
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:7, 2011

1231

 

 

  

   Abstract—This paper presents an exact analytical model for 
optimizing stability of thin-walled, composite, functionally graded 
pipes conveying fluid. The critical flow velocity at which divergence 
occurs is maximized for a specified total structural mass in order to 
ensure the economic feasibility of the attained optimum designs. The 
composition of the material of construction is optimized by defining 
the spatial distribution of volume fractions of the material 
constituents using piecewise variations along the pipe length. The 
major aim is to tailor the material distribution in the axial direction so 
as to avoid the occurrence of divergence instability without the 
penalty of increasing structural mass. Three types of boundary 
conditions have been examined; namely, Hinged-Hinged, Clamped-
Hinged and Clamped-Clamped pipelines. The resulting optimization 
problem has been formulated as a nonlinear mathematical 
programming problem solved by invoking the MatLab optimization 
toolbox routines, which implement constrained function 
minimization routine named “fmincon” interacting with the 
associated eigenvalue problem routines. In fact, the proposed 
mathematical models have succeeded in maximizing the critical flow 
velocity without mass penalty and producing efficient and economic 
designs having enhanced stability characteristics as compared with 
the baseline designs. 

   
Keywords—Functionally graded materials, pipe flow, optimum 

design, fluid- structure interaction 

I. INTRODUCTION 
HE concept of functionally graded materials (FGMs), in 
which the properties vary spatially within a structure, was 

originated in Japan in 1984 during the space project, in the 
form of proposed thermal barrier material capable of 
withstanding high temperature gradients. FGMs may be 
defined as advanced composite materials that fabricated to 
have graded variation of the relative volume fractions of the 
constituent materials [1]. FGMs can be promising in several 
applications such as, spacecraft heat shields, high performance 
structural elements, heat exchangers, oil and hydraulic 
pipelines, etc. A basic introduction to the mechanics of an 
elastic pipe containing flowing fluid may be found in many 
published literatures. Paidoussis and Issid [2] introduced the 
fundamental governing differential equations of flexible pipes 
containing flowing fluid. Both dynamics and stability were 
dealt with where the flow velocity can be either constant or 
with small harmonic component. It was shown that the system 
could be subjected to both divergence and flutter instabilities 
at higher flow velocities. The bending motion of a simply 
supported pipeline conveying fluid was investigated in [3], 
where a power series solution was used to solve the governing 
differential equations. The study showed that the ratio of fluid 
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mass to total mass could have a considerable effect on the 
natural vibration characteristics of the system. Other recent 
work dealt with the analysis of pipes made of advanced 
composite materials can be found in the literature. Zou et al 
[4] presented a state-variable model developed for the analysis 
of fluid-induced vibration of composite pipeline systems. The 
effect of fluid Poisson’s ratio, the ratio of pipe radius to pipe 
wall thickness, laminate lay-up, fluid velocity and pressure 
were all considered in the analysis. Rabeih et al [5] studied the 
effect of composite material parameters on the natural 
frequencies and critical flow velocities of pipes conveying 
fluid with different configuration. A finite element model was 
derived based on Timoshenko beam theory of a generally 
orthotropic material pipe and results showed that the critical 
flow velocity is greatly affected by the composite material 
properties. The dynamic characteristics of fluid-conveying 
functionally graded materials cylindrical shells were 
investigated by Sheng and Wang [6]. A power-law was 
implemented to model the grading of material properties 
across the shell thickness and the analysis was performed 
using modal superposition and Newmark’s direct time 
integration method. Concerning system optimization, Tanaka 
et al. [7] applied variational principles combined with finite 
elements to maximize the critical flow velocity through a 
cantilevered pipeline having a constant structural mass. The 
pipe inner diameter was kept constant, while the wall 
thickness distribution was determined through the 
optimization process. Another work considering maximization 
of the fundamental bending frequency of a uniform 
cantilevered pipe for a fixed fluid velocity was given by 
Sallstrom [8]. The chosen design variables comprised the 
location and values of lumped masses, springs or dampers 
connected to the pipe. An optimum design problem to find the 
minimal structural mass at fixed critical flow speed was 
addressed in [9], with the finite element method applied to 
solve the associated linear equation of motion. Maalawi and 
Ziada [10] presented new methodologies for maximizing the 
critical flow velocity (divergence velocity) through flexible 
pipelines for a specified total mass. Optimum solutions were 
restricted to the case of simply supported pipes with the 
design variables taken only to be the wall thickness and length 
of each module composing the pipeline. All of the numerical 
examples treated in these studies have involved only single 
mode divergence cases, which is termed as unimodal 
optimization in which the lowest eigenvalue is well separated 
from the higher ones. Multimodal structural optimization was 
treated by Bendsoe et al. [11], in which a bound formulation 
using Lagrange multipliers was implemented. The true 
optimality conditions were derived for the problem with 
multiple eigenvalue constraints [12], but without any solution 
algorithm proposed. A more accurate method for calculating 
Lagrange multipliers was presented in [13], where the actual 
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modality of the problem can be determined. Simplified 
modeling with the application of the penalty function method 
and Powell's multi-dimensional search technique to find the 
constrained optimum solutions was employed in [14]. Such 
standard non-gradient methods avoid the singularities in 
calculating the eigenvalue derivatives with respect to the 
design variables due to the multiplicity of the objective 
function. More recently, Librescu and Maalawi [15] 
introduced the underlying concepts of using material grading 
in optimizing subsonic wings against torsional instability, 
where both continuous and piecewise structural models were 
successfully implemented. Other recent work by Maalawi 
[16], [17] considered buckling optimization of functionally 
graded columns and cylindrical shells.In this paper, further 
investigations of the static instability phenomenon are 
considered by presenting a more spacious optimization model 
and extending the analysis to cover both effects of material, 
thickness grading and type of support boundary conditions. 
The model incorporates the effect of changing the volume 
fractions of the constituent materials for maximizing the 
critical flow velocity while maintaining the total mass at a 
constant value. Extensive computer results have been obtained 
to investigate the functional behavior of the critical flow 
velocity with the selected design parameters. Additional 
constraints are added to the optimization model by imposing 
upper limits on the fundamental eigenvalue to overcome the 
produced multiplicity near the optimum solution. The 
proposed optimization model can be regarded as a useful tool 
in obtaining pipeline designs having enhanced stability and 
stiffness levels. 
 

