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Abstract—The so-called all-pass filter circuits are commonly 

used in the field of signal processing, control and measurement. 
Being connected to capacitive loads, these circuits tend to loose their 
stability; therefore the elaborate analysis of their dynamic behavior is 
necessary. The compensation methods intending to increase the 
stability of such circuits are discussed in this paper, including the so-
called lead-lag compensation technique being treated in detail. For 
the dynamic modeling, a two-port network model of the all-pass filter 
is being derived. The results of the model analysis show, that 
effective lead-lag compensation can be achieved, alone by the 
optimization of the circuit parameters; therefore the application of 
additional electric components are not needed to fulfill the stability 
requirement. 
 

Keywords—all-pass filter, frequency compensation, stability, 
linear modeling 

I. INTRODUCTION 

HE all-pass filters are signal processing filters with unity 
gain signal amplification and adjustable phase delay in 

their operating range. 
Although all-pass filters can be implemented either as 

analogue or as digital circuits, the digital implementation is 
always a tradeoff between the signal quality and the hardware 
performance. If the achievable phase response characteristic is 
rather simple, the analogue implementation of the all-pass 
filter can be considered. Basically, there are two 
implementation manners of realizing such analogue filter 
circuits. One alternative is the passive implementation, 
consisting of only passive components like resistors, 
capacitors and inductors. A number of passive circuit 
topologies exist, which can be used for this purpose, for 
instance the Lattice or T-section filters. The other alternative is 
the active implementation, consisting of active devices like 
operational amplifiers as well. Through the application of 
active components, it is possible to omit the bulky and costly 
inductor components, as well as providing more freedom in the 
shaping of the filter characteristic. 

These circuits are usually used in signal processing systems, 
especially in audio applications of special sound effects such 
as the spectral delay filters [8]. Analogue all-pass filters can 
also be implemented in control or measurement systems, 
where  
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the phase regulation of a signal is of importance, in order to 
assure the proper operation of the unit. 

II. OPERATION PRINCIPLE 

A typical configuration of a first-order all-pass filter is 
shown on Fig. 1. In order to assure the unity gain of the filter, 
the resistors R connecting to the inverting input of the 
operational amplifier are chosen with the same resistance 
value, while the resistor Rc and capacitor C determine the 
corner frequency of the phase response. 

The following equations show the relationship between the 
input signal and the output signal, considering the operational 
amplifier as an ideal amplifier, in which the gain and the input 
impedance are infinite and the output impedance is zero. 

 

Fig. 1 A first-order all-pass filter 
 

The resistor Rc and the capacitor C connecting serial with each 
other form a low-pass filter on the non-inverting input of the 
amplifier, where the voltage is: 
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Using Kirchhoff’s junction rule to the inverting input, and 
considering that the input impedance of the amplifier is 
infinite, the following equation holds: 
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The infinite open loop gain of the amplifier implies that both 
the inverting and non-inverting inputs are at the same voltage 
(V+=V-). Using this relation, and after multiplying with R and 
substituting (1) into (2), the equation is: 
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After rearranging (3), the transfer function of the input voltage 
to the output voltage is: 
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After deriving the gain and phase shift information from the 
transfer function: 
 

 ( ) 1=ωjH  (5) 

 ( ) ( )CRjH cωω arctan2−=∠  (6) 

 
As the equations show, the circuit acts in fact as an all-pass 

filter, since it provides frequency-dependent phase shift with 
unity gain. The phase response characteristic is similar to that 
of a two latch element, keeping towards 0 at low frequencies, 
having a phase shift of -90° at w=1/RcC and converging 
towards -180° at high frequencies. 

In case of replacing the components Rc and C with each 
other, the phase response evolves from 180° (low frequencies) 
towards 0° (high frequencies). 

In order to adjust the corner frequency of the filter, a variety 
of electrically adjustable resistors (e.g. field-effect transistors 
in “ohmic mode”, digitally programmable potentiometers or 
voltage controlled floating resistors [6]) are available. 

III.  FREQUENCY COMPENSATION 

The frequency compensation is a technique being employed 
usually in negative feedback amplifier circuits. The main goal 
for the application of frequency compensation is to avoid the 
positive feedback of certain frequency domains in the 
frequency band of the amplifier (with a phase delay of -180° of 
the feedback signal, the negative feedback changes sign) that 
causes ringing or the loss of stability of the amplifier. 

The general purpose amplifiers are usually compensated 
internally by adding an integrating capacitance to the gain 
stage of the amplifier. This capacitor creates a pole with a 
frequency low enough to reduce the gain to one, at or just 
below the frequency where the next pole locates, which results 
in a phase margin of ≈45° depending on the proximity of the 
further higher poles. This phase margin is usually sufficient to 
prevent oscillations at the most common feedback 
configurations, where the amplifier is rather resistively loaded. 

