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Abstract—This paper studies the problem of exponential 
stability of perturbed discrete linear systems with periodic 
coefficients. Assuming that the unperturbed system is exponentially 
stable we obtain conditions on the perturbations under which the 
perturbed system is exponentially stable. 
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I. INTRODUCTION 
HE theory of linear discrete-time periodic systems has 
received a lot of attention in the last years (see, for 
example [4], [11] and the references therein). In the 

present paper we study certain problem of robust stability of 
such systems. 

Consider a system described by the following linear 
difference equation 
 

),()()1( nxnAnx =+                  (1) 
 
where the  s  -by- s   real matrix  )(nA   is periodic with 
period  .T   Assume that system (1) is exponentially stable. 
An important problem in robustness analysis is that of 
determining the extent to which exponential stability is 
preserved under various types of parameter perturbations. To 
model such perturbations we consider a model of the form  

 
( ) ),()()()1( nxnnAnx Δ+=+                   (2) 

 
where  ),(nΔ    ,...1,0=n   is a sequence of  s  -by- s   real 
matrices which model the parameters perturbations. The 
question is how large this perturbation may be without 
destroying stability or more precisely we are looking for the 
largest bound  r   such that stability is preserved for all 
perturbations  )(nΔ   of norm strictly less than  r   in a given 
normed perturbation set. This largest bound is called the 
stability radius. First time the problem was formally 
formulated for the continuous time invariant system in the 
famous paper of Hinrichsen and Pritchard [6] and since then 
many results have been obtained. The present state of the 
problem and discussion of the related literature an interested 
reader will find in [7]. Most of the results in the literature are 
about time invariant systems.  
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For such systems there are formulas available for the 
stability radius with respect to different classes of 
perturbation. In particular numerical methods of calculating 
the stability radius for time invariant systems are good 
developed. Much less is known about calculating time 
varying stability radius (see [12]). Therefore any bounds for 
this quantity are very important. 

Similar problem to that we consider in the present work 
has been investigated in [2]. However the proposed there 
results require full knowledge about matrices  )(nΔ   
whereas our results are formulated in terms of upper bounds 
for the norm of  ).(nΔ   In the present paper we do not 
assume the periodicity of perturbation sequence and present 
the norm bound for the perturbation which guarantees 
stability of the perturbed system. 
 

II. PRELIMINARY RESULTS 
 

For a sequence  ),...)1(),0(( AAA =   of matrices denote 
transition matrix  

)()...1(),( kAmAkmA −=Φ  
for  km >   and  Imm =Φ ),(  , where  I   is the identity 

matrix. Denote by    a vector norm in  sR   and the 
induced operator norm. By  )(Aρ   we will denote the 
spectral radius of a matrix  A . 
 
 Definition 1 We call the system  

 ),()()1( nxnAnx =+                (3) 
uniformly exponentially stable, if there exist constants  ,C    

,0>ω    1<ω   such that  km
A Ckm −≤Φ ω),(   for all  

,...,1,0, =km    .km ≥   
 

It is well known (see, for example, [3]) that for  −T  
periodic sequence  )(nA , system (1) is uniformly 
exponentially stable if and only if the spectral radius of the 
monodromy matrix  ( ) )0(...1 ATA −   is strictly less then one 
i.e.  ( ) 1))0(...1( <− ATAρ   and it is equivalent to asymptotic 
stability. It is also well known that in general case the 
uniformly exponential stability and asymptotic stability are 
not equivalent (see, for example, [3]). The following lemma 
is a straightforward consequence of Definition 1. 
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Lemma 1 If sequence  )(nA   is  −T  periodic and  )(nΔ   is 
bounded, then system (1) is uniformly exponentially stable if 
and only if there exist constants  ,C    ,0>ω    1<ω   such 
that 

( )Tkm
A CkTmT −

Δ+ ≤Φ ω),(  
for all  ,...,1,0, =km    .km ≥   
 
 In our further consideration we will use the following 
discrete version of Gronwall's inequality(see [3]). 
 
Theorem 1 Suppose that for two sequences  )(nu   and  

),(nf    ,...1, 00 += kkn   of nonnegative numbers the 
following inequality  

)()()(
1

0

ifiuqpnu
n

ki
∑
−

=

+≤  

holds for certain  Rqp ∈,   and all  ,...1, 00 += kkn  , then  

( ))(1)(
1

0

iqfpnu
n

ki

+≤ ∏
−

=

                   (4) 

for all  ...,1, 00 += kkn   . 
 