II. MATHEMATICAL MODEL 

The determination of the critical flow velocity at which 
static or dynamic instability can be encountered is an 
important consideration in the design of slender pipelines 
containing flowing fluid. At sufficiently high flow velocities, 
the transverse displacement can be too high so that the pipe 
bends beyond its ultimate strength leading to catastrophic 
instabilities. The present work is confined to maximization of 
the critical flow velocity, also termed as the divergence 
velocity, at which the elastic bending of the pipe increases 
rapidly to the point of failure. High divergence velocity can be 
regarded as a major aspect in designing an efficient piping 
system with enhanced flexural stability. Maximization of the 
divergence velocity can also have other desirable effects on 
the overall structural design. It helps in avoiding the 
occurrence of large displacements, distortions and excessive 
vibrations, and may also reduce fretting among structural 
parts, which is a major cause of fatigue failure. 
 
A. Model description 

The pipe model under consideration consists of rigidly 
connected thin-walled tubes, each of which has different 
material properties, cross-sectional dimensions and length, as 
shown in Fig. 1. The tube thickness, h, is assumed to be very 
small as compared with the mean diameter, D. The pipe 
conveys an incompressible fluid flowing steadily with an axial 
velocity Uk through the kth module. The variation in the 

velocity across the cross section is neglected, and the pipe is 
assumed to be long and slender so that the classical 
engineering theory of bending can be applicable. The effects 
of structural damping, damping of surroundings and gravity 
are not considered in the present analysis. The inclusion of the 
surrounding damping can only be significant in cases of 
buried pipelines [3], which are not treated herein. Practical 
designs ignoring small damping, which has stabilizing effect 
on the system motion, are always conservatives. Moreover, 
the present study does not consider pipes supported vertically, 
which are subject to additional gravity loads [2]. The model 
axis in its un-deformed state coincides with the horizontal x-
axis, and the free small motion of the pipe takes place in a two 
dimensional plane with transverse displacement, w. Additional 
simplifying assumptions pertaining to specific derivations are 
presented in their respective sections. 
 