However, there are applications, where the operational 
amplifier has to drive large capacitive loads. The capacitive 
load acting together with the output impedance brings a new 
pole into the system. If the capacitance is  large enough, the 
new pole will be located at a frequency lower or just above the 
cutoff frequency, resulting in a reduced phase margin, which 
leads to have ringing and stability problems when they are not 
properly compensated. 

Adding new zeros and poles to the system by implementing 
extra components to the circuit can result in improved 
stability. There are several compensation methods using this 

principle, the most of them are discussed in [3]-[5]. The most 
commonly used method is the so-called dominant-pole or lag 
compensation method that acts like the internal compensation 
being discussed formerly, which introduces a new pole in the 
system. The other conventional methods are the lead 
compensation, which places a zero in the open loop response 
to cancel one of the existing poles; the lead-lag compensation 
placing both a zero and a pole in the open loop response, with 
the pole usually being at an open loop gain of less then one; 
and the feed-forward compensation that uses a capacitor to 
bypass a stage in the amplifier at high frequencies, thereby 
eliminating the pole that the stage creates. 

By choosing the proper compensation technique, some 
tradeoffs have to be considered, since each technique causes 
some undesired limitations in the circuit, like the limited 
output swing, the limited bandwidth, the reduced accuracy or 
the increased noise sensitivity. 

All of the above discussed conventional compensation 
techniques need additional passive components, however the 
solution proposed in this paper is based on the parameter 
tuning of passive components already existing in the circuitry. 
For such an optimization an accurate model of the system is 
needed. The derivation of the linear model is discussed in case 
of a first-order all-pass filter, but can be applied for other 
feedback amplifier configurations as well.  

IV.  LINEAR MODELING OF A FIRST-ORDER ALL-PASS FILTER 

A. Two-port network model 

At the discussion of the operational principle of the all-pass 
filter, the ideal operation of the amplifier was assumed. For a 
more elaborate model analysis the gain and the input 
impedance of the operational amplifier does not considered to 
be infinite anymore and the output impedance of the 
operational amplifier is treated in the model as well. 

In order to study the stability of the circuit with respect to 
the variation of the passive element values, a dynamic model is 
needed, whereby the characteristic parameters of the feedback 
can be investigated. The two-port model of the all-pass filter 
being shown on Fig. 2 divides the whole system into distinct 
function blocks, such as the input stage (VTh, ZTh) including the 
input topology as well as the input capacitance of the 
amplifier, the amplifier (Hop), the feedback (Hb) and the output 
stage (Hout) including the load impedance (Zload) and also the 
output impedance of the amplifier (Zo). Employing this model, 
the dynamic behavior of these functional blocks, as well as the 
characteristic parameters of the feedback loop (e.g. loop gain), 
together with the behavior of the closed loop can be studied. 
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Fig. 2 Series-shunt feedback configuration 
 

There are basically four two-port model configurations that 
could be employed. The benefit of using the series-shunt 
configuration is that, the value of the Thevenin equivalent 
impedance of the input stage (ZTh) can be neglected, since due 
to the infinite input impedance of the amplifier, no current is 
flowing through it. 

B. Deriving the model parameters 

In order to determine the parameters of the two-port model, 
the operation of the input- and the output stages of the 
amplifier were separated. After opening the feedback path, the 
effect of the feedback to the input stage can be replaced with a 
dependent current source (I f*), depending on the voltage 
difference between the feedback resistor terminals and on the 
value of the feedback resistor as shown on Fig. 3 (a). The 
effect of the feed-forward through the feedback resistor to the 
output is replaced with the equivalent input network as shown 
on Fig. 3 (b). In addition, the input capacitance (Cin) and the 
output impedance (Zo=sLo+Ro) of the operational amplifier are 
considered in the model as well. 

 

Fig. 3 Equivalent circuit models 
 

The dependent current source I f* marked with the dashed 
line box on Fig. 3 (a) is equivalent with the dependent current 
source I f marked with the dashed line box on Fig. 3 (b). The 
voltage difference on the input terminals of the operational 
amplifier (V- -V+) is a function of Vin and Vout. The output 
voltage Vout depends further on the amplifier output Vop and on 
the input voltage Vin as well (Fig. 3 (b)). 

In order to separate and to understand the effect of the 
feedback and the feed-forward, the block diagram 
representation of the circuit function is established (Fig. 4). 

