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Stability of Stochastic Model Predictive Control for
Schrodinger Equation with Finite Approximation

Tomoaki Hashimoto

Abstract—Recent technological advance has prompted significant
interest in developing the control theory of quantum systems.
Following the increasing interest in the control of quantum
dynamics, this paper examines the control problem of Schrodinger
equation because quantum dynamics is basically governed by
Schrodinger equation. From the practical point of view, stochastic
disturbances cannot be avoided in the implementation of control
method for quantum systems. Thus, we consider here the robust
stabilization problem of Schrodinger equation against stochastic
disturbances. In this paper, we adopt model predictive control method
in which control performance over a finite future is optimized with
a performance index that has a moving initial and terminal time.
The objective of this study is to derive the stability criterion for
model predictive control of Schrédinger equation under stochastic
disturbances.

Keywords—Optimal control, stochastic systems, quantum systems,
stabilization.

I. INTRODUCTION

IGNIFICANT interest in developing the control theory of

quantum systems has been prompted by recent technological
progress [1], [2]. Following the increasing interest in a wide range
of communities including physical and chemical communities, a
large number of theoretical studies have been devoted to the control
problem of quantum systems [3], [4]. One major concern is how
to design the control input for quantum state to be stabilized to a
stationary target state.

Schrodinger equation [5] is a fundamental equation that describes
how the quantum state varies with time, and is the first step
towards developing a control method for quantum dynamics [6].
Several stabilization methods for Schrodinger equation have been
proposed based on Lyapunov-based control method [7]-[10]. The
stabilization methods for Schrodinger equation with boundary control
and observation have been proposed using the proportional feedback
control [11] and backstepping control [12]. Furthermore, the optimal
control methods that minimize a given performance index subject to
Schrodinger equation have been proposed in [13]-[15].

While the aforementioned papers [7]-[15] have achieved
tremendous progress in developing the control theory of quantum
systems, the optimal control problem of Schrodinger equation under
stochastic disturbances has remained open. Therefore, we consider
here the optimal control problem of Schrodinger equation against
uncertain disturbances.

Model predictive control (MPC), also known as receding horizon
control [16]-[18], is a well-established control method in which the
current control input is obtained by solving a finite-horizon open-loop
optimal control problem using the current state of the system as
the initial state, and this procedure is repeated at each sampling
instant [19]-[21]. Although some MPC methods [22]-[25] do not
provide a systematic way to handle uncertain disturbances, another
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MPC methods [26]-[28] provide a method to guarantee constraint
fulfillment under uncertain disturbances.

In this study, we focus on the MPC problems in which a
performance index is minimized under uncertain disturbances. In
general, the MPC methods against uncertain disturbances can be
classified into deterministic and stochastic approaches.

In the deterministic approach, the control performance is often
too conservative because no statistical properties of uncertain
disturbances are taken into consideration. The other approach is
addressed by stochastic MPC (SMPC) where the expected values of
the performance indices and probabilistic constraints are considered
by exploiting the statistical information of uncertain disturbances.
It is known that a small relaxation of the probability requirement
sometimes might lead to a significant improvement in the achievable
control performance.

Probabilistic  constraints are generally intractable in an
optimization problem. In recent decades, much attention has
been paid to this difficulty of the stochastic MPC problem. For
example, the SMPC methods proposed in [29]-[31] enable us to
deal with unknown arbitrary probability distributions of stochastic
disturbances, including non-Gaussian, infinitely supported, and
time-variant distributions, only under the assumption of known
expectation and variance in the disturbance. It was shown that
concentration inequalities [32] were useful to transform probabilistic
constraints on state variables into deterministic constraints on control
inputs.

Using the SMPC methods in [29]-[31], we consider here the
stabilization problem of Schrodinger equation under stochastic
disturbances. Schrodinger equation is a partial differential equation
described in the complex number field. Stochastic MPC problems
for partial differential equations are beyond the scope of this study.
Thus, we focus on the discretized Schrodinger equation using finite
difference approximation [33]. In this paper, we provide a SMPC
method for Schrodinger equation with finite approximation. The
objective of this study is to show the stability criterion for quantum
systems described by Schrodinger equation with finite approximation.