Fig. 1 General configuration of a piecewise axially graded pipe 
conveying fluid 

 
B. The Eigenvalue problem 

   The eigenvalue problem associated with divergence 
instability is described by the differential equation [10]: 

 

EIkw″″ +ρfAkUk
2w″=0                                                  (1) 

    
where the notation ( )′ means differentiation with respect to x. 
Equation (1) may look like the differential equation, which 
governs buckling of elastic columns with the term ρfAkUk

2 
regarded to be equivalent to the applied compressive force. 
However, from the mathematical and physical points of view, 
the problem of determining the critical flow velocity in an 
elastic pipe is not fully similar to that of the column’s 
buckling problem. The axial velocity is not, in general, 
constant lengthwise, as does the axial force in a column, and 
the distribution of the shearing force is also not the same. New 
features of buckling optimization of flexible columns have 
been addressed in [14], [16], where exact analysis was 
performed for columns having either tubular or solid cross 
sections. It is convenient to deal with dimensionless quantities 
so that the analysis can be valid for arbitrary pipe 
configurations. The various parameters are normalized by 
their corresponding values of a baseline pipe having the same 
total mass and length, material and fluid properties, and 
boundary conditions as well. The baseline pipe has uniform 
mass and stiffness distributions along its length and is made of 
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two different materials denoted by (A) and (B) with equal 
volume fractions (V), i.e. VA=VB= 50%. For the optimized 
designs, the physical and mechanical properties are allowed to 
vary lengthwise (i.e. VA≠VB), yielding to grading of the 
material in the direction of the pipe’s axis. Assuming no voids 
are present, the distributions of the mass density (ρ) and 
modulus of elasticity (E) are determined as follows [18]: 
 
Volume fractions     :  VA(x) + VB(x) =1                                                                          
Mass density            :  ρ(x) = VA(x) ρA + VB(x) ρB       

Modulus of elasticity: E(x) = VA(x) EA+ VB(x) EB       (2) 
 
    Referring to Table 1, it is noticed that the same symbols 
that define the actual parameters are reused to define their 
corresponding dimensionless quantities in order to avoid 
having many subscripts and symbols in the derived equations. 
Normalizing with respect to the baseline design by dividing 
(1) by EIk/Lo

3:    
 

0ww 2
k =′′+′′′′ λ ,                                                          (3) 

 

where 

IEA
AU

IE
A

Uλ

kkk

max

k k

k
kk

=

=
,      k=1,2,…,Nm                    (4)       

 
which is valid over the length of any kth module of the pipe, 
i.e. 0 ≤ x ≤ Lk, where x =x-xk (see Fig. 1). 

 
TABLE I 

DEFINITION OF DIMENSIONLESS QUANTITIES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

** Reference pipe has the following uniform properties: 
Area Ao=πDo

2/4, Io≅πDo
3ho/8, total mass Mo=ρoπDohoLo, where ρo is the 

density of the pipe material, Lo is the total length, ho wall thickness, and Eo is 
the modulus of elasticity. The notation x← x/Lo means that the dimensionless 
axial distance is equal to its dimensional value divided by the total length of 
the pipe. Eo=0.5(EA+EB), ρo=0.5(ρA+ρB). 
 

 In equation (4), U stands for the flow velocity through the 
pipe module having the maximum cross sectional area Amax 
and Nm is the total number of modules composing the pipeline. 
It is noted that consideration of the continuity equation 

provides that UkAk=UAmax,k=1,2,…Nm Possible boundary 
conditions at the end supports of the pipeline are stated in the 
following:  
 
(a) Hinged-Hinged        (H/H):  w(0)=w″(0)=0 
                                                  w(1)=w″(1)=0 
(b) Clamped-Hinged     (C/H):  w(0)=w″(0)=0 
                                                  w(1)=w′ (1)=0   
(c) Clamped-Clamped  (C/C):  w(0)=w′ (0)=0 
                                                 w(1)=w′(1)=0 
 
    For a cantilevered pipeline, static instability caused by 
divergence is unlikely to happen. The non-trivial solution of 
the associated characteristic equation results in a vanishing 
bending displacement over the entire span of the pipeline. For 
such pipe configuration, dynamic instability (flutter) may only 
be considered [2].  
  