 

Fig. 4 Block diagram representation of the circuit 
 

The output voltage Vout consists of the superposition of the 
voltages HforwardVin and HoutVop. The effect of Vin through the 
feed-forward branch (Hforward) can be considered as a 
disturbance, which is compensated through the feedback 
branch (Hb). The effect of this disturbance (Vdist=Vin) on the 
output signal can be calculated as: 
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Since the feed-forward gain (Hforward) is significantly smaller 
then the loop gain of the feedback (Hloop), the feed-forward 
effect of Vin can be neglected. The tradeoff through this 
simplification, on the accuracy of the model behavior can be 
however observable, if the value of the resistance R is 
comparable to that of output impedance Zo, since therewith the 
gain of Hforward becomes bigger. In addition to that, at higher 
frequencies, where the amplification of the feed-forward 
(|Hforward|) is comparable or dominates over the amplification 
of the feedback loop (|Hloop|), the model is not valid anymore. 

The effect of Vin on V- -V+ (HTh́  and HTh́ ´) can be separated 
from the effect of Vout on V- -V+ (Hb). The transfer functions 
HTh́ , HTh́ ´ and Hb are derived with the aid of Fig. 5 (b)(c)(d) 
respectively, by applying the superposition theorem. 

 

Fig. 5 (a) Equivalent circuit of the input topology 
(b) Effect of the feedback current to the amplifier inputs 

(c) and (d) Effect of the input voltage to the amplifier inputs 
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After subtracting (9) from (8), the voltage acting on the 
amplifier inputs to the effect of Vin through HTh́  can be 
expressed as: 
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After subtracting (10) from (11), the voltage acting on the 
amplifier inputs to the effect of Vin through HTh́ ´ can be 
obtained as: 
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After superposing (12) and (13), the Thevenin equivalent 
voltage source (VTh) is obtained: 
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The effect of Vout on V- -V+ is represented through Hb, being 
derived with the aid of Fig. 5 (b): 
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After subtracting (16) from (15), the transfer function of the 
feedback loop (Hb) is expressed: 
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In order to obtain the transfer function of the operational 

amplifier (Hop), the gain, the poles and the zeros were taken 
from a PSpice model as follows. All other parameters of the 
PSpice model, as the offset and leakage currents of the 
differential input stage, the large input resistance (1000GW) of 
the FET inputs, as well as the voltage offset and the common-
mode gain are being omitted. 
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The transfer function of the operational amplifier is: 
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The transfer function of the output stage in case of a capacitive 
load (Zload=1/(jwCload)) is: 
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The open loop gain of the loaded amplifier is: 
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The loop gain is: 
 

βHHH Aloop =   (27) 

 
The transfer function of the closed loop is: 
 

βHH

H

V

V
H

A

A

Th

out
closed +

==
1

  (28) 

 
The transfer function of the whole system is: 
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V. VERIFICATION OF THE MODEL 

In order to verify the derived linear model, its simulation 
results were compared to the simulation results of the 
numerical PSpice model of the circuit. 

On Fig. 6, the linear model and the PSpice model of the 
filter circuit without the feedback resistor R were compared to 
each other. The displayed transfer function of the overall 
system after opening the feedback path is HThHopHout as can be 
seen on Fig. 4. 

 

Fig. 6 Transfer functions of the open loop gain 
 

The gain and phase values of the corresponding transfer 
functions are shown on the left axis, while the error between 
the models is presented on the right axis. The most significant 
error in the magnitude of the open loop gain is less then 9·10-3 
dB in the relevant frequency range, which means less then 
0.11% voltage difference between the output signals, while the 
most significant phase difference is also less then 0.5 degree. 

Fig. 7 shows the transfer functions of the all-pass filter (H) 
being loaded with a 10 nF capacitor. The non-linear behavior 
- being neglected in the model - is causing deviations at the 
main corner frequency compared to the simulation result. At 

higher frequencies, the assumption (|Hforward|<<|H opHoutHb|) 
does not hold, being the main reason for the differences at the 
frequency plots at this frequency domain. However in the 
operating range, the error by means of magnitude is less then 
1dB and by means of phase is less then 10 degree. 

 

Fig. 7 Transfer function of the whole system 
 

VI.  THE EFFECT OF THE PARAMETER VARIATION ON THE 

STABILITY OF THE FILTER 

Using the linear model of the circuit, the effect of the 
capacitive load on the open loop transfer function (HA) is 
shown on Fig. 8. The frequency plots of the unloaded open 
loop gain, the modified open loop gain and the inverse transfer 
function of the feedback loop are displayed. Due to the new 
pole being introduced through the load capacitance in the open 
loop function, the 1/Hb curve intersects the modified open loop 
curve at a slope (rate-of-closure) of more then 40 dB/decade. 
Since the frequency of the intersection is the cutoff frequency 
of the loop gain, this means that the phase margin of the 
capacitive load case is negative (Fm=-5.43°, the phase margin 
without any load is Fm=30.98°), which results in an instable 
system. 

