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Abstract—The finite element method is used to obtain the elastic 

buckling load factor for square isotropic plate containing circular, 
square and rectangular cutouts. ANSYS commercial finite element 
software had been used in the study. The applied inplane loads 
considered are uniaxial and biaxial compressions. In all the cases the 
load is distributed uniformly along the plate outer edges. The effects 
of the size and shape of concentric cutouts with different plate 
thickness ratios and the influence of plate edge conditions, such as 
SSSS, CCCC and mixed boundary condition SCSC on the plate 
buckling strength have been considered in the analysis. 
 

Keywords—Concentric cutout, Elastic buckling, Finite element 
method, Inplane loads, Thickness ratio. 

I. INTRODUCTION 
TEEL plates are often used as the main components of 
steel structures such as webs of plate girders, box girders, 

ship decks and hulls, and platforms on oil rigs. Perforations 
are often included in the stressed skin cover of air plane 
wings. In plates cutouts are provided to decrease the self-
weight, to provide access, services and even aesthetics. When 
these structures are loaded, the presence of cutouts will cause 
changes in the member mechanical properties, consequently 
there will be change in the buckling characteristics of the plate 
as well as on the ultimate load capacity of the structure. The 
shape of a cutout, different plate boundary conditions, 
thickness ratios of the plate and the type of load applied, 
influence the performance of plates. However, though the 
cutouts are provided to achieve certain structural advantages, 
it is worth to mention here that they may inadvertently affect 
the stability of the plate component in the form of buckling. 
This always can be accomplished by thicker plate but the 
design solution will not be economical in terms of the weight 
of material used. It is possible to design an adequately strong 
and rigid structural plate element by keeping its thickness as 
small as possible. Hence the study of plate stability behavior is 
of paramount importance. Although much information is 
available regarding the buckling strength of perforated plate 
under simply supported boundary conditions, very less 
information is available in the literature concerning the 
influence of different shape and size of cutout at centre and 
plate thickness on the elastic buckling strength of plate, this is 
because of the difficulties involved in determining the 
buckling strength of such plate by using classical methods of 
analysis. Owing to the complexity of the problem caused by 
lack of symmetry in the plate thicknesses and the cutout, it 
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appears that a numerical method such as the finite element 
method would be the most suitable for solving this problem. 
The stability of plate under various compressive loading and 
boundary conditions has been the subject and studied by 
Herrmann and Armenakas [6], Timoshenko and Gere [13] and 
many others. Thin plate theory is based on several 
approximations, the most important of which is the neglect of 
transverse shear deformations. The errors of such a theory 
naturally increase as the thickness of plate increases, Srinivas 
and Rao [11]. Chiang–Nan Chang and Feung–Kung Chiang 
[3] observed the change of mechanical behaviors due to the 
interior holes cut from plate structures and proved the 
importance to study the buckling behaviors to avoid the 
structure instability. They used FEM and considering the 
incremental deformation concept to study the buckling 
behavior of Mindlin thick plate with interior cutout for 
different boundaries and different opening ratios. Christopher 
J. Brown, Alan L.Yettram and Mark Burnett [4] have used the 
conjugate load/displacement method to predict the elastic 
buckling load of square plate with centrally located 
rectangular holes under different types of loads. Shakerley T. 
M. and Brown C. J. [9] have used the conjugate 
load/displacement method to study the effect of eccentricity of 
a square or rectangular hole on the elastic buckling of a square 
plate subjected to axial or shear loads. Shanmugam, 
Thevendran and Tan [10] have used FEM to develop a design 
formula to determine the ultimate load carrying capacity of 
axially compressed square plate with centrally located 
perforations, circular or square. They concluded that the 
ultimate load capacity of the square perforated plate is affected 
significantly by the hole size and the plate slenderness ratio. 
Aydin Komur and Mustafas Sonmez [2] have used the FEM to 
study the effect of cutout location on elastic buckling of 
rectangular plates under linearly varying inplane normal loads 
with a circular cutout. El-Sawy and Nazmy [5] have used the 
FEM to investigate the effect of plate aspect ratio and hole 
location on elastic buckling of uniaxially loaded rectangular 
plates with eccentric holes with simply supported edges in the 
out-of-plane direction. The study concluded that the use of a 
rectangular hole with curved corners, with its short dimension 
positioned along the longitudinal direction of the plate is better 
option than using a circular hole from the plate stability point 
of view. Ultimate strength of square plate with rectangular 
opening under axial compression using non-linear finite 
element analysis was studied by Suneel Kumar, 
Alagusundaramoorthy and Sundaravadivelu [12]. A general 
purpose finite element software ANSYS was used for carrying 
out the study. Jeom Kee Paik [7] studied the ultimate strength 
of perforated steel plate under combined biaxial compression 
and edge shear loads for the circular cutout located at the 
centre of the plate. A series of ANSYS elastic-plastic large 
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deflection finite element analysis has been carried out on 
perforated steel plate with varying plate thicknesses. 