This paper is organized as follows: In Section II, we introduce
some notations. In Section III, the system model considered here
is introduced. In Section IV, we formulate the SMPC problem for
quantum systems under stochastic disturbances. The main results are
provided in Section V. Finally, some concluding remarks are given
in Section VI.

II. NOTATION

Let R and C denote the real and complex number fields,
respectively. Let Ry and Ny denote the sets of nonnegative real
numbers and positive integers, respectively, in R.

Let ¢ and I denote the imaginary unit and identity matrix,
respectively. For matrix A, let A" and trA denote the transpose and
trace of A, respectively. For matrices A = {a; ;} and B = {b;;},
let the inequalities between A and B, such as A > B and A > B,
indicate that they are component-wise satisfied, i.e., a; ; > b; ; and
aij > bij; hold true for all ¢ and j, respectively. Similarly, let
multiplication A o B indicate that it is applied component-wise, i.e.,
Ao B ={aj; x b;;} forall i and j.

Let A > 0 indicate that A is a positive definite matrix, i.e., 2’ Az >
0 for any x # 0. For a vector x, let the norms ||z|| and |lz||, be
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defined by ||z|| := 2’z and ||z||, := ' Az, respectively, where
A= 0.

A function o : Ry — R4 is said to belong to class K if it is
continuous, strictly increasing, and «(0) = 0. A function o : Ry —
Ry is said to belong to class K if o € K and hm a(s) = oo.

Let s € R and t € R4 denote spatial and temporal variables,
respectively. Let €2 be the set defined by

Q:={s]0 <s<1}.
Let ON2 be the set defined by
00 :={s|s=0,s =1}.

Let ¢(s,t) € C, u(t) € C, and I'(s) € C be complex-valued
state, control input, and the potential function, respectively. Let
m € Ry and h € Ry denote the mass and the reduced Planck
constant, respectively. The subscripts of 1, and 1); denote the real
and imaginary parts of 1. For other variables, we adopt such notation
without explanation.

Let a probability space be denoted by (©,F,P), where © C R
is the sampling space, F is the o-algebra, and P is the probability
measure [34]. Here, © is non-empty and is not necessarily finite.

Let P(E) denote the probability that event E occurs. If P(E) = 1
holds true, £ almost surely occurs. For a random variable z : © — R
defined by (©,F,P), let the expected value and variance of z be
denoted by £(z) and V(z), respectively. For a random vector z =
(21, , 2], whose components are random variables z; : © — R
(i = 1,---,n) defined on the same probability space (©,F,P),
let the same notations £(z) and V(z) be adopted to denote £(z) =
[E(z1), - ,E(2n)]" and V(2) = [V(z1), -+, V(2x)]’ for notational
simplicity. Furthermore, let the covariance matrix C,(z) be defined

by Cu(2) := E[{z — E(x)H{z — £(2)}].

III. SYSTEM MODEL

We consider the control system described by Schrodinger equation

[5].

pOU(s,t) _ B 0*(s,t)
ih ot - QmW +F(5)1/’(57t)7 (1a)
with the boundary conditions
¥(0,t) =0, (1,t) = u(t), (1b)

and the initial condition (s, 0) = 1o (s).
In the case of © = 0 and

_J 0 (0<s<1),
I(s) = { oo (otherwise), @

the system model describes the idealized situation of a particle
in a box with infinitely high walls. This system shows oscillatory
behaviors of v, and t);, and is not asymptotically stable because
all the eigenvalues lie on the imaginary axis. Thus, the property (3)
holds:

1
/ (s, £)[2ds = 1, 3
JO

where |1|? denotes the probability of the existence of a particle.
However, in the case of u # 0, the property of (3) is not necessarily
satisfied.

Let y(s) € C denote the target state defined for s € Q. We assume
that ~(s) is given by the stationary state that satisfies condition (4).

