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Abstract—In this paper, the decomposition-aggregation method 

is used to carry out connective stability criteria for general linear 
composite system via aggregation. The large scale system is 
decomposed into a number of subsystems. By associating directed 
graphs with dynamic systems in an essential way, we define the 
relation between system structure and stability in the sense of 
Lyapunov. The stability criteria is then associated with the stability 
and system matrices of subsystems as well as those interconnected 
terms among subsystems using the concepts of vector differential 
inequalities and vector Lyapunov functions. Then, we show that the 
stability of each subsystem and stability of the aggregate model 
imply connective stability of the overall system. An example is 
reported, showing the efficiency of the proposed technique. 

 
Keywords—Composite system, Connective stability, Lyapunov  

functions. 
 

I. INTRODUCTION 
N recent years in automatic control theory, very often we 
encounter the problem of investigating complex 

multidimensional systems. In principle the classical methods, 
in particular the direct method of Lyapunov [15], may be 
applied for solving these problems. In practice, however, their 
application meets with great computational difficulties which 
increase rapidly as the system’s order grows [11]. The main 
difficulty in the application of Lyapunov method is that there 
is no obvious choice for a function suitable for use as a 
Lyapunov function. The general question on the existence of 
such functions remains completely open. Application of the 
Lypunov method can effectively realized for lower order 
systems [12, 13, 20]. Attempts to get rid of some of these 
difficulties have led to the application of the Bellman [3] and 
Bailey [2] decomposition aggregation approach. They used 
the concept of vector Lyapunov function in their applications 
of Lyapunov method to the investigation of complex systems. 
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A Lyapunov function is found for each individual subsystem. 
Next, all these functions are interconnected into a single 
vector Lyapunov function. The nature of this interconnection 
is determined by the structure of the system being 
investigated. The use of such an approach avoids the technical 
difficulties usually arising when Lyapunov’s method is 
directly applied to the investigation of high-order systems.  

Over the years a large number of extensions and 
applications of the connective stability concept have been 
proposed. A wide variety of structural perturbations have been 
studied, starting as unknown but bounded functions of time 
and state [24, 25]. Subsequently, modeling of uncertain 
interconnection matrices has been broadened to include 
stochastic elements [7, 14], expanding the size of complex 
systems [6, 26] impulse and hybrid systems [8, 17] singular 
perturbations [27] matrix Lyapunov functions [18]. At the 
outset of modeling complex systems, which are composed of 
interconnected subsystems, directed graphs have been 
introduced [22, 24] to define and interpret the interconnection 
structure underlying the dynamics of the interacting structure.  
Subsystems were associated with vertices while 
interconnections with edges of the graph. In order to allow 
accidental and intentional changes in the interconnection 
structure, which are always present in real world applications, 
the graph was assumed to vary as a function of time and the 
state of the systems. To capture the effect of changing 
structure on the stability of large complex systems, the 
concept of connective stability was introduced as Lyapunov’s 
stability under structural perturbation. This opens up the 
possibility of using the powerful Lyapunov’s direct method to 
derive suitable conditions for connective stability. By 
decomposing a composite system into interconnected 
subsystems and aggregating the stability properties of 
subsystems by appropriate Lyapunov functions, we will form 
an aggregate model of the system which involves a vector 
Lyapunov function [19, 21]. Stability of each subsystem and 
stability of the aggregate model imply connective stability of 
the overall system. Our objective is to initiate a systematic 
study of dynamic interconnections within complex systems 
using the proposed concept. 
 

II. PROBLEM FORMULATION 
We consider a linear time invariant system )(S represented 

by the state variable differential equation: 
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xAx =&                                        (1) 

where x is n- dimensional state, and A  is an nn× constant 
matrix. It is natural to assume that a large plant (1) is 
composed of interconnected subsystems given by:  

∑
=

+=
N

j
jijijiii xAexAx

1

&    i=1, 2,…,N                 (2) 

where in
i Rx ∈ are the state vectors of the thi  subsystem, 

iA and ijA are ii nn × and ji nn × real matrices respectively. 

The interconnection parameters [ ]1,0∈ije  are coefficients of 

the NN ×  interconnection matrix E, which are used to model 
the strength of interconnections.  The concept of connective 
stability was first introduced by Siljak [24], to address the 
robust stability of large scale systems. Its main objective is to 
capture uncertainty residing in the interconnections of 
composite systems. To minimize the length of the text of this 
section, a concise description is presented. An NN × matrix 

)(tE with element )(teij and an NN × constant binary matrix 

E with element ije can be introduced for the study of the 
uncertainty and the stability condition of a large scale system 
consisting of N subsystems. The value of )(teij and the 

corresponding value of ije can belong to one of the following: 

(a) Ttteij ∈∀= 0)( ,corresponding 0=ije  

(b) [ ] Ttteij ∈∀∈ 10)( , correspondingly 1=ije  

The required detailed definitions and results can be found in 
[24]. 