 

Fig. 8 Effect of the capacitive load to open loop gain 
Considering that the condition |H|=1 must hold through the 

whole operating range and the corner frequency (w=1/RcC) of 
the filter must remain unchanged, there are two alternatives to 
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modify the dynamic properties of the all-pass filter. One 
possibility is to change the value of the parameter R and leave 
the other parameters (Rc, C) unchanged. The other one is to 
alter the parameters Rc and C, in a way that the impedance 
ratio of them remain unaffected (ZRc/ZC=1/RcC=constant), 
while the parameter R remain unchanged as well. 

Fig. 9 (a) shows the effect of the varying R on the elements 
of the loop gain (HA and Hb). On the figure, the magnitudes of 
the loaded open loop response (HA) and of the inverse 
feedback loop response (1/Hb) are shown to the case of 
different resistor values of R. The variation of resistance R – as 
it can be seen from (25) - does not affect the open loop 
response at all, however, it has a significant effect to the 
feedback loop (Hb). By increasing the resistance R, the 
frequency of one of the two poles of the feedback loop 
decreases, and respectively, by decreasing R the frequency of 
this pole increases. Since it would be difficult to obtain the 
rate-of-closure values on the upper diagram and thereby to get 
information about the stability, a zero-pole map containing the 
dominant poles of the whole system (H) as a function of R is 
displayed on Fig. 9 (b). 

 

Fig. 9 The effect of varying parameter R 
 

As the zero-pole map shows, the unstable region of the 
diagram can be left either by increasing or by decreasing  the 
value of R, however at lower R values, the phase margin is 
rather small, since after a while the increasing of the pole 
frequency does not affect the rate-of-closure. A more effective 
way to increase the phase margin is to select higher R values. 
However the using of large resistances results in increased 
amount of thermal noise and it reduces strongly the bandwidth 
of the filter as well. 

Fig. 10 shows the effect of modifying the parameters Rc and 
C. As it can be seen from (25), the variation of these 
parameters does not affect the open loop response (HA), 
however, it does have a significant effect on the feedback loop 
characteristics (Hb). By keeping the corner frequency 
(w=1/RcC) constant, and decreasing the capacitance value C, 
the resistance Rc can be determined. As the capacitance value 
decreases, the 2 poles of the feedback loop are repelling from 
each other, leaving the zero of the transfer function at its 

original place. As Fig. 10 (b) shows, the decreasing of the 
capacitance C leads to a better stability. 

 

Fig. 10 The effect of varying parameters C and Rc 
 

In order to plot the effect of the variation of the two 
independent variables R and C, the application of a zero-pole 
map with polar coordinates is more suitable. In the polar 
coordinate system, the radius represents the natural frequency 
of the conjugate pole pairs, while the angle of the radius and 
the imaginary axis (f) is a non-linear function of the damping 
factor (z=arcsin(f)) of the corresponding conjugate pole pair, 
which is a good mathematical indicator of the stability of a 
system. For 0<z <0.7 the phase margin can be estimated with 
the linear relation of Fm =100z . 

Fig. 11 shows the stability map for the parameter 
optimization, where the contour lines of the different resistor 
values of R are signed with a single-dotted line, while the 
double-dotted lines indicate the changes in the  capacitance 
values of C (Rc ). 

 

Fig. 11 Pole-Zero map of the parameter change 
 

As it can be seen, different options exist to improve the 
stability of such circuit. In case of large R resistance values, 
stability can be achieved, however the frequency band of the 
closed-loop system is strongly deteriorated. On the other hand 
these large R resistance values make the system rather 
insensible to C (Rc) parameter changes. By decreasing the C 
capacitance and R resistance values the stability can be 
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reached as well, having even the advantage of a larger 
bandwidth of the closed-loop system. 

Fig. 12 shows the transfer functions of the all-pass filter (H) 
with three different parameter sets. The system is being 
stabilized by applying a high R resistance value (doted line) 
and also by applying a small R resistance and a small C 
capacitance value (dashed line). The third characteristic refers 
to an unstable system (continuous line). 

 

Fig. 12 The closed loop of the stabilized system 
 
As Fig. 11 shows, both stabilization manners cause an 
increased damping ratio of about 0.45 (resulting in a phase 
margin of around 62°), however, in case of compensating 
through large R values, a significant decrease in the bandwidth 
(Dwb) is occurred (Fig. 12). 

Based on the simulation results of the linear model, a 
significant filter stability improvement can be achieved 
through decreasing the values R and C (accordingly by 
increasing the resistance Rc), however it is recommended to 
validate these results through the non-linear simulation 
models, