
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:8, 2011

1260

Stability of a special class of switched positive
systems

Xiuyong Ding, Lan Shu, Xiu Liu

Abstract—This paper is concerned with the existence of a lin-
ear copositive Lyapunov function(LCLF) for a special class of
switched positive linear systems(SPLSs) composed of continuous-
and discrete-time subsystems. Firstly, by using system matrices, we
construct a special kind of matrices in appropriate manner. Secondly,
our results reveal that the Hurwitz stability of these matrices is
equivalent to the existence of a common LCLF for arbitrary finite
sets composed of continuous- and discrete-time positive linear time-
invariant(LTI) systems. Finally, a simple example is provided to
illustrate the implication of our results.

Keywords—Linear copositive Lyapunov functions; Positive sys-
tems; Switched systems.

I. INTRODUCTION

GENERALLY speaking, a dynamical system is called
positive if for any nonnegative initial condition, the

corresponding solution of the system is also nonnegative (see
[1], [2]). In real world, the positivity requirement is often intro-
duced in the system model whenever the physical nature of the
describing variables constrains them to take only positive (or at
least nonnegative) values. As a result, positive linear systems
naturally arise in fields such as bioengineering, economic
modeling, behavioral science, and stochastic processes. This
feature makes analysis and synthesis of positive systems a
challenging and interesting job (see, for example, [3], [4], [5],
[6] and references therein).

In this perspective, SPLSs are mathematical models which
keep into account two different aspects: the fact that the system
dynamics can be suitably described by means of a family of
subsystems, each of them formalizing the system laws under
specific operating conditions, among which the system com-
mutes, and the nonnegativity constraint the physical variables
are subject to. This is the case when trying to describe certain
physiological and pharmacokinetic processes, like the insulin-
sugar metabolism. Of course, the need for this class of systems
in specific research contexts [4], [5] has stimulated an interest
in issues related to them, in particular, stability issues [7], [8],
[9], [10], [11], [12], [14] and references therein.

A key result in this connection is that stability of SPLSs
under arbitrary switching laws is equivalent to the existence
of a common Lyapunov function [7]. Generally speaking,
three classes of Lyapunov function naturally suggest them-
selves for SPLSs: common quadratic Lyapunov functions,
common diagonal Lyapunov functions, and common LCLFs.
For continuous-time positive LTI systems, the authors of [8]
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and independently Dvid Angeli, posed a conjecture that the
existence of common quadratic Lyapunov function can be
determined by testing the Hurwitz-stability of an associated
convex set of matrices. Gurvits, Shorten and Mason [9] proved
that this conjecture is true for pairs of second order systems
and is false in general. In the paper [10], a necessary and
sufficient was derived for the existence of common diagonal
Lyapunov function for pairs of positive LTI systems with
irreducible system matrices. It is well known that traditional
Lyapunov functions may give conservative stability conditions
for SPLSs as they fail to take account that the trajectories
are naturally constrained to the positive orthant. Therefore, it
is natural to adopt common LCLFs which can guarantee the
stability of SPLSs [11]. Work discussed in [12] provided a
method for determining whether or not a given SPLS com-
posed of two subsystems is stable. Such an approach is based
upon determining verifiable conditions for a common LCLF.
[13] considered some reduced cases when the system matrices
are 2×2 dimensions and have the same block lower triangular
forms, some results were presented by means of properties
of geometry. For discrete-time SPLSs, switched copositive
Lyapunov function method is proposed in [14]. It is emphasize
that the existence of switched copositive Lyapunov function
is just a sufficient condition of the stability for SPLSs. [15]
presented a compact and easily verifiable equivalent conditions
of the existence of a common LCLF on pairs of SPLSs by
means of properties of geometry.

This paper will investigate the stability of a special class
of SPLSs composed of a set of continuous-time subsystems
and a set of discrete-time subsystems. Simple necessary and
sufficient conditions for the existence of a common LCLF
will be established. The remainder of this paper is structured
as follows. In the next section, we give some notations and
preliminary results which will be used in the sequel. Section III
is dedicated to derive some checkable necessary and sufficient
conditions for the existence of a common LCLF for arbitrary
finite sets composed of continuous- and discrete-time positive
LTI systems. Section IV provides a simple example to illustrate
the main results of this paper, and some concluding remarks
are presented in Section V.