III. SOLUTION PROCEDURES 

Equation (3) has an exact solution of the form [18] 
 

xλcosBxλsinBxBB)x(w k4k321 +++=              (5) 
 
where the Bi’s are  constants to be determined by applying 
appropriate boundary conditions. The exact critical flow 
velocity of a multi-module pipeline model can be best 
obtained by applying the well-established transmission matrix 
technique [10] and solving the associated eigenvalue problem. 
The state vector, Zk, at any joint  (k) within the pipeline is 
defined as follows 
 
Zk

T=[w   ϕ   M   F]k 
     =[w  -w′  -EIw″  -EI w ′′′ ]k                                       (6) 

 
At two successive joints (k) and (k+1) the state vectors are 
related to each other by the matrix equation 
 

 Zk+1 = [ Tk ] Zk                                                           (7) 
 

where [Tk] is a square matrix of order 4x4 known as the 
transmission or transfer matrix of the kth pipe module. Its 
individual elements can be obtained by first expressing the 
coefficients Bi ‘s of (5) in terms of the state variables at joint 
(k), and then expressing the state variables at joint (k+1) in 
terms of those at joint (k). The final derived form is  
 

[ ]
--

=

C                            Sλ-                      0      0
 λ/S                            C                        0      0
λIE/)C-(1           λIE/S                1      0

λIE/)Lλ/S(    λIE/)1C(    L-    1

T

kkk

kkk

2
kkkkkkkk

2
kkkkkk

2
kkkkk

k    (8) 

 
where  Ck= cos λkLk  and  Sk= sin λkLk . For a pipeline built 
from Nm - uniform modules, (7) can be applied at successive 
joints to obtain  
 

Quantity Notation Non-dimensionalization ** 
Axial coordinate x x ← x/Lo 
Module’s length  Lk Lk ← Lk/Lo 
Wall thickness hk hk ← hk/ho 

Mean diameter Dk Dk ← Dk/Do 
Cross-sectional area Ak (=πDk

2/4) Ak ← Ak/Ao  ( = Dk
2) 

2nd Moment of area Ik(≈ πDk
3tk/8) Ik ← Ik/Io   ( = Dk

3tk ) 
Young Modulus Ek Ek← Ek/Eo 
Mass density ρk ρk←ρk/ρo 
Transverse 
displacement  

w w ← w/Lo 

Bending moment M M ← M*(Lo/EIo) 
Shearing force F F  ← F * (Lo

2/EIo) 
Axial flow velocity Uk Uk ← Uk *(ρfAoLo

2/EIo)1/2 
Structural mass Ms  Ms←Ms/Mo 

(= ∑
=

Nm

1k
kkk k LhDρ ) 
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ZNm+1 = [ T ]  Z1                                                          (9) 
  
where [T] is called the overall transmission matrix formed by 
taking the products of all the intermediate matrices of the 
individual modules. Therefore, applying the boundary 
conditions and considering only the non-trivial solution, the 
resulting characteristic equation can be solved numerically for 
the critical flow velocity, U.  

IV. OPTIMIZATION MODEL FORMULATION 
The optimization problem considered herein is to find a 

design point (Vf ,h ,L)k,1,2 ..Nm, which provides the highest value 
of the critical velocity U through a slender composite pipe 
having a specified total mass. It is cast in the following: 
 
Maximize  (U) 

Subject to  

Ms=1.0 

∑ =
=

Nm

1k
k 0.1L      

Vfmin≤ Vfk ≤ Vfmax 

hmin ≤  hk  ≤ hmax 
0.0  ≤ Lk ≤1.0                                                             (10) 

              
where Vfmin and Vfmax  are the lower and upper limits imposed 
on the fiber volume fraction (e.g. 30% and 70%), and  hmin and  
hmax are the corresponding values imposed on the wall 
thickness. The latter may be determined from other strength 
requirements, which are not considered here. In the case 
studies treated in the present study, hmin and hmax are assumed 
equal to, respectively, 0.5 and 1.25 of the wall thickness of the 
pipe baseline design. Extensive computer experimentation for 
obtaining the non-trivial solution of (9), for various pipe 
configurations, has demonstrated that the critical velocity can 
be multiple in some zones in the design space. This means that 
the eigenvalues cross each other, indicating multi-modal 
solutions (i.e. Bi- Tri- Quadri- modal solutions). Such a 
multiplicity introduces singularity of the eigenvalue 
derivatives with respect to the design variables, which does 
not allow the use of gradient methods [11], [12].  Therefore, it 
is necessary to formulate the optimization problem with 
respect to the critical velocity connected with two, three, or 
four simultaneous divergence modes. The present formulation 
employs multi-dimensional, non-gradient search techniques to 
find the required optimum solutions [13], [19]. This 
formulation requires only simple function evaluations without 
computing any derivatives for either the objective function or 
the design constraints. The additional constraints, which ought 
to be added to the optimization problem described in (10) are:  