1 9%y(s)
9m 052 '(s)v(s)- 4
Hence, ~(s) should be given by
_ (4 a(s)s _ —a(s)s
Ws) = ey (7 =), 5)

where «(s) is defined by

a(s) = ZmTF(s)

Note that there is the flexibility to determine ~y(s) by properly
choosing w as the target steady input. Let u. denote such a target
input satisfying (5). Without loss of generality, we suppose hereafter
that y(s) = 0 for all s and uy = 0.

In the following, we introduce the discretized model of system
(1). The Crank-Nicolson method [33] is a finite difference method
used for numerically solving partial differential equations. It is a
second-order method in time and space and is numerically stable.

For given ranges 0 < s < 1l and 0 < t < T, we divide
the space and time into M € Ny steps and N € Ny steps,
respectively, where 7' denotes the prediction horizon. This means
each step size is given by As :=1/(M —1) and At :=T/(N —1).
By means of the discretization, ¢ (s,t) can be described by v,
(j=1,---,M,k=1,---,N), where the subscripts j and k denote
space and time, respectively. For other variables, we adopt such
notation without explanation.

Let 4, € CM be defined by vy, := [th1 4, -
and c; be defined by

skl Let a, by,

ﬁ2
= dmAs?

ih T;
bj = — —2a — —
TTTAt 2
ih I
= 1 9a J

Cj Al +2a+

Using the finite difference method and boundary conditions (1b), we
obtain the discretized model of system (1) as

Vi1 = Fpr + Gug, (6)

where F € CM*M and G € CM are defined by

)

-1
b1 a
a by a
F =
a bu
¢ —a
—a c2 —a
>< b
—a CM
by a 0
a b2 a .
G = :
. 0
a b]y[ —a

Next, system model (6) on the complex number field is rewritten as
the one on the real number field by extending the system dimension.
Recall that the subscripts of (), and (-); denote the real and
imaginary parts of the argument.

Let 2(k) € R*M, v(k) € R?, A € R®M*2M and B € R*M*?
be defined by
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Then, we obtain the discretized model on the real number field as
xz(k+1) = Az(k) + Bu(k). (7)

Finally, we introduce the stochastic disturbance into system (7).
Let w(k) € R? be a vector whose each element is a random variable
taking values in © at each time k with known mean y and variance
o2, In this study, we consider the additive noise as shown in Fig. 1.

Consequently, we have the system model perturbed by the
stochastic disturbance as

z(k+1) = Az(k) + B (v(k) + w(k)) . ®

The behavior of this system with v = 0 is unstable and may diverge
form the stationary state due to the disturbance.

Fig. 1 System with additive disturbance

IV. SMPC PROBLEM

In this section, we formulate the SMPC problem of system (8).
The control input v at each time ¢ is determined to minimize the
performance index given by

t+N—1
Ji=¢lz(t+N)+ > Llzk),v(k)], (9a)
k=t

where NV € N denotes the length of the evaluation interval. Moreover,
let ¢ and L be defined by

¢ = Elz(t + N) Pa(t + N)], (9b)
L := E[z(k)' Qz (k)] + v(k) Ru(k), (9¢)

where let P, @, and R be weighting coefficients that are positive
definite constant matrices. Note that ¢ € R, is the terminal cost
function and L € R is the stage cost function over the evaluation
interval.

For notational convenience, we introduce the so-called expanded
vectors. Let X € R™Y, V € R™Y and W € R*Y be defined by

z(t+1)
X(t) := ,
z(t+ N)
v(t)
V(t) := ,
| v(t+ N —1)
w(t)
W(t) =
| w(t+N-—-1)

Note that X, V and W consist of the system state, control input and
uncertain disturbance, respectively, over the evaluation interval.

