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 
Abstract—Generally, different rods in shaft systems can be 

misaligned based on the mechanical system usages. These rods can 
be linked together via U-coupling easily. The system is self-
stimulated and may cause instabilities due to the inherent behavior of 
the coupling. In this study, each rod includes an elastic shaft with an 
angular stiffness and structural damping. Moreover, the mass of 
shafts is considered via attached solid disks. The impact of the system 
architecture and shaft mass on the instability of such mechanism are 
studied. Stability charts are plotted via a method based on Floquet 
theory. Eventually, the unstable points have been found and analyzed 
in detail. The results show that stabilizing the driveline is feasible by 
changing the system characteristics which include shaft mass and 
architecture. 
 

Keywords—Coupling, mechanical systems, oscillations, rotating 
shafts.  

I. INTRODUCTION 

ECENTLY, vibration and stability of rotordynamics have 
been analyzed by many researchers experimentally, 

numerically and analytically [1]-[7]. Some of these 
investigations have concentrated on the behavior of 
mechanisms and couplings [8]-[12]. Asokanthan and Hwang 
[13] used the averaging method and obtained a closed-form 
function for dynamic instability zones related to combinational 
resonance. Asokanthan and Meehan [14] considered a two-
Degree-of-freedom (two-DOF) nonlinear model. Mazzei [15] 
investigated the resonances of a U-joint driveline system. 
Bulut and Parlar [16] considered a two-DOF model. Their 
system consists of two torsionally elastic shafts connected 
through a Hooke’s joint. They linearized the equations of 
motion (EOM) and stability of the solutions was analyzed 
numerically. Moreover, the connected shafts in the drive 
system of the rolling mill were studied by Shi et al. [17]. The 
effects caused by the U-joint angle and the impact on the 
dynamic stability of the rotary system were analyzed and the 
nonlinear torsional vibration model of the shaft system which 
includes parametric excitation was investigated. Then, Amer 
et al. [1] considered the torsional oscillations of a rolling mill 
like that had been studied by Shi et al. [17]. The vibration of 
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shaft system was controlled by using active control. The worst 
resonances were determined, and the steady state response of 
the driveline was investigated numerically. Ultimately, the 
behavior of a two-axis driveline system was analyzed by 
SoltanRezaee and Ghazavi [5]. It is necessary to note that in 
all of the mentioned papers, the inertia of shafts was ignored 
or modeled only with one disk. 

There are a few researches on the torsional vibration of a 
shaft system which involves more than one rotary disk on each 
shaft. Alugongo [18] proposed a two-axis model for analyzing 
torsional vibration of a propeller shaft with a crack-induced 
excitation, by considering the elasticity and energy of the 
system. Jinli et al. [19], [20] considered the transmission 
system. The mathematical model was solved by the state space 
method and the effect of the joint angle on the vibration was 
obtained.  

To the best knowledge of the authors, dynamic stability of a 
multi-body disk-shaft system connected through flexible joints 
has not been analyzed yet. The current powertrain system 
consists of two elastic shafts interconnected through a U-
coupling. The influence of angle variations of the joint and 
inertia of system on the stability of a power train system are 
the main parameters which are analyzed in detail. Finally, 
stabilizing method by changing the system parameters is 
discussed. 

II. MODELING 

Consider a powertrain system, including two shafts, which 
are driven through a mechanical coupling. The shafts include a 
flexible bar with a torsional stiffness and viscous damping 
coefficient of ki and ci, respectively. At both ends of each 
shaft, there is a disk with a rotary inertia of Jj. The driveline 
system can be driven by an electric motor or a mechanical 
drive with a constant angular velocity of 0. This system is 
with angular misalignment of α. 