II. NOTATION AND BACKGROUND

Throughout, R denotes the set of all real numbers,
R
n(Rn0,+, R

n
+) stands for the n−dimensional real (nonneg-

ative, positive) vector space and R
n×n is the space of n × n

matrices with real entries. For A in R
n×n, akl denotes the

element in the (kl) position of A. A � 0(� 0) means
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that all elements of matrix A are nonnegative (nonpositive)
and A � 0(≺ 0) means that all elements of matrix A are
positive (negative). The notion A > 0(< 0) means that A is
a symmetric positive (negative) definite matrix. Meanwhile,
AT (A−1) represents the transpose (inverse) of matrix A. Let
N = {1, 2, 3, · · · } and N0 = {0}⋃N. λ(A) represents the
eigenvalue of A , and ρ(A) denotes the spectral radius of
A. Also, when referring to switched linear systems, stability
shall be used to denote asymptotic stability under arbitrary
switching signals.

We now recall some basic facts about positive systems.
See [11] for a description of the basic theory and several
applications of positive linear systems.

Definition 1: The continuous-time LTI system

ΣAc : ẋ(t) = Acx(t), x0 = x(0)

is said to be positive if x0 � 0 implies that x(t) � 0 for all
t ≥ 0.
The discrete-time LTI system

ΣAd : x(k + 1) = Adx(k), x0 = x(0)

is said to be positive if x0 � 0 implies that x(k) � 0 for all
k ∈ N.

The following Lemma ensures positivity of the systems ΣAc

and ΣAd .
Lemma 1: Continuous-time system ΣAc is positive if and

only if off-diagonal entries of the matrix Ac are non-negative.
Discrete-time system ΣAd is positive if and only if the matrix
Ad satisfies A � 0.

It is well known that a matrix whose off-diagonal entries
are non-negative is said to be Metzler, then the positivity of
the system ΣAc is equivalent to Metzler of Ac. A matrix A is
said to be Hurwitz if and only if all its eigenvalues lie in the
open left half of the complex plane. And a matrix is said to
be Schur if and only if spectral radius less than 1. A classic
result shows that the stability of positive system ΣAc and ΣAd

is equivalent to Hurwitz of Ac and Schur of Ad, respectively.
The next results summarize some basic properties of for a

Metzler matrix Ac to be Hurwitz and a matrix Ad � 0 to be
Schur, which will be used in the next section.

Lemma 2: [6] Let matrix A ∈ R
n×n be Metzler. Then A

is a Hurwitz matrix if and only if there exists a vector v � 0
in R

n with Av ≺ 0.
Let A � 0 in R

n×n. Then A is a Schur matrix if and only if
there exists a vector v � 0 in R

n with (A− I)v ≺ 0.
Lemma 3: Let matrix A in R

n×n be Schur, then A − I is
a Hurwitz matrix.
The following result can be derived from [19].

Lemma 4: Consider Metzler matrices A,B with A � B, if
A is Hurwitz, then B is also Hurwitz.
Consider matrices A,B with A � B � 0, if A is Schur, then
B is also Schur.

Lemma 5: Let Metzler matrix A ∈ R
n×n be Hurwitz, then

detA �= 0.
Let A � 0 in R

n×n be Schur, then det(A− I) �= 0.
A convex cone in R

n is a set Ω ∈ R
n such that, for any

x, y ∈ Ω and any α ≥ 0, β ≥ 0, αx + βy ∈ Ω. The convex
cone is said to be open (closed) if it is open (closed) with

respect to the usual Euclidean topology on R
n. For an open

convex cone Ω, Ω̄ denotes the closure of Ω.
Lemma 6: [16] Let Ω1,Ω2 be open convex cones in R

n.
Suppose that Ω̄1 ∩ Ω̄2 = {0}. Then there is a vector v ∈ R

n

such that
vTx < 0 for all x ∈ Ω1

and
vTx > 0 for all x ∈ Ω2.