U1≤ Uj ,   j=2,3…m.                                                  (11) 
 
where U1 is the first eigenvalue representing the 
dimensionless critical flow velocity,  Uj's are the subsequent 
higher eigenvalues, and m is the assumed modality of the final 
optimum solution. All constraints are augmented with the 
objective function through penalty multiplier terms, and the 

number of active constraints at the optimum design point can 
automatically detect the actual modality of the problem. In the 
case of single mode optimization, none of the constraints 
become active at the optimal solution.  It is noted that the total 
mass and length equality constraints can be used to eliminate 
some of the design variables, which help reducing the 
dimensionality of the optimization problem. The MATLAB 
optimization toolbox is a powerful tool that includes many 
routines for different types of optimization encompassing both 
unconstrained and constrained minimization algorithms [19]. 
One of its useful routines is named “fmincon” which finds the 
constrained minimum of an objective function of several 
variables.  

 
V.   RESULTS AND DISCUSSIONS 

 The mathematical model developed in this paper has been 
applied to obtain the required optimal solutions of FGM pipes 
made of carbon-AS4 (material A) and epoxy-3501-6 (material 
B), which has favorable characteristics and is highly desirable 
in several mechanical, civil and aerospace engineering 
applications [20]. Important properties of the material are 
given in Table II.  
 

 TABLE II 
MATERIAL PROPERTIES OF CARBON-AS4/EPOXY-3501-6 

COMPOSITE 

Property Carbon Fibers 
(material A)      

Epoxy matrix 
(material B) 

Mass density (g/cm3) ρf  = 1.81       ρm = 1.27 
 

Young's modulus (GPa) E1f  = 235       Em = 4.3 

 Shear modulus (GPa) G12f  = 27       Gm = 1.6 
Poisson's ratio ν12f  = 0.2      νm = 0.35 

 
The characteristic equations for calculating the critical flow 

velocity of the baseline pipe design with various boundary 
conditions are given in Table III. Considering next a two-
module, simply supported pipe with constant diameter and 
wall-thickness, only four variables denoted by (Vf,L)k=1,2 can 
be considered in the design optimization process. Two 
variables can be eliminated using the equality constraints 
imposed on the total length and structural mass. 
 

TABLE III 
CRITICAL FLOW VELOCITY OF BASELINE DESIGNS 

Type of supports Velocity equation Ucr, i i=1,2,3 
Hinged-Hinged 

(H/H) 
sinλ=0 π, 2π, 3π 

Clamped-Hinged 
(C/H) 

tanλ=λ 4.493, 7.726, 10.904 

Clamped-Clamped 
(C/C) 

2cosλ+λsinλ=2 2π, 8.987, 4π 

 
    

 Fig. (2) depicts the functional behavior of the 
dimensionless critical flow velocity, Ucr,1 augmented with the 
equality mass constraint, Ms=1. It is seen that the function is 
well behaved and continuous everywhere in the design space 
(Vf -L)1, except in the empty region located at the upper right 
of the whole domain, where the mass equality constraint is 
violated.  
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Fig. 2 Effect of material grading on the critical flow velocity for a 
two-module, H/H pipe with constant total mass 