 In the present paper it has been attempted to investigate the 
effect of the size of concentric circular, square and rectangular 
cutouts and the impact of thickness of the plate on the 
buckling load of all-round simply supported (SSSS), clamped 
(CCCC) and SCSC plate boundary condition on the isotropic 
square plate subjected to uniform inplane uniaxial and biaxial 
compression loadings. To carry out the study, ANSYS 
software has been used with 8SHELL93 element [1]. The 
finite element mesh used to model the plate has been decided 
upon carrying out a series of convergence tests and considered 
10 x 10 mesh shows nearly the accurate results hence it has 
been used in the analysis. 

II.  PROBLEM DEFINITION 
The problem of elastic buckling of a square plate subjected 

to uniaxial and biaxial compression loadings along its ends in 
Fig. 1 having different cutout such as circular, square and 
rectangular shapes, different boundary conditions such as 
simply supported, clamped and SCSC. The plate has thickness 
h and dimensions A and B in x and y-directions, respectively 
and circular cutout with diameter d, square and rectangular 
cutouts of size axb. Here concentric cutout ratio is defined as 
the ratio of size of cutout to side of plate. The buckling load 
factor k is assessed with respect to the concentric cutout; vary 
between 0.1 and 0.6 and also with respect to the plate 
thickness ratio η, 0.01 to 0.3. It is known that a square plate 
with all clamped fixed boundary conditions is more stable than 
the same plate with all simply supported boundary conditions. 
Since the actual boundary conditions for a real plate may be 
somewhere between the all clamped and the all simply 
supported extremities and hence in addition to the above two, 
the following mixed plate boundary conditions such as SCSC 
has been considered. 

 

  

Fig. 1 Geometry of the plate 

III. FINITE ELEMENT ANALYSIS PROCEDURE 
The commercial multipurpose finite element software 

program ANSYS was employed in this study. 8SHELL93 
element is used to model the perforated plate because it shows 
satisfactory performance in verification work previously 
described by El-Sawy [5]. The elastic SHELL93 element has 
eight nodes possessing six degrees of freedom per node. The 
material of the plate was assumed to be homogeneous, 
isotropic and elastic. The material properties for Young’s 
modulus E=210924N/mm2 and Poison’s ratio μ=0.3 were 
used.  

A. Buckling of Simply Supported Thick Plate under Uniaxial 
Compression  

R. D. Mindlin in 1951 published the famous thick plate 
theory. This two dimensional theory of flexural motions of 
isotropic elastic plates is deduced from the three dimensional 
equations of elasticity. The theory includes the effects of 
rotary inertia and shear in the same manner as Timoshenko’s 
one dimensional theory of bars [13]. The following 
assumptions are also applied. 
1) The straight line that is vertical to the neutral surface 

before deformation remains straight but not necessarily 
vertical to the neutral surface after deformation. 

2) Displacement is small so that small deformation theory 
can be applied. 

3) Normal stress in the z-direction is neglected. 
4) Body force is neglected. 

A plate of size A and B subjected to a system of general 
external inplane loadings, shown in Fig. 2 has been 
considered. 

 

 
(a) Geometry 

 

 
(b) Inplane stress resultants 

 

 
(c) Thick plate deformation 

Fig. 2 Plate with opening and inplane stress resultants 
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The internal stress resultants at the edges of an element due 
to the external inplane loads be NX, NY and Nxy as depicted in 
Fig. 2. The total potential energy of the plate due to flexure 
and the work done by the membrane stress resultants, taking 
the shear deformation into account may be written as: 
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where χ is the Reissner’s shear correction factor, Ap is the area 
of the plate including the cutout, Ac is the area of the cutout, 
Φx, ΦY are average shear strains, NX, NY, NXY are inplane 
stress resultants and D is the flexural rigidity of the plate. The 
stiffness matrix [K] is the combination of [Kb] and [Ks] such 
that [K] = [Kb] - [Ks], in which the former is due to flexure [4] 
and the later is due to the work associated with the inplane 
stress resultants. Thus static buckling equilibrium equation 
becomes, 
 

[[Kb] - [Ks]] {q} = 0                     (2) 
 

The stress resultants NX, NY and NXY are functions of 
geometrical ordinates (X,Y) for the plate and depend upon the 
magnitude of the external inplane loads, {q} is nodal 
displacement vector. Choosing a factor λ, by which the 
inplane stress resultants can be gradually increased, (2) may 
be written as. 