III. MAIN RESULTS

This section studies the existence of a LCLF for a special
class of SPLS which is composed of a set of stable continuous-
time subsystems

ẋ(t) = Ac(t)x(t), x(0) = x0 � 0, t ≥ 0 (1)

and a set of stable discrete-time subsystems

x(k + 1) = Ad(k)x(k), x(0) = x0 � 0, k ∈ N0, (2)

where, in continuous-time case, x(t) ∈ R
n are the states,

Ac(t) ∈ {Ac1, · · · , Acmc} with Metzler matrices Aci in R
n×n,

i ∈ Ic = {1, · · · ,mc} is an index set, and mc denotes the
number of continuous-time subsystems, in discrete-time case,
x(k) ∈ R

n are the states, Ad(k) ∈
{
Admc+1, · · · , Admc+md

}
with Adi � 0 in R

n×n, i ∈ Id = {mc+1, · · · ,mc+md} is an
index set, and md denotes the number of discrete-time subsys-
tems. Also, use I to denote the index set {1, · · · ,mc +md}.

To discuss the stability of the overall switched positive
systems, we shall make some illustration for this type of
switched systems. For simplicity, suppose that the sampling
period of all the discrete-time subsystems is τ . Since the states
of the discrete-time subsystems can be viewed as piecewise
constant vectors between sampling points, we can consider
the value of the system states in the continuous-time domain.
For example, if continuous-time subsystem (1) is activated on
[t0, t1] and then discrete-time subsystem (2) is activated for
k steps and subsystem ΣAc

2
on [t1 + kτ, t2], the time domain

thus can be divided into

[t0, t2] = [t0, t1] ∪ [t1, t1 + kτ ] ∪ [t1 + kτ, t2].

This argument is repeated and ends in turning out the running
status of the whole systems.

For later discussion, we should give some relevant no-
tation. Use Ψn,mc+md to denote the set of all map-
ping ϕ : {1, · · · , n} → I. Define the matrix Aϕ =
Aϕ

(
Ac1, · · · , Acmc , Admc+1 − I, · · · , Admc+md − I

)
by

Aϕ
(
Ac1, · · · , Acmc , Admc+1 − I, · · · , Admc+md − I

)
=
(
A
(1)
ϕ(1), · · · , A(n)ϕ(n)

)
.

(3)

Obviously, for 1 ≤ j ≤ n, Aϕ is a matrix in R
n×n,

whose the jth column A(j)ϕ(j) is the jth column of one of the
Ac1, · · · , Acmc , Admc+1 − I, · · · , Admc+md − I . Meanwhile, let

A (Ac1, · · · , Acmc , Admc+1 − I, · · · , Admc+md − I)

=
{
Aϕ|ϕ ∈ Ψn,mc+md

} (4)
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represent all matrices formed in such way. For simplicity, use
A to denote the set (4). It is easy to see that{

Ac1, · · · , Acmc , Admc+1 − I, · · · , Admc+md − I
} ⊂ A .

It is well known that a switched system composed of stable
subsystems could be unstable if the switching is not done
appropriately. When the stability of SPLSs is considered,
it is natural to adopt common LCLFs since the existence
of such a function have less conservative than traditional
Lyapunov functions. The common LCLF approach relies on
the following fact.

Definition 2: For the finite sets composed of continuous-
time positive LTI systems (1) and discrete-time positive LTI
systems (2), the function V (x) = vTx is said to be a common
LCLF if and only if there exists a vector v � 0 in R

n such
that AcTi v ≺ 0,∀i ∈ Ic and (Adi − I)T v ≺ 0,∀i ∈ Id.

Before presenting our main results, we need the following
technical lemma.

Lemma 7: Let Metzler matrices Ac1, · · · , Acmc in R
n×n be

Hurwitz and Admc+1, · · · , Admc+md � 0 in R
n×n be Schur.

For v ∈ R
n, denote

ΩAc
i

= {v � 0|AcTi v ≺ 0, i ∈ Ic} (5)

and
ΩAd

i
= {v � 0|(Adi − I)T v ≺ 0, i ∈ Id} (6)

such that
mc⋂
i=1

Ω̄Ac
i

mc+md⋂
i=mc+1

Ω̄Ad
i

= {0}. (7)

Then there exist mc +md positive definite diagonal matrices
Di in R

n×n such that

mc∑
i=1

AciDi +
mc+md∑
i=mc+1

(Adi − I)Di = 0. (8)

Proof: Conversely, we show that if there exist no mc+md

positive definite diagonal matrices Di in R
n×n such that (8)

holds, then at least one nonzero vector v � 0 in R
n belongs

to the set
⋂mc

i=1 Ω̄Ac
i

⋂mc+md

i=mc+1 Ω̄Ad
i
.

