∈ ∂Ω, t ≥ 0,
ω(x̄, 0) = ω0(x̄) = sinx sin y, ∀x̄ ∈ Ω,
ω̇(x̄, 0) = ω1(x̄) = 0, ∀x̄ ∈ Ω,

(12)
where f = f(x̄, t) is obtained substituting ωe(x̄, t) in (3) and
using the ideas presented in (7), that is,

f(tn) =
1

4
fn+1 +

1

2
fn +

1

4
fn−1.

Since the exact solution of (12) is known, it is possible to
compare the analytical and the numerical solutions. For these
comparisons, we used the norm ‖E‖L∞(0,T ;L2(Ω)).

Now, we will present the results obtained: first, we fixed
the area O where the damping acts, and then, in the next
subsection, we changed its size and position.

1) Simulations considering O =
[
π
4 ,

π
2

]× [
π
4 ,

3
4π

]
.

We defined: h = π
2i+2 , i = 0, 1, 2, 3, 4.

So, considering T = 1, O =
[
π
4 ,

π
2

] × [
π
4 ,

3
4π

]
, the results

of some simulations can be seen in Table I and Table II below.
To illustrate, considering the simulation on the penultimate

row of Table II, Fig. 2 shows a comparison between the exact
and approximate solutions at the point x1461 =

(
3
16π,

3
8π

)
,

inside O, and at the point x1469 =
(

5
31π,

3
8π

)
, outside the

area O. It can be noticed that one solution is near the other.
From the simulations made, we can conclude that the

numerical solution is being calculated correctly.
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TABLE I
VALIDATION: ERROR TABLE CONSIDERING Δt = 0.1

i hi Δt ‖E‖L∞(0,1;L2(Ω))

0 0.7853982 0.1 0.0775903
1 0.3926991 0.1 0.0563078
2 0.1963495 0.1 0.0256471
3 0.0981748 0.1 0.0115063
4 0.0490874 0.1 0.0068410

TABLE II
VALIDATION: ERROR TABLE CONSIDERING Δt = 0.01

i hi Δt ‖E‖L∞(0,1;L2(Ω))

0 0.7853982 0.01 0.0758241
1 0.3926991 0.01 0.0550678
2 0.1963495 0.01 0.0239501
3 0.0981748 0.01 0.0090214
4 0.0490874 0.01 0.0032785

Fig. 2. Simulation Results: Validation

2) Simulations considering different rectangles O.
The aim of this subsection is to verify what happens to the

approximate solution when the position of the subdomain O
changes.

For this, we fixed h = π
32 and Δt = 0.01. In each numerical

simulation, the subdomian O has the same size, but different
positions. The results can be seen in Table III.

TABLE III
VALIDATION: ERROR TABLES CONSIDERING h = π

32
, Δt = 0.01 AND

DIFFERENT SUBDOMAINS O THAT HAVE THE SAME SIZE, BUT DIFFERENT
POSITIONS

h Δt O ‖E‖L∞(0,1;L2(Ω))
π
32

0.01
[
π
4
, π
2

]
×
[
π
4
, 3
4
π
]

0.0090214
π
32

0.01
[

π
32

, 9
32

π
]
×
[
π
4
, 3
4
π
]

0.0097619
π
32

0.01
[

π
32

, 9
32

π
]
×
[
15
32

π, 31
32

π
]

0.0098695
π
32

0.01
[

π
32

, 9
32

π
]
×
[

π
32

, 17
32

π
]

0.0098695
π
32

0.01
[
23
32

π, 31
32

π
]
×
[
15
32

π, 31
32

π
]

0.0098695
π
32

0.01
[

π
32

, 9
32

π
]
×
[
15
32

π, 31
32

π
]

0.0098695
π
32

0.01
[

5
32

π, 13
32

π
]
×
[
11
32

π, 27
32

π
]

0.0093700
π
32

0.01
[
15
32

π, 23
32

π
]
×
[

4
32

π, 20
32

π
]

0.0090706

Furthermore, varying the position of O, the error does
not change significantly and the numerical solution is also
obtained correctly.

3) Validation: Conclusion
Notice that analyzing the simulation results, we can

conclude that the numerical solution is close to the exact
one. In other words, the numerical solution is being calculated
correctly. Then, considering f(x̄, t) = 0 on the right side of
(12), we return to the original problem (1).