 
The feasible domain is seen to be split by the baseline 
contours (Ucr=π) into two distinct zones. The one to the right 
encompasses the constrained global maxima, which is 
calculated to be Ucr=3.2235 at the optimal design point (Vf 
,L)k=1,2 =(0.550, 0.80), (0.30, 0.20). Actually, each design 
point inside the feasible domain corresponds to different 
material properties as well as different stiffness and mass 
distributions, while maintaining the total structural mass 
constant. Fig. (3) shows the developed isodiverts (lines of 
constant divergence velocity, Ucr,1) in the (Vf1-Vf2) design 
space.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Isodiverts in the (Vf1-Vf2) design space for a two-module, H/H 

pipe 
 

The equality mass constraint is violated in the first and third 
quadrants and the cross lines Vf1=50% and Vf2=50% represent 
the isodiverts of the baseline value π.Isodiverts for the case of 
a clamped-hinged, two-module pipe are shown in Fig. 4. In 
such a case four distinct regions bounded by the baseline 
value (4.493) can be observed. The global maxima lies in the 
upper right region with the optimum design point (Vf ,L)k=1,2 
=(0.525, 0.875), (0.325, 0.125) at which Ucr,1=4.5645. Table 
IV summarizes the attained optimal solutions for the different 
types of boundary conditions. Cases of combined material and 
thickness grading are also included, showing a truly and 
significant optimization gain for the different pipe 
configurations. More results indicated that for the case of H/H 
pipelines, good patterns must be symmetrical about the mid-
span point. Therefore, it can be easier to cope with 
symmetrical configurations, which reduce computational 
efforts significantly, and the total number of variables to half. 
In this case, the boundary conditions become w(0)=w″(0)=0 
and w′(1/2)=w″′(1/2)=0. For three-module H/H pipeline, the 
attained maximum value of the critical velocity was found to 
be 3.7955, occurring at the design point (Vf, h, L)k= 
(0.625,0.5,0.15625), (0.7,1.1375, 0.6875), (0.625, 0.5, 
0.15625). This represents about 20.81% optimization gain 
above the baseline value π. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Isodiverts in the (Vf1-L1) design space for a two-module C/H 

pipe under mass equality constraint 
 

TABLE IV 
OPTIMAL SOLUTIONS FOR TWO-MODULE PIPELINES 

       (CASE OF CONSTANT DIAMETER AND TOTAL MASS) 
Support (Vf, h, L)k=1,2 Ucr,max 

 
H/H 
C/H   
C/C 

 
  

H/H  
C/H  
C/C      

Material grading only 
(0.550, 1.0, 0.800), (0.300, 1.0, 0.200) 
(0.525, 1.0, 0.875), (0.325, 1.0, 0.125) 
(0.675, 1.0, 0.125), (0.475, 1.0, 0.875) 

 
Combined material & thickness grading 

(0.70, 1.0, 0.75), (0.65, 0.75, 0.25) 
(0.70, 0.95, 0.9), (0.50, 0.85, 0.10) 
(0.70, 1.0, 0.60), (0.65, 0.85, 0.40) 

 
3.2235 
4.5645 
6.3325 

 
 

3.6235 
5.1355 
7.0965 
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VI. CONCLUSION 
In view of the importance of enhancing the stability and 

raising the overall (stiffness/mass) level of a FGM pipe 
conveying fluid, an appropriate optimization model has been 
formulated for a multi-module pipe with discrete distributions 
of the volume fractions of the selected composite material. 
The objective function has been measured by maximizing the 
critical flow velocity at which divergence occurs while 
maintaining the total structural mass constant. The 
corresponding optimization gains were calculated based on 
the initial reference values of the uniform baseline design. 
Optimization of multi-module pipelines with different support 
conditions have been thoroughly examined indicating that 
good patterns of simply-supported pipes should be 
symmetrical about the mid span of the pipe. The given exact 
structural analysis leads to the exact flow velocities no matter 
the number of modules is. It has been confirmed that the 
module length is most significant design variable in the whole 
optimization process. Some investigators who apply finite 
elements have not recognized that the length of each element 
can be taken as a main design variable in the whole set of 
optimization variables. It has also been shown that 
normalization of all terms results in a naturally scaled 
objective function, constraints and design variables, which is 
recommended when applying different optimization 
techniques. The results from the present approach reveals that 
piecewise grading of the material can be promising producing 
truly efficient pipeline designs with improved bending 
stability. In conclusion, a powerful design tool has been 
obtained by formulating an appropriate objective function and 
applying mathematical programming techniques to the 
resulting optimization problem. Other secondary effects such 
as material and geometrical nonlinearities due to large 
deformation shall be investigated in future studies.  
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