First of all, suppose that there exist no mc + md positive
definite diagonal matrices Di in R

n×n such that (8) holds.
Then for some vector w � 0 in R

n, which leads to

mc∑
i=1

AciDiw +
mc+md∑
i=mc+1

(Adi − I)Diw �= 0. (9)

Furthermore, for all i ∈ I, set Diw = wi in R
n, then (9) can

be rewritten in the form
mc∑
i=1

Aciwi +
mc+md∑
i=mc+1

(Adi − I)wi �= 0. (10)

As Metzler Aci are Hurwitz and Adi � 0 are Schur, it follows
from Lemma 2 that⎧⎨
⎩

mc∑
i=1

Aciwi +
mc+md∑
i=mc+1

(Adi − I)wi|wi � 0

⎫⎬
⎭ ∩ R

n
+ = ∅. (11)

For simplicity, use Ω to denote set{∑mc

i=1A
c
iwi +

∑mc+md

i=mc+1(A
d
i − I)wi|wi � 0

}
. From (11),

it is easy to show that Ω̄ ∩ R
n
0,+ = {0}. By Lemma 6, there

exists a vector v ∈ R
n such that

vTx < 0 for all x ∈ Ω

and
vTx > 0 for all x ∈ R

n
+.

It is easy to show from the later inequality that v � 0. In
this case, for wi � 0, due to x ∈ Ω, then the front inequality
becomes

mc∑
i=1

vTAciwi +
mc+md∑
i=mc+1

vT (Adi − I)wi < 0. (12)

As v � 0(nonzero) and wi � 0, (12) indicates that
AcTi v � 0,∀i ∈ Ic and (Adi − I)T v � 0,∀i ∈ Id always
hold. Finally, we find a nonzero v � 0 in R

n×n such that
v ∈ ⋂mc

i=1 Ω̄Ac
i

⋂mc+md

i=mc+1 Ω̄Ad
i
. This completes the proof.

Based on the preliminary results above, we now present the
following Theorem for SPLSs composed of continuous-time
subsystem (1) and discrete-time subsystem (2).

Theorem 1: Let Metzler matrices Ac1, · · · , Acmc in R
n×n be

Hurwitz and Admc+1, · · · , Admc+md � 0 in R
n×n be Schur.

Then the following statements are equivalent. (i)
(i) For any A ∈ A , A is a Hurwitz matrix.

(ii) The finite sets composed of positive LTI systems
ΣAc

1
, · · · ,ΣAc

mc
,ΣAd

mc+1
, · · · ,ΣAd

mc+md
have a com-

mon LCLF.
(iii) The finite sets composed of continuous-time positive LTI

systems ΣĀc
1
, · · · , ΣĀc

m∗ have a common LCLF, where
Āck ∈ A in R

n×n with k = 1, · · · ,m∗ and mc +md ≤
m∗ ≤ (mc +md)n.

Proof: This proof will be accomplished by showing
((i)⇔((ii) and ((i)⇔((iii), respectively.

((i)⇔((ii) Sufficiency: Conversely, we wish to show that if
the statement ((ii) is not true, then there exists at least one
matrix A ∈ A not to be Hurwitz.

To this end, let ΩAc
i
,ΩAd

i
be defined as (5) and (6).

Complete the proof in two steps.
Step 1. We prove that, under a stronger assumption

mc⋂
i=1

Ω̄Ac
i

mc+md⋂
i=mc+1

Ω̄Ad
i

= {0}. (13)

than the false of statement ((ii), at least one matrix A ∈
A (A1, · · · , Am) is not Hurwitz. With this in mind, by Lemma
7, it follows that there exist mc+md positive definite diagonal
matrices Di ∈ R

n×n, denoted as Di = diag{d(j)i } for all
i ∈ I, 1 ≤ j ≤ n, such that

mc∑
i=1

AciDi +
mc+md∑
i=mc+1

(Adi − I)Di = 0. (14)