Due the physical considerations or mathematical 
manipulations many such systems are regarded as 
interconnection of the following subsystems: 

The n isolated subsystems of the system (2) are given by 
the equations: 

iii xAx =&                                      (3) 
The term jijij xAe  is used to represent the interconnection 

and the uncertainty involved when ij ≠ . Our aim is to find the 
connective stability of the composite system (1) for 
all [ ]1,0∈ije . A classical way to prove connective stability of 

(1) for equilibrium 0=∗x is to use the Matrosov-Bellman 
concept of vector Lyapunov function [16]. Before we do so, 
we introduce first the concept of the decomposition. 

III. DECOMPOSITION 

Systems involving a large number of variables are difficult 
to consider in one piece. Despite the high efficiency of 
modern computers, the formidable complexity of a large 
system can make the problem numerically intractable even 
with the most valuable one shot techniques. It has long been 
recognized that certain complex systems made of interacting 
elements can be decomposed into subsystems of lower 
dimensionality. The separate solutions of the subsystems are 
combined together in some way to provide a solution system. 
While the decomposition principle can bring about a great 

saving in solution time over solving the whole system in one 
piece, it is still highly dependent on the choice of a particular 
decomposition. 

We now outline the decomposition-aggregation method for 
connective stability analysis of the linear constant 
interconnected system (S) described by (1). We can partition 
the state vector x  into two vector components:  

T
nxxxx ),,,(

1112111 L= , T
nxxxx ),,,(

2222212 L=  

where we have renamed the components of the vector x  in an 
obvious way. To study connective stability of the 
equilibrium 0=∗x , we assume that the system (2) is 
decomposed into two interconnected subsystems 

Txxx ),( 21= namely 1S and 2S , that is: 

21212111 )( xAtexAx +=&                             (4a)                   

12121222 )( xAtexAx +=&                            (4b) 
                                                    

which can be obtained from (1) by assuming the matrix E to 
have the form: 

⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

E                                        (5) 

And replacing its elements with the elements )(teij  for 

2,1, =ji  of the matrix E. 
Now, we consider the stability of each decoupled linear 

constant subsystem iδ for 2,1=i  given respectively by: 

iii xAx =&                                       (6)  
Since we want to establish stability of (S), we require that 

iδ  are stable. To have stability of iδ  we propose the scalar 
functions: 

( ) 21
)( ii

T
iii xHxxv =                             (7)                   

as candidates for the Lyapunov functions of the subsystems, 
and require that for any choice of the positive definite 
matrices iG there exist positive definite matrices iH as 
solutions of the Lyapunov matrix equations:  

iiii
T
i GAHHA −=+                             (8)                   

The total time derivative of )( ii xv for 2,1=i  along the 
solution of (6) is: 

i
T

ii xvgrdv && )(= = )(
2
1 21

ii
T
ii xGxv −−              (9)  

where we have used: 

i
T
iii Hxvvgrad 1−=                            (10) 

Finally, from equation (8), (9) and (10) we produce the 
estimates for the Lyapunov functions )( ii xv  as: 

(i) iiiii xvx 21 αα ≤≤  

(ii) iii xv 3α−≤&                             (11) 

(iii) 4iivgrad α≤  
where the positive number ijα are calculated as: 
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)(21
1 imi Hλα =           )(21

2 iMi Hλα =  

)(

)(
2
1

213'
iM

im
i

H

G

λ

λ
α =     

)(
)(

2
1

214'
im

iM
i

H
H

λ
λ

α =            (12) 

Here mλ and Mλ are the minimum and maximum 
eigenvalues of the indicated matrices. 

Conditions (i and ii) imply that the Lyapunov functions for 
each subsystem are positive definite, decrescent and radically 
unbounded; and that the isolated subsystems are all 
asymptotically stable. 

Condition (iii) shows that the bound on the gradient 
Lyapunov functions is on the magnitude only and takes into 
consideration the stabilizing effect of the interconnection 
interactions. 

We use the Lyapunov functions )( ii xv as indices of 
stability for each subsystem iδ to investigate the stability of 
the overall system. Let us take the total time derivative 

)1.3(v& along the solutions of the interconnected subsystem 

iδ of (4) 

i
T

ii xvgradv && )()1.3( = = [ ]jijijii
T

i xAtexAvgrad )()( + = 

jijij
T

ii xAtevgradv )()()3.3( +&  2,1, =ji                            (13)          

By taking the norm on the right-hand side of (13) and using 
the estimate ii x3α− for )3.3(iv& of (11) we get from (13): 

jijiijiii xAvgradtexv )(3 +−≤ α&                 (14) 

If we use the constraint on interactions as: 

jijjij xxA η≤                                 (15) 

where )(21
ij

T
ijMij AAλη = and from the estimates (3.8) 

express iii vx 1
2
−≥η , then we can rewrite the inequalities (14) 

as: 

2
1

21141212113
1

121 )( vtevv −− +−≤ ααηαα&  

223
1

221
1

122421212 )( vvtev ααααη −− −≤&               (16) 

Now we define the vector Lyapunov function as: 

( )Tvvv 21,=                                  (17) 