The torsional EOM of the system can be obtained by a 
combinational technique. The driveline is considered as two 
separate parts (the driving as well as the driven shaft) with 
double disk at the ends of each shaft. The equations of 
torsional motion for rotational dynamics of each rigid disk by 
using the Newton’s Law can be derived as follows 

 

   
1 1 1 2 1 1 2 1 1

,      J c k M               (1) 
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,       J c k M              (4) 

 
In the following, the relation between input and output 

angular velocity and the transferred torque of the joint is stated 
as [21] 
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Herein, the derivations of angular positions of disks (j) and 
their relations with torsional coordinates (i) can be computed 
as 

 

1 0 1 0,                                      (6) 
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Finally, (10) and (11) are the torsional EOM of the multi-

body two-DOF system model. 
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Equations (10) and (11) represent non-linear equations for 

oscillation of powertrain system. These equations can be 
linearized via McLaurin series and neglecting the nonlinear 
higher order terms under the assumptions of small oscillation 
amplitudes and frequencies. 

The approximation of the transfer ratio of a Cardan 
coupling, by the first two terms of McLaurin series can be 
stated as   
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where  is the dimensionless time and 
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The matrix–vector form of the presented system model can 

be written as 
 

 

2
1 3 1 1 2 12 3 1 1 1

4 1 24 1 4 2 2

2
1 3 1 1 1 2 1 0 3 1 11

4 0 4 124 1 2

0

2

.

c J cJ J

J cJ J

k J k J

M JJ k

    
  

     


                
         

      
            

 
 

  


 (15) 

 
It is more convenient to write the governing equation in 

dimensionless form. To this end, the torsional coordinate’s 
derivatives with respect to non-dimensional time are 
recomputed and the following dimensionless parameters are 
introduced: 
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where  and  are the non-dimensional terms of damping ratio 
and angular velocity, respectively. 

Finally, the EOM for torsional oscillation of powertrain 
system model (15) with respect to (16) and (17) can now be 
non-dimensionalized as 
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III. ANALYSIS 

Equation (18) is for the governing equations of torsional 
motion for the two-DOF model, which has periodically 
varying coefficients. As shown, there is a set of linear OD 
equations. 
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A state–space display of homogeneous part of (18) can be 
given as.  
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In this work, dynamic stability zones are investigated by 

means of a numerical method that is called monodromy matrix 
[22]. It determines the stability areas and resonance conditions 
of a system with parametric excitation. The instability occurs 
whenever the associated eigenvalues of the system have a 
positive real part in a parameter space. The obtained outputs 
are charts, which contain some of the most important system 
characteristics.  

It is clear that the location of instability regions (resonance 
areas) on the figures depends on the natural frequencies of 
system. The k-th order harmonic and sub-harmonic resonance 
zones related to the i-th vibration mode as well as the 
difference and sum type combinational resonance zones are 
given by 
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IV. RESULTS AND DISCUSSIONS 

As shown in Fig. 1, the diagram peaks show the natural 
frequencies of multi-body system.  

On the other hand, the first and second order harmonic, sub-
harmonic, difference and sum combinational resonance zones 
related to the fundamental vibration modes of driveline are 
reported in Table I. 

 
TABLE I 

THE HARMONIC , SUB-HARMONIC S, SUM COMBINATIONAL CS AND 

DIFFERENCE COMBINATIONAL CD PARAMETRIC RESONANCES OF THE SHAFT 

SYSTEM 

Resonance First mode Second mode 

,1H
 0.270 0.135 

,2H  0.655 0.328 

,1S
 0.540 0.180 

,2S  1.310 0.437 

,12CS  0.925 0.463 

,12CD  0.385 0.193 

 
The analysis of dynamic stability is done via the 

monodromy matrix method based on the assumptions that the 
natural frequencies in Fig. 1 were achieved. Fig. 2 illustrates 
the results of stability analysis where the colored points 
(shaded zone) show the unstable areas. The vertical axis 

displays the coupling angle, and the horizontal axis depicts the 
non-dimensional angular velocity. It should be noted that the 
characteristics of the considered shafts are taken identical and 
the damping ratio is equal to 0.0003 in the following case 
studies. 

 

 

Fig. 1 The frequency response shown by means of fast Fourier 
transform (FFT) algorithm 

 
The location of unstable points on the diagram depends on 

the natural frequencies of model. The peaks of colored areas 
on the horizontal axis are equal to the computed points on 
Table I. Certain instability regions, which are previously 
calculated analytically, are labeled. This was achieved in order 
to provide an idea about the various types of dynamic 
instabilities in the assumed parameter space. A perusal of Fig. 
2 demonstrates that the location of the analytical results as 
reported in Table I, are in agreement with the peaks of the 
numerical ones. As a result, a more accurate investigation, 
which illustrates the impact of other modes, may be 
performed.  

Generally, by increasing the angle from zero (where no 
excitation exists), the unstable zones extend and become 
wider. It is seen that different types of instability regions are 
revealed, but combinational resonances. The resonances, 
which are associated with the lower oscillation mode, have 
more clarity.  

Usually, the peaks depending on higher system natural 
frequencies occur in high misalignment (e.g. ΩH,22 and ΩS,22). 
Furthermore, by increasing the angle of misalignment (the 
angle between intersecting shaft axes), some new unstable 
areas emerge that are not generally important for practical 
applications. 

Determination of factors that affect the dynamic stability of 
powertrain is necessary. To this end, several cases are 
evaluated. One of the most remarkable factors is the system 
geometry. The system geometry includes the Hooke’s angle 
(the angle between two yokes of coupling). Often in practice, 
these angles are considered to be less than 1 rad in disk-shaft 
mechanisms and the impact of geometry in this range is 
evaluated.  

The inertia of driveline is another factor that affects the 
stability and can be checked. The rigid disks represent the 
pulley or gear that may be attached to the shaft or addressed 
the rotary inertia of model. The results are charts which 
include a pair of the present model parameters and show the 
system stability. In all of these cases, the stability is verified 
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point by point. 
 

 

Fig. 2 Stability chart: investigation of the obtained results for unstable points 
 

 

Fig. 3 Stability chart: effect of driven shaft inertia (=5 and =5) 
 

 

Fig. 4 Stability diagram: effect of final disk inertia (=1 and =5) 
 

In order to evaluate the effect of the system inertia moment, 
two amounts are considered for the driven disk-shaft. To 
depict the inertia impact of multi-body system, the inertia of 
the second shaft is five times greater than the first one (Fig. 3). 
By comparison between Figs. 4 and 3, it can be observed that 
as driven shafts inertia increase, the peaks shift toward a lower 
velocity that should be considered in designing. By analyzing 
graphs, it can be deduced that increasing the system inertia has 
a significant stabilizing effect. In addition, many unstable 
regions are close together or merged, so that they are not 
explicitly recognizable. 

Now, the inertia effect of the fourth disk, which is on the 
end of the driven shaft (the output segment of the multi-body 
system) is investigated (Fig. 4) in a system with some 
specified parametric values (=1 and =5). It can be 
concluded from comparing Fig. 4 with 3, that by changing the 
disk inertia, the peak position varies. Consequently, the natural 
frequencies of the powertrain system decrease when inertia 
ratio increases. This is more pronounced, particularly at low 
velocity which converts the system to an unreliable one. By 

comparison between Figs. 3 and 4, it is clear that the effects of 
driven shaft inertia are different than that of the final disk, 
quantitatively. The reason is that unstable zones have 
considerably changed. Therefore, the dynamic behavior and 
parametric instabilities of the driveline system are not certain 
and exactly predictable, in some cases. This fact demonstrates 
the significance of quantitative analysis.   

V. CONCLUSION 

In this study, the behavior of a driveline is considered, and 
stability circumstances are analyzed. The shaft system 
includes two rotating rods interconnected through U-coupling. 
The EOM consist ODE, which is evaluated numerically. The 
mass of each shaft is considered via solid disks. The impacts 
of the architecture, the input speed and the shaft mass are 
studied. The outputs have been studies in the instability charts 
and examined in detail. Finally, the obtained results are as 
follows: 

Modeling of rotating rod mass causes more accurate results, 
which is considerable for studying the shaft systems. 
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Consequently, the modeling is suitable for oscillations 
identification of drivelines used in various mechanisms and 
systems.  

Enhancing the mass of second rod causes to obtain 
narrower unstable areas. Additionally, the variation of this 
character leads to the change in the torsional fundamental 
frequencies in mechanical systems.  
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