Moreover, (14) indicates that the determinant

det

⎛
⎝mc∑
i=1

AciDi +
mc+md∑
i=mc+1

(Adi − I)Di

⎞
⎠ = 0. (15)
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According to the basic properties of determinant, taking into
account the construction of the matrices Aϕ given by (3),
by elementary calculation, the left-side determinant of (15)
becomes

det

⎛
⎝mc∑
i=1

AciDi +
mc+md∑
i=mc+1

(Adi − I)Di

⎞
⎠

=
∑

ϕ∈Ψn,m

detAϕ
n∏
j=1

d
(j)
ϕ(j),

(16)

where the notation of d(j)ϕ(j) corresponds the mapping ϕ(j) ∈
Ψn,m.

Now, for ϕ ∈ Ψn,m, consider the determinant detAϕ. If all
matrices belonging to the set A are Hurwitz, then detAϕ �= 0
results form Lemma 5. Hence, it follows from d

(j)
ϕ(j) > 0 and

(16) that

det

⎛
⎝mc∑
i=1

AciDi +
mc+md∑
i=mc+1

(Adi − I)Di

⎞
⎠ �= 0, (17)

which would contradict (15). We thus conclude that, if (13) is
true, then at least one A ∈ A (A1, · · · , Am) not to be Hurwitz.

Step 2. We wish to improve this result above to the case of

mc⋂
i=1

ΩAc
i

mc+md⋂
i=mc+1

ΩAd
i

= {0}, (18)

i.e., show that, if (18) holds, there is at least one A ∈ A not
to be Hurwitz. To this end, we distinguish two cases.

Case 1.
⋂mc

i=1 Ω̄Ac
i

⋂mc+md

i=mc+1 Ω̄Ad
i

= {0}.
In this case, by hypothesis (18), based on the above discus-

sion, the result is straightforward.
Case 2.

⋂mc

i=1 Ω̄Ac
i

⋂mc+md

i=mc+1 Ω̄Ad
i
�= {0}.

This implies that there exist some nonzero v � 0 belonging
to the set

⋂mc

i=1 Ω̄Ac
i

⋂mc+md

i=mc+1 Ω̄Ad
i
. In this case, select a vector

δ = (δ1, · · · , δmc , δmc+1, · · · , δmc+md)T � 0. For all i ∈ I,
define Aci (δi) = Aci +δi1n×n and Adi (δi) = Adi +δi1n×n with
the n× n matrix 1n×n consisting of all ones. In addition, set

ΩAc
i (δi) = {v � 0|(Aci + δi1n×n)T v ≺ 0}, i ∈ Ic

and

ΩAd
i (δi) = {v � 0|(Adi + δi1n×n − I)T v ≺ 0}, i ∈ Id.

It is easy to verify that ΩAc
i (δi) and ΩAd

i (δi) are open convex
cones.

Now, we claim that the intersection of the closure

mc⋂
i=1

Ω̄Ac
i (δi)

mc+md⋂
i=mc+1

Ω̄Ad
i (δi) = {0}

is always true. If not, i.e., there is a nonzero vector v∗ � 0
such that

mc⋂
i=1

Ω̄Ac
i (δi)

mc+md⋂
i=mc+1

Ω̄Ad
i (δi) �= {0}.

This yeilds, for this v∗,

v∗ ∈
mc⋂
i=1

Ω̄Ac
i (δi)

mc+md⋂
i=mc+1

Ω̄Ad
i (δi)

=
mc⋂
i=1

{v � 0|(Aci + δi1n×n)T v � 0}}

mc+md⋂
i=mc+1

{v � 0|(Adi + δi1n×n − I)T v � 0}}

=
mc⋂
i=1

{v � 0|AcTi v � −δi1n×nv}}

mc+md⋂
i=mc+1

{v � 0|(Adi − I)T v � −δi1n×nv}}.

(19)

As δ � 0, we thus find from (19) that

v∗ ∈
mc⋂
i=1

Ω̄Ac
i (δi)

mc+md⋂
i=mc+1

Ω̄Ad
i (δi)

=
mc⋂
i=1

ΩAc
i (δi)

mc+md⋂
i=mc+1

ΩAd
i (δi) �= {0},

which would contradicts the assumption (18).
Now, choosing δ small enough to ensure that all Metzler

matrices Aci (δi) are Hurwitz and Adi (δi) � are Schur, in
addition, similar to (4), construct the set

A (δi) = A
(
Ac1(δ1), · · · , Acmc(δmc), Admc+1(δ

c
m + 1) − I,

· · · , Admc+md(δmc+md) − I
)
.

With the above analysis, we thus conclude that there is at
least one A ∈ A (δi) not to be a Hurwitz or Schur. Finally, let
δ → 0, a limiting argument ensures that this result will also
be the case of A .

Necessity: Suppose that the statement ((ii) holds. By Def-
inition 2, there exists a vector v � 0 in R

n such that
AcTi v ≺ 0,∀i ∈ Ic and (Adi − I)T v ≺ 0,∀i ∈ Id.

On the one hand, for the case of AcTi v ≺ 0,∀i ∈ Ic, it
immediately follows that Ac(j)Ti v ≺ 0 with A

c(j)
i is the jth

column of one of Ac1, · · · , Acmc for all i ∈ Ic, 1 ≤ j ≤ n.
On the other hand, for the case of (Adi −I)T v ≺ 0,∀i ∈ Id.

Let e(j) = (0, · · · , 1, · · · , 0)T denote the unit vector whose
jth element is 1, we have (Ad(j)i − e(j))T v ≺ 0 with A

d(j)
i

is the jth column of one of Admc+1, · · · , Admc+md for all
i ∈ Id, 1 ≤ j ≤ n.

Based on the above discussion, taking (3) and (4) into
account, it turns out from Lemma 3 that AT v ≺ 0 for all
A ∈ A . Moreover, as Metzler matrices Ac1, · · · , Acmc in
R
n×n are Hurwitz and Admc+1, · · · , Admc+md � 0 in R

n×n

are Schur, we thus conclude from Lemma 2 that all matrices
belonging to the set A must be Hurwitz. Hence, the statement
((i) holds.

((i)⇔((iii) Note that the finite sets A consists entirely of
Hurwitz matrices and mc + md ≤ m∗ ≤ (mc + md)n, then
the rest of the proof follows the same lines as the proof of
((i)⇔((ii).
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Remark 1: We should stress out that, in statement ((iii),
the range of m∗ is limited to the interval [mc + md, (mc +
md)n], which means that we can arbitrarily choose matrices
in such range to generate some SPLSs and under Theorem 1
these SPLSs are obvious uniformly asymptotically stable. In
addition, note that the construction of the set A given in (4),
then it easy to see that the set A has (mc +md)n elements.
Hence, the equivalence between ((i) and ((ii) in Theorem 1
indicates that the existence of a common LCLF for the finite
sets composed of positive LTI systems (1) and (2) is equivalent
to the Schur stability of (mc+md)n matrices in A . This will
also be the equivalence between ((i) and ((iii). Moreover, note
that the range of m∗ and the construction of the set A , the
statement ((iii) immediately reduces the statement ((ii) if we
choose m∗ = mc +md.

Remark 2: Obviously, if all matrices A ∈ A are Hurwitz,
i.e., the finite system sets composed of (1) and (2) have
a common LCLF. Then each of continuous-time systems
ΣAc

i
, i ∈ Ic and discrete-time systems ΣAd

i
, i ∈ Id is stable.

In addition, for any A ∈ A , the associated continuous-time
positive system ΣA is also stable. See Corollary 1.

Remark 3: Observe that, for the SLPS composed of (1)
and (2). If select md = 0 or mc = 0, the system reduces
continuous- or discrete-time SLPSs, respectively. Corollary 2
considers such two reduced cases.

Remark 4: If we note the fact that, for 2 × 2 Hurwitz
matrices with negative diagonal entries, this is equivalent to
the determinants being positive. Then the following reduced
results in Corollary 3-5 follow immediately from Theorem 1.

Corollary 1: If the finite sets composed of positive LTI
systems ΣAc

1
, · · · ,ΣAc

mc
, ΣAd

mc+1
, · · · ,ΣAd

mc+md
have a com-

mon LCLF. Then each of the following statements is true. (i)
(i) The continuous-time LTI positive system x(k + 1) =

Ax(k), x0 = x(0) � 0 is stable with any matrices A
in A (A1, · · · , Am).