 
[[Kb] - λ [ Kσ] ] {q} = 0, in which [KS] = λ [K σ]  (3) 

 
The Eigen values of (3) give the critical loads λij of the plate 

under investigation. The lowest Eigen value corresponds to the 
fundamental critical load ‘λcr’. 

Let Pcr be the critical bucking load and by replacing λ by 
Pcr, the governing equation for the static stability problem 
modified to 

 
[ [Kb] – Pcr [Kσ] ] {q} = 0              (4) 

 
The general equation of stability given in (4) contains the 

structural properties in matrix form, viz., [Kb] and [Ks]. The 
very basic assumption in the derivation of these equations is 
that the displacement model of the entire structure which 
satisfies the equilibrium equations and compatibility 
conditions. Developing such a true displacement model is a 
tedious exercise. In the present study an alternate method, 
using the finite element technique through ANSYS software 
has been used.  

IV. DISCUSSION OF THE RESULTS 
Results on the effect of shape and size of circular, square 

and rectangular cutouts and plate thickness ratio on the 

buckling load factor k of the square plate having SSSS, CCCC 
and SCSC plate boundary conditions, subjected to inplane 
uniaxial and biaxial compression loading cases are presented 
and discussed in this section. Here, the concentric cutout ratio, 
defined as the ratio of side of the cutout to plate side, for 
circular (β) and square (δ) lies between 0.1 – 0.6 and for 
rectangular cutout it is 0.1–0.5, along x direction (γ) and along 
y direction (γ'). The thickness ratio (η) defined as the ratio of 
plate thickness to the plate side and varies from 0.01 - 0.3.  

The critical buckling load factor is non-dimensionalised and 
represented as follows: 

 

k =                                           (5) 

 
where,  k    = the buckling load factor. 
             Ncr = the critical buckling load. 
             D   = Plate flexural rigidity = 

)1(12 2

3

μ−
Eh  

             μ    = Poisson’s ratio of isotropic plate. 
             h    = thickness of the plate. 

A. Comparative Study 
In order to verify the present analysis, a comparison with 

existing results in the literature on buckling of square plate 
with and without cutout has been performed. The results of 
present study with the available values are tabulated in Tables 
I-III. It can be observed that the results from the present work 
are in good agreement with the established work. 
 

TABLE I 
COMPARISON OF BUCKLING LOAD FACTOR (K) FOR ISOTROPIC SOLID PLATE 

SUBJECTED TO INPLANE UNIAXIAL COMPRESSION LOAD 
Sl. 
No 

Boundary 
condition 

Thickness 
ratio (η) 

Buckling load 
factor(k) 

Reference 
value 

1 SSSS 

0.01 3.99 4.00[13] 
0.05 3.94 3.91[11] 
0.10 3.78 3.74[11] 
0.15 3.55 Present study 
0.20 3.26 3.15[11] 
0.25 2.96 Present study 
0.30 2.18 Present study 

2 CCCC 

0.01 10.4 10.07[13] 
0.05 9.81 Present study 
0.10 8.49 Present study 
0.15 6.96 Present study 
0.20 5.55 Present study 
0.25 4.36 Present study 
0.30 3.43 Present study 
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Square plates having SSSS, CCCC and SCSC boundary 
conditions with wide ranges of cutout ratios and plate 
thickness ratios are considered. The following conclusions are 
drawn. 
1) Buckling is the critical mode of failure for the major 

portion of the compressed plate with cutout especially 
when its thickness is considerably small. 

2) The cutouts have considerable influence on the buckling 
load factor k. The effect is larger in higher cutout ratios 
and for plate thickness ratio greater than 0.15. 

3) Square plate having circular and square cutouts exhibits 
similar behavior under uniaxial and biaxial loadings, but, 
plate with circular cutouts is more efficient compare to 
plate with square cutouts. 

4) In the plate with circular cutout and square cutout, 
buckling load factor k gradually decreases with the 
increase of thickness ratio η and cutout ratios β and δ. The 
value of k is less by 10% in case of square cutout 
compared to circular cutout for SSSS plate boundary 
condition and it is 5-10% in CCCC and SCSC cases.  

5) Square plate with rectangular cutout, along x-direction, 
shows reduction in the buckling load factor k and it is up to 
18% in CCCC and more than 20% in SSSS and SCSC 
cases.  

6) In case of biaxial loading, buckling load factor k value is 
found to be almost half of that of uniaxial compression 
value, since stiffening of the plate occurs in two directions. 

In summary, buckling of plates with interior cutouts is very 
much affected with the plate thickness and boundary 
conditions. The current study offers useful information for the 
designers.  
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