Similarly, we introduce the so-called expanded matrices. Let A €
RnNXn B c RnNXmN Q c RnNXnN and R c RmNXmN be
defined by

A2
A =

A’N

B 0 0
B.— AB B ’
: - 0
AN-lp AN-2B ... B
Q 0 - 0
Q=| " |
: Q o
0 0 P
R 0 0
R = 0 0
0 0 R

Using the expanded vectors and matrices denoted by the
aforementioned notation, the performance index in (9) can be
rewritten as

Jx(t), X (1), U(t)] = E[x(t)' Qu(t)]
+ EX()Y QX ()] + V)RV (t),  (10)

In addition, (8) over the evaluation interval can be rewritten as:

X(t) =Az(t) +B(V(t) + W(t)). (11)

Then, £(X(t)) and V(X(t)) are given by
E(X(t)) = Az(t) + BV (t) + BE(W (1)), (12a)
V(X (t)) = (BoB)V(W(t)). (12b)

In (12a), we apply E(z(t)) = z(t) because the present state x(t) is
a deterministic vector. Note that the performance index (9a) can be
transformed into (13)

J=z(t) Qz(t) + V(t) RV (t)
tr[QC, (X (1))] + (X (1)) QE(X(1).  (13)

Here, we introduce Assumption 1.

Assumption 1: Each element of z(t), V(t) and W (¢) are assumed
to be independent for each time ¢.
Noting that covariance matrix C,(X(¢)) is independent of V (¢), we
have

Co(X(1)) = € [{X(t) — EXE)HX(H) — £X(t))}]
=E[{BW(t) - BE(W() {BW(t) - BE(W(1))}'] .

Substituting (12a) into (13) and neglecting the terms that do not
contain V(t), we obtain

min J[e(1), X(0), V(1) = (14)

min{ V'(t) (B'QB + R) V(1) }
V() +2(Ax(t) + BE(W(1)) QBV(t) [

Note that the minimization problem of J in (9) subject to (11) has
been reduced to a quadratic programming problem (14) with respect
to V, which can be solved using a conventional algorithm [35].

Although we see that the SMPC problem can be solved using a
conventional algorithm [35], the stability of the system controlled
by SMPC is still unknown. The stability considered in this paper is
defined in Definition 1.

Definition 1: System (8) is said to be almost surely asymptotically
stable in the mean if condition (15) is satisfied:

P (lim £(a()) =0) = 1. as)

Here, we impose Assumption 2.
Assumption 2: There exists a positive real constant ¢ such that

[BE(w ()[4 < ONE@E))] 4 (16)
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is satisfied for all A > 0 and ¢ € N.
Note that £(w(t)) is assumed to be bounded, but w(t) itself may be
unbounded. Assumption 2 is introduced to discuss the stability at the
origin of the averaged system for (8).

In the next section, we derive the stability criterion for the system
with SMPC inputs.

V. MAIN RESULTS

First, we provide some preliminary results that are useful to derive
the main results.

The next lemma is well known as the Lyapunov stability theory.

Lemma 1: Consider a system x(t + 1) = f(z(t)), where z(t) :
N — R", f(z(t)) : R™ — R" and f(0) = 0. Suppose that there
exist a Lyapunov function V(z) : R" — R4, class Ko functions
a1, az, and a positive definite function a3 satisfying the conditions:

V() 2 ar([l=ll)
V(z) <az([[zll),
V(f(=)) = V(z) < —as ([|l=]) -

Then the origin x = 0 is asymptotically stable.

The equivalence in Lemma 2 is known as the Schur complement.
Lemma 2: For given block matrices A, B, and C, the next

relationship is valid.

A B
B © =0
=sC=0, A-BC'B=0

Lemmas 3 and 4 are fundamental properties of matrix theory.
Lemma 3: For any A = 0 € R™*™ and b,c € R,

+2b" Ac < V' Ab+ ¢ Ac.

Lemma 4: For any nonsingular matrix A, (4')™" = (A™')" and
A’A = 0 hold true. For any positive definite matrix A, it is true that
A~ > 0, and there exists B such that A = B'B.

Hereafter, we employ the Lyapunov stability theory to derive a
sufficient condition for the asymptotic stability in the mean of the
stochastic MPC system. It is known that there is a restriction on
the choice of a performance index to guarantee the stability of the
closed-loop system with MPC. More precisely, the terminal cost
function should be chosen as a Lyapunov function satisfying (17).
Therefore, we must select a performance index that is appropriate for
stability analysis. Hence, in the subsequent discussion, we consider
the cost functions ¢ and L as:

SlE(x(t+ N))| = E(z(t + N))' PE(x(t + N)),
LIE(x(k)), v(k)] = E(x(k)) QE (x(k)) + v(k) Ru(k)

Note that the minimization problem of the above cost functions can
be reduced to the same minimization problem in (14). Therefore, the
stability of the MPC system with performance index (9) is equivalent
to the stability of a MPC system with the above performance index.

First, we consider the existence of the control input v(t) =
KE&(x(t)) such that inequality (17) holds, where K € R™*" is
a constant matrix.

PE(@(t+1))] — dlE(x(t))] < —L[E(z(t)),v(t)] (17

We know that P, ), and R are weighting matrices introduced in (9).
Let Z and H be matrices such that Z = P~ and H = KZ.
Lemma 5 is important to establish the stability criteria for the
closed-loop system with the stochastic MPC.
Lemma 5: Inequality (17) is satisfied if there exist Z and H such
that the linear matrix inequality (LMI) in (18) holds for given Q, R,
and §:

(1-202Z ZA'+H'B" ZQ H'R

AZ + BH Z 0 0
0z 3 o o |70 (¥
RH 0 0 R

Proof: 1t is straightforward that

PE(x(t +1)] — gl (x(1))] = E(w(t)) {B'PB} E(w(t))
+E(z(t)) {(A+ BK)'P(A+ BK) — P} E(x(t))
+28(x(t)) (A + BK) PBE(w(t)). (19)

Applying Lemma 3 to the last term on the right-hand side of (19)
yields

PlE(x(t +1))] — p[E(x(1))] < 28(w(t)) {B'PB} E(w(t))
+E@(t)) {2(A+ BK) P(A+ BK) — P} £(x(t)).  (20)

Then applying Assumption 2 to the first term on the right-hand side
of (20) yields

PlE((t +1))] — PlE(x(t))] <
E(z(t)) {26P +2(A+ BK) P(A+ BK) — P} £(z(t)). (1)
Noting that
L=¢&x(1)(Q+ K'RK)E(x(t)), (22
we see that if
P—2(A+BK)P(A+BK)—-2P—-Q—-KRK =0 (23)

is satisfied, then inequality (17) holds true.

Next, it is shown that inequality (23) is equivalent to inequality
(18).

Pre- and post-multiplying (23) by Z yields

(1-20)Z —2(AZ+BH)'Z " (AZ + BH)— ZQZ — H'RH » 0

(24)
Using the relation
iy [QZTTQ 017 Q2
ZQZ-‘,-HRH_{RH 0 R RH |-
we see that (24) is equivalent to the inequality (25).
(1-20)Z
AZ + BH z o 0] '[Az+BH
- QZ 0 @ 0 QZ =0
RH 0 0 R RH
(25)

Using Lemma 2, we see that the Schur complement of (18) is
equivalent to (25). Consequently, the proof has been completed. MW
Let a function V[E(z(t))] : R™ — R4 be defined by

VIE((t)] = i JIE(x(t)), E(X(1)), V(1)) (26)

Let V*(¢) denote the sequence of the optimal control input over the
prediction horizon and be defined by

v (t)
V*(t) =
v (t+ N —1)
= argmin JIE(x(t)), E(X(1)), V(1)). 27

Let X*(t) = [#*(t +1),--- ,2"(t + N)]’ denote the optimal state
sequence of the closed-loop system over the prediction horizon using
V*(t). Let V*(t + 1) be defined by

v (t+1)

V1) = : (28)

v(t+N-1)

v(t+ N)
Here, the final optimal control input v” (¢ + V) is replaced with any
feasible control input v(t + N). Accordingly, let X" (¢ + 1) be the
state sequence of the closed-loop system using V* (¢t + 1).
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Here, we introduce the well-known standard assumption for
stability analysis of the MPC system.
Assumption 3: There exists a function a € K such that

VIE@®)] < a(llE@@)I) (29)

is satisfied for all t € N.
Note that if there exists a positive constant p such that

o] < pllE@@®)II

is satisfied for all ¢ € N, then Assumption 3 is satisfied. Thereby,
Assumption 3 is called the weak controllability assumption.

Here, we provide the stability criteria for the closed-loop system
using the stochastic MPC.

Theorem 1: Under Assumptions 2-3, the closed-loop system
using stochastic MPC input V*(¢) is almost surely asymptotically
stable in the mean if there exist Z and H such that LMI (18) is
satisfied.

Proof: From (26), we have

VIE((®)] = LIE (x(t) ,v" (1)]
t4+N—1

+ Y LIE@E (K)o (K] +6[E@="(t+N)]  (30)

k=t+1
Using the relation
JIE(x(t+1)),E(X"(t+ 1)), V (t+1)]
<J[E@E+1),EX (t+ D),V (E+ )], 6D

we have
VIE((t+1))] = tiN LIE (2" (k)),v" (k)]
k:er PLE (z"(t+ N +1))]
HENI_I LIE (2" (k)),v" ()]
k;tzl[e (" (t+N)),vt+N)]+ o[ (x(t+N+1))]
VIE((t + 1)) (32)

IN

Let V[E€(z(t +1))] be defined as above. Using the above inequality,
we have

VIE(x(t+1))] — VI[E(x(t))]

S VI[E@(t+1)] = VIE(z(t))]

=—L[E(z(t),v" ()] + LIE (" (t+ N)),v(t+ N)]
+¢[E(z(t+ N +1)] = ¢[€ (27 (t + N))] (33)

We observe from Lemma 5 that there exists v(t + N) such that
inequality (34) holds.

€@+ N+1))] = ¢[E(z"(t+ N))|
< —L[E(@"(t+ N)),v(t+ N)] (34)

Applying (34) to (33) yields
VIE(z(t+ 1) = VIE(@®)] < —L[E (x(t),v" ()] (35)

Here, note that there exists a positive constant v such that the
inequalities (36) hold.

VIE(z(t)] > L€ (x(t),v"(t)]
> E(x(t)' QE(x(1))
= v||E(x(t))l (36)
Therefore, we see that
VIE@(t+ 1) = VI[E(z(t)] < —v IE((E)]]- (37)

Consequently, under Assumption 3, we observe that there exist Koo
functions a; and a such that the following inequalities are satisfied.

ar ([[€ (@@)]) < VI[E(=(1))] < az (I€ (z@)])

VIE(z(t+1))] = VIE(x(t)] < —au (€ (z())])
Thus, using Lemma 1, we conclude that £(z(t)) = 0 is
asymptotically stable. This completes the proof. [ ]

From Theorem 1, we can verify the stability of the closed-loop system
with the stochastic MPC by checking LMI (18). A brief description
of the procedure for solving LMI (18) is provided below.

(1) A, B, and § are given.
(i) @ and R are arbitrarily chosen.
(iii) Check LMI (18) using a conventional algorithm [36].
(iv) If there exist feasible solutions Z and H, then go to (v).
Otherwise, go back to (ii).
(v) Pisdetermined by P = Z~ ', and the procedure is terminated.

Based on the above procedure, we identify weighting coefficients P,
@, and R that guarantee the stability of the closed-loop system with
the stochastic MPC.

VI. CONCLUSION

In this study, we have examined the stability problem of SMPC
for quantum systems described by Schrodinger equation with finite
approximation. We have derived a sufficient condition for the
asymptotic stability in the mean of the stochastic MPC system. The
obtained stability criteria is useful to identify weighting coefficients
P, @, and R that guarantee the stability of the closed-loop system
with the stochastic MPC. A brief description of the procedure for
solving the obtained stability condition was provided.

It is known that not only uncertain disturbances but also time
delays may cause instabilities and lead to more complex analysis
[37]-[42]. The stabilization problem of quantum systems with time
delays is a possible future work.
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