B. Decay of Energy

Using the same initial conditions ω0(x̄) and ω1(x̄)
previously used, the problem that will be studied is given by:⎧⎪⎪⎨
⎪⎪⎩

ω̈(t) + Δ2ω(t) + χOω̇(t) = 0, x̄ ∈ Ω, t ≥ 0,
ω(t) = Δω(t) = 0, x̄ ∈ ∂Ω, t ≥ 0,
ω(x̄, 0) = ω0(x̄) = sinx sin y, ∀x̄ ∈ Ω,
ω̇(x̄, 0) = ω1(x̄) = 0, ∀x̄ ∈ Ω.

(13)

Our goal from now on is to verify the energy decay that
has already been proved in the literature. We know that
the energy of the semi-discretized system is given by (4).
For simplicity, using the Composite Trapezoidal Rule and
second-order approximations for the derivates, we obtained
a formula to calculate numerically the energy associated with
the problem at each discrete time.

Then, in the following subsections, the results of some tests
will be presented.

1) Increasing Intervals
In this simulation, we set T = 10, h = π

32 , Δt = 10
100 = 0.1

and tests varying only O were performed. These differents
subdomains can be seen in Fig. 3.

Fig. 3. Increasing Intervals: Subdomains O

The results of energy study for each of these regions can
be seen in Fig. 4. Note that the energy decreases in all cases.
Furthermore, the bigger the area O is, the faster the energy
decreases.

2) Nested Intervals
In the next simulation, an increasing sequence of nested

subdomains was constructed and our aim is to try to
understand the influence of the damping acting in it.

We set T = 8, h = π
32 and Δt = 8

100 = 0.08. Also, we
have, for i = 1, 2, 3, 4, 5:

Oi =

[
16

32
π − 3ih,

16

32
π + 3ih

]
×

[
16

32
π − 3ih,

16

32
π + 3ih

]
.
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Fig. 4. Increasing Intervals: Energy Decay

From Fig. 5, we can conclude the energy also decays in each
of the simulations. Furthermore, again, the larger the region
O, the energy decreases faster.

Fig. 5. Nested Intervals: Energy Decay

3) Influence of the Numerical Viscosity Term
In this example, we will investigate the necessity of adding

the numerical viscosity term. For this, some simulations,
whose graphs can be seen in Fig. 6 and Fig. 7, were performed.
Note that different subdomains O were considered and there
was energy decay in both cases, whether considering the
numerical viscosity or not. Moreover, with respect to energy,
we noticed little difference when added this term.

As we can see in Fig. 8, in the absence of the region of
damping, considering the scheme with the numerical viscosity
term, the energy decays slowly. However, when we remove
that term, there was no energy dissipation. That is, in the case
without the subdomain O (area where the damping acts), the
term numerical viscosity is essential to have energy decay.

Fig. 6. Energy Decay: Δt = 0.1, h = π
32

, O =
[

5
16

π, 11
16

π
]
×[

5
16

π, 11
16

π
]
.

Fig. 7. Energy Decay: Δt = 0.06, h = π
32

, O =
[

π
32

, 31
32

π
]
×
[

π
32

, 31
32

π
]
.

V. CONCLUSIONS

In this paper, we studied the stabilization of Bernoulli-Euler
plate equation numerically. So, we proposed and implemented
an algorithm, based on the Finite Difference Method, for
obtaining an approximate solution to this problem. Then,
numerical simulations, which showed the behavior of the
solution, were performed.

Moreover, we conducted a study on the decay of the energy
associated with the problem, confirming the theoretical results
that have already been proved in the literature. Furthermore,
we realised that this decay is related to the region O: the
larger the area where the damping acts is, the faster the energy
decreases. Analyzing the results of the simulations performed
in the presence of damping, considering or not the viscosity
term did not change significantly the energy decay. However,
the same does not happen in the absence of a region O.

According to the simulations, we can conclude that either
the damping term or the numerical viscosity is essential to
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Fig. 8. Energy Decay Without Damping: Δt = 0.15, h = π
32

.

have energy decay. However, the action of both terms isn’t
required for this decay.
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