(ii) Each continuous-time positive LTI systems ΣAc
i
, i ∈ Ic

is stable.
(iii) Each discrete-time positive LTI systems ΣAd

i
, i ∈ Id is

stable.
Corollary 2: Consider SPLS composed of (1) and (2) with

Metzler Hurwitz Aci , i ∈ Ic and Schur Adi � 0, i ∈ Id, then
the following statements hold. (i)

(i) If md = 0 and there exists a matrix Acj such that Acj �
Aci , j �= i,∀i, then continuous-time LTI positive systems
ΣAc

1
, · · · ,ΣAc

mc
share a CLCLF.

(ii) If mc = 0 and there exists a matrix Adj such that Adj �
Adi , j �= i,∀i, then discrete-time LTI positive systems
ΣAd

1
, · · · ,ΣAd

mc
share a CLCLF.

Proof: By Lemma 4, these results follows from Theorem
1 immediately.

Corollary 3: Let Ac be Metzler and Hurwitz matrix, Ad �
0 be schur matrix, and Ac, Ad ∈ R

2×2. Then positive LTI
systems ΣAc ,ΣAd have a common LCLF if and only if the
following conditions are satisfied.∣∣∣∣1 − ad11 ac12

ad21 −ac22

∣∣∣∣ > 0,
∣∣∣∣−ac11 ad12
ac21 1 − ad22

∣∣∣∣ > 0.

Corollary 4: [15] Let Ad1, A
d
2 � 0 in R

2×2 be schur ma-
trices. Then the discrete-time positive LTI systems ΣAd

1
,ΣAd

2
have a common LCLF if and only if the following conditions
are satisfied.∣∣∣∣1 − ad111 ad212

ad121 1 − ad222

∣∣∣∣ > 0,
∣∣∣∣1 − ad211 ad112
ad221 1 − ad122

∣∣∣∣ > 0.

Corollary 5: [13] Let Ac1, A
c
2 � 0 in R

2×2 Metzler and
Hurwitz matrices. Then the continuous-time positive LTI sys-
tems ΣAc

1
,ΣAc

2
have a common LCLF if and only if the

following conditions are satisfied.∣∣∣∣−ac111 ac212
ac121 −ac222

∣∣∣∣ > 0,
∣∣∣∣−ac211 ac112
ac221 −ac122

∣∣∣∣ > 0.
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Fig. 1. The state variables of system (20).
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Fig. 2. The trajectory of system (20).
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Fig. 3. The trajectory of system (20).
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IV. EXAMPLE

As a simple example for Theorem 1, consider the SPLS
composed of ΣAc and ΣAd with

Ac =
(−0.6 0.1

0.2 −0.7

)
, Ad =

(
0.3 0.2
0.1 0.2

)
. (20)

From (3) and (4), we have

A =
{[−0.6 0.1

0.2 −0.7

]
,

[−0.7 0.2
0.1 −0.8

]
,[−0.6 0.2

0.2 −0.8

]
,

[−0.7 0.1
0.1 −0.7

]}
.

Then it is easy to check that all matrices in A are Hurwitz,
which thus means that ΣAc and ΣAd have a common LCLF.
In other words, the SPLS (20) is uniformly asymptotically
stable. See Figure 1, Figure 2 and Figure 3. Figure 1 shows
the positivity of SPLS (20). Figure 2 and Figure 3 show
the uniform asymptotical stability of the SPLS, where the
switching signal is generated randomly, the initial state is
[15 20]T . The mark ‘*’ in the Figure 2 indicates the state
change when the discrete-time subsystem ΣAd is activated.
Figure 3 connects all the sampling points of the subsystem
ΣAd into a continuous trajectory.

V. CONCLUSIONS

In this paper, we have investigated the existence of a
LCLF for a special class of SPLSs composed of continuous-
and discrete-time subsystems. Some necessary and sufficient
conditions have been presented for the existence of a common
LCLF. According to these conditions, we can easily verify the
existence of a common LCLF for some given sets composed
of continuous- and discrete-time positive LTI systems by
algebraic approach. The example given in Section IV shows
this advantage.
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