III. MAIN RESULTS 
The next theorem contains the main result of this paper. 

To formulate it, let introduce the following notations 
 

),(max,)(sup
,...,0

iTKn A
Ti
Φ=Δ=

=
Δ . 

Theorem 2 Consider system (1) with  −T  periodic sequence  
)(nA .  If matrix  )0()...1( ATAB −=   is such that for certain 

operator norm  ⋅   there exist  0, >ωC  ,  1<ω   such that  
Tnn CB ω≤                                  (5) 

for all  ,...1,0=n  , and  

11 <+ +−TCK ωω Δ                            (6) 
then system (2) is uniformly exponentially stable. 
 
Proof  We can rewrite (2) in the following form 
  

),()()()()1( nxnnxnAnx Δ+=+  
 
and for  0)( xkx = ,  we have  

)()()1,(),()(
1

0 ixiimxkmmx A

m

ki
A Δ+Φ+Φ= ∑

−

=

 

for all  km ≥  . For natural number  i   denote by  )(ip   and  
)(ir   the quotient and the remainder of the division  i   by  

,T   that is,  )()( irTipi +=  . Moreover let define  

.
0)( if )(

0)( if 1)(
)(

⎩
⎨
⎧

=
≠+

=
irip

irip
iq  

With this notation we have  

( ) ),)((, )( kTkqBkmT A
kqm

A Φ=Φ −  
and consequently  

+Φ= −
0

)( ),)(()( xkTkqBmTx A
kqm  

 

).()()1,)1(()1(
1

ixiiTiqB A
iqm

mT

ki

Δ++Φ+−
−

=
∑            (7) 

Definition of  )(iq   and periodicity of  A   imply  

⎩
⎨
⎧

=
≠+Φ

=++Φ
0)( if 

0)( if ))1(,(
)1,)1((

irI
irirT

iTiq A
A  

and consequently  
.)1,)1(( KiTiqA ≤++Φ                         (8) 

Hence by the assumption (5) and (7)-(8) we have 
( ) +≤ −

0
)()( xCKmTx Tkqmω  

  

.)())1((
1

ixCK Tiqm
mT

ki

+−
−

=
∑ ωΔ  

 
Multiplying this inequality by  mT−ω   yields  

+≤ −−
0

)()( xCKmTx TkqmT ωω  
 

=+−
−

=
∑ )()1(

1

ixCK Tiq
mT

ki

ωΔ  

 
+−

0
)( xCK Tkqω  

 

( ) )()()1()(
1

ixCK TiqTiqiq
mT

ki

−+−
−

=
∑ ωωΔ . 

 
Applying Gronwall's inequality (4) with  )()( )( ixiu iq−=ω   
we obtain 

≤− )(mTxmTω  
  

( )( )Tiqiq
mT

ki

Tkq CKxCK )1()(
1

0
)( 1 +−

−

=

− +∏ ωω Δ  

 
Consider the last inequality with  k   replaced by  ,kT   then 

≤− )(mTxmTω  
  

( )( )=+ +−
−

=

− ∏ Tiqiq
mT

kTi

kT CKxCK )1()(
1

0 1 ωω Δ  

 

( )( )
,10

TkmTkT CKxCK
−−− + ωω Δ  

 
because 
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( )( )=+ +−
−

=
∏ Tiqiq
mT

kTi

CK )1()(
1

1 ωΔ  

  

( )( )
.1

TkmTCK
−−+ ωΔ  

Finally  

( ) TkmTCKxCKmTx
)(1

0)(
−+−+≤ ωω Δ  

and 
=Φ Δ+ ),( kTmTA  

 
≤Φ= Δ+

=
0

1
),(sup

0

xkTmTA
x

 

  

( ) .
)(1

0
TkmTCKxCK

−+−+ ωω Δ  
 
The last inequality implies the conclusion of the Theorem 1, 
because of (6) and Lemma 1. 

From the Theorem 2 it follows in particular, that for each 
periodic exponentially stable system (1) there exists a 
positive constant  Δ  such that system (2) is exponentially 
stable for all perturbation sequences  )(nΔ   such that  

.)(sup nΔ>Δ   The last remark it is not trivial in the light of 
the next example. In this example we present a system (non 
periodic) which is exponentially stable however the 
perturbed system is unstable for exponentially decreasing 
perturbation. 