And rewrite the scalar inequalities (16) as one vector 
inequality [4], [9] 

vWv ≤&                                      (18) 

which involves only the vector Lyapunov function v and 
represent the aggregate model A for the overall system (S) 
defined in (1). The aggregate 22× matrix ijwW = is 

defined as: 

⎪⎩

⎪
⎨
⎧

≠
=−

= −

−

jite
ji

w
ijijij

ii
ij

4
1
1

3
1

2

)( ααη
αα

                        (19) 

To complete our investigation, we should prove that 
connective stability of the overall system (S) follows from 

stability of the aggregate model A..  To show this, we will first 
establish a comparison result for vector differential 
inequalities and majorize the function )(tv that satisfy the 
inequality (18) by solutions )(tr of the equation: 

rWr =&                                      (20) 
when 00 rv = . Here ijwW = is the aggregate matrix which 

corresponds to the fundamental matrix E defined in (5), 

⎪⎩

⎪
⎨
⎧

≠
=−

= −

−

jie
ji

w
ijijij

ii
ij

4
1
1

3
1

2

ααη
αα

                     (21) 

If the matrix is stable (that is Metzler matrix) [1], and for all:  
 

)(tEE = , 

0),()( tttrtv ≥≤                           (22) 
then from 0)( ≥tv we conclude 0)(lim =

∞→
tv

t
, so  

vWv ≤&                                  (23) 

and thus the connective stability of (S). 
Finally, we conclude from the inequality (22) and the 

choice of nonnegative function 2,1)( =ixv ii , which satisfy 
the aggregate model A of (18), that stability of the constant 
matrix W is sufficient for connective stability of the overall 
system. 

IV. EXAMPLE 
To illustrate some aspects of the decomposition of physical 

systems, let us consider the spring-mass-damper shown in Fig. 
1.  
 

 
The equations of motion are: 

)()(1 tfxxcxcxkxm baaaaaaa =−+++ &&&&&  
)(1 abbbbbbb xxcxcxkxm &&&&& −+++                (24) 

 
The equation of motion (24) can be rewritten in the state 

form for 0)( =tf  as: 

mb ma 

Subsystem 1 Subsystem 2 

Fig. 1 A Spring-mass-damper system 
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Assume the parameter values 1== ba kk , 1== ba mm  
and 1== ba cc . We can decompose (25) into two 
interconnected subsystems: 

 

2
1

1
1

11 0
00

0
00

11
10

x
c

x
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⎦

⎤
⎢
⎣

⎡
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−−

=&                                                                                                                                                          

                                                                                  (26)                                                                                                                            
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where the states of the subsystems are 
),(),( 12111 aa

T xxxxx &== and Txxx ),( 22212 = = ),( bb xx & . 
We are interested in estimating the region of stability for the 
interconnecting damper parameter 1c . From (26) we see that 
the damper parameter 1c appears only in the interconnections 
between the two subsystems. Therefore, the chosen 
decomposition will allow us to study explicitly the effect on 
overall system stability of varying the damper 1c . 

We choose the functions )( ii xv as in (7) and solve the 
Lyapunov matrix equations (8) for )2,1( =iAi given in (26) 
and 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

iG                                       (27) 

to get  

⎥
⎦

⎤
⎢
⎣

⎡
=

15.0
5.05.1

iH                                    (28) 

and the estimates (11) as: 

18.2,37.0,35.1,83.0 4321 ==== iiii αααα             (29) 

The constraints (15) are calculated for )2,1,( =jiAij  to get 

1cij =η . 

By using the modified aggregate matrix (20) given by: 

⎪⎩

⎪
⎨
⎧

≠
=+−

= −

−−

jie
jie

w
ijijij

iiiiiiii
ij

4
1
1

4
1

13
1

2

ααη
ααηαα

                 (30) 

since now  

⎥
⎦

⎤
⎢
⎣

⎡
=

11
11

E                                          (31) 

 we get the aggregate model (23) as: 

⎥
⎦

⎤
⎢
⎣

⎡
+−

+−
≤

11

11

62.2276.062.2
62.262.2276.0

cc
cc

v&                (32) 

We use the M-Matrix to determine stability of the aggregate 
matrix W in (32). And we have the stability region for the 
parameter 1c if 13.00 1 ≤≤ c . 

The above example illustrate the parametric aspect of the 
vector Lyapunov function: The effect of changing parameters 
in interactions can be studied explicitly. 

V. CONCLUSION 
Connective stability concept can be used in a suitable way 

to explore conditions for a breakdown of complex dynamic 
system due to failures of their components or subsystems. 
This use, however should involve the system structure in an 
essential way. In our approach we have formulated connective 
stability for an interconnected linear system in term of vector 
Lyapunov function and comparison principle. Lyapunv’s 
method is an ideal mechanism for accomplishing the 
aggregation plan in the stability analysis of interconnected 
dynamic systems. However this approach which is based on 
decomposition-aggregation, simplifies the stability problem, 
but sacrifices detailed information about the size of variations 
of each separate state variable. 
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