 
Example 1 Consider system  

 ),()()1( nxnAnx =+                      (9) 
 with 

,
0

0)( )(

)(

2

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= na

na

e
enA  

where  
[ )
[ )  ,

 naturalcertain for  , if 4
 naturalcertain for  , if 1

)(
2212

122
1

⎩
⎨
⎧

∈−
∈

=
++

+

kttn
kttn

na
kk

kk  

1)0(1 =a  ,  )(3)( 12 nana −−=   and  k
kt 2= . It is easy to 

find that  

=∑
−

=
+∞→

+

)(
2

1lim 1

12

0
22

22

ia
k

i
kk

 

.
3
2)(

2
1lim and 

3
7

1

12

0
12

12

−=− ∑
−

=
+∞→

+

ia
k

i
kk

 

Therefore  

3
2)(1suplim)(1suplim 2

1

0
1

1

0

−== ∑∑
−

=∞→

−

=∞→
ia

k
ia

k

k

ik

k

ik
 

and consequently the Lyapunov exponent of the system  
)0,(lnsuplim)( 1 nA A

n
n Φ=

∞→

λ   is equal to  3
2−   and the 

system is exponentially stable. Consider now disturbed 
system  

( ) ),()()()1( nznnAnz Δ+=+               (10) 
with  Nnn ∈Δ=Δ ))((   given by  

,
0

0)( )(

)(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=Δ n

n
n δ

δ
 

where  

.
otherwise 0

 naturalcertain for   if )(
⎪⎩

⎪
⎨
⎧ =

=
− ktnen k

nσ
δ  

For the initial condition  [ ]1  10 =z   both coordinates  )(1 nz   
and  )(2 nz   of the solution  ),( 0znz   of (10) are positive 
and therefore for each interval  [ )1, +kk tt   there exists  

{ }2,1)( ∈ki   such that  
( ) ( ) ( ) ( ) ( ),expexp )(1)(1)( kkkikkkkikki ttztttztz =−≥ ++  

namely  1)( =ki   for even  k   and  2)( =ki   for odd  .k   
Since   

( ) ( ) kt
kkki etztz σ−≥ 4

1
)(  

and  
( ) ( )1)(1 ++ ≥ kkik tztz  

 we obtain  

( ) ( ) ( )[ ]=−≥+ σ1exp
4
1

1 kkk ttztz  

 

( ) ( )( )[ ].1exp
4
1

1 σ−−+ kkk tttz  

From the above we get  
σ−≥

∞→

1),(lnsuplim 0
1 znz

n
n  

and therefore the perturbed system is not exponentially 
stable for  .10 <<σ  

The main problem with application of Theorem 2  to 
numerical calculation is to check conditions (5) and to 
determine the values  C   and  ω  . In that context  it is 
worth to mention paper [9] where three numerical 
algorithms are presented to compute constants  C   and  ω   
for a given stable matrix  B   and given norm  .⋅   Further 
results from the literature are collected below. 
 Theorem 3 [5] If for certain  s  -by- s   matrices  ,,, HQB    

,0>= TQQ    0>= THH   the following discrete 
Lyapunov equation  

QHBBH T =−  
is satisfied, then (5) holds with spectral norm  2⋅   ,  

2
1

2
−= HHC   and  ,1

2

)min(
H

QT λω −=   where  

)(min Qλ   is the smallest eigenvalues of Q. 
 
 Theorem 4 [8] If for certain  s  -by- s   matrix  B   and 
operator norm  ⋅   the following resolvent condition  
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( )
θμ

μ
−

≤− − KBI 1  

is satisfied for all  C∈μ  ,  0>>θμ  , then (5) holds with  

θω =T   and  esKC =  , where  e   is Euler's constant. 
The previous two results do not use the fact that we 

consider periodic system they simply present methods of 
finding constant  C   and  ω   for a given stable matrix  .B   
The next result, appeared the first time in [1] and was 
rediscovered in [10], is dedicated to periodic system. 
Theorem 5 If for certain  T  -periodic sequences of  s  -by- 
s   matrices  ),(),(),( nHnQnA    ,0)()( >= TnQnQ    

0)()( >= TnHnH   the following discrete Lyapunov 
equation 

)()()1()()( nQnAnHnAnH T =+−  
is satisfied, then (5) holds with 

2
1

2 )0()0( −= HHC  

and  

.
)(

))(min(1
2

1

0
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=∏

−

=
iH

iQT

i

λω  

Using these results and Theorem 2 we are able to estimate 
the norm of perturbation that preserve the stability. This is 
demonstrated by the following numerical example. 
Example 3 Consider system (1) of period  2=T   and  

.)1( ,)0(
3
1

6
1

6
1

3
1

3
1

2
1

2
1

3
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

= AA  

Then  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

=
36
7

9
2

9
2

36
7

B   and solving discrete Lyapunov 

equation with  ,
10
01
⎥
⎦

⎤
⎢
⎣

⎡
=Q  we find 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

336242304
230433624

01522
1H  

and   

,6099.1
2

1
2 == −HHC     

,51645.01
2
1

2

)min( =⎟
⎠
⎞⎜

⎝
⎛ −=

T

H
Qλω    

=Φ=
=

),(max
,...,0

iTK
Ti

  

{ })2,2(,)1,2(,)0,2(max ΦΦΦ=  

{ } .11,5.0,67416.0max ==   

According to Theorem 2  the perturbed system (2) is stable 
for all perturbation sequences  )(nΔ   such that  

,)(sup nΔ>Δ   where  ( ) .49354.01 =−
CK

ωω=Δ  
 

IV. CONCLUSION 
In this note we have considered a linear discrete time 

periodic system with uncertain time-varying coefficients. 
The considered type of uncertainties is called in the literature 
real unstructured uncertainties. We obtained conditions on 
the perturbation of the system under which the perturbed 
system remains uniformly exponentially stable. The obtained 
results are illustrated on numerical examples. 
 

ACKNOWLEDGEMENT 
The research presented here was done as a part of research 

and development project no. O R00 0132 12 and have been 
supported by Ministry of Science and Higher Education 
funds in the years 2010 - 2011. 

REFERENCES   
[1] K. Aydin, H. Bulgak and G.V. Demidenko, Numeric characteristics 

for asymptotic stability of solutions to linear difference equations with 
periodic coefficients, Siberian Mathematical Journal, vol. 41, pp. 
1227-1237, 2000. 

[2] K. Aydin, H. Bulgak and G.V. Demidenko, Asymptotic stability of 
solutions to perturbed difference equations with periodic coefficients, 
Siberian Mathematical Journal, vol. 43, pp. 389-401, 2002. 

[3] R. P. Agarwal, Difference Equations and Inequalities. Theory, 
Methods, and Applications (Marcel Dekker, New York, 2000). 

[4] S. Bittanti and P. Colaneri, Invariant representation of discrete-time 
periodic systems, Automatica vol. 36, pp. 1777-1793, 2000. 

[5] S. Barnett, R. G Cameron, Introduction to Mathematical Control 
Theory (2nd Edition, Clarendon Press, Oxford, 1985). 

[6] D. Hinrichsen and A. J. Pritchard, Stability radii of Linear Systems, 
Systems and Control Letters, vol. 7, pp. 1-10, 1986. 

[7] D. Hinrichsen and A. J. Pritchard, Mathematical systems theory  I 
(vol. 48 of texts in Applied Mathematics, Springer-Verlag, Berlin 
2005). 

[8] H. O. Kreiss, Űber die stabilitätsdefinition fur 
Differenzengleichungen, die partielle Differentialgleichungen 
approximieren, BIT 2, vol. 2,  pp. 153-181, 1962. 

[9] M. Robbé and M. Sadkane, Discrete-time Lyapunov stability of large 
matrices, Journal of Computational and Applied Mathematics, vol. 
115, pp. 479-494, 2000. 

[10] M. Sadkane, L. Grammont, A note on the Lyapunov stability of 
periodic discrete-time systems, Journal of Computational and Applied 
Mathematics, vol. 176, pp. 463-466, 2005. 

[11] A. Varga, An overview of recent developments in computational 
methods for periodic systems, Proceedings of IFAC Workshop on 
Periodic Control Systems, St. Petersburg, Russia, 2007. 

[12] F. Wirth, On the calculation of time-varying stability radii, 
International Journal on Robust Nonlinear Control, vol. 8, pp. 1043-
1058, 1998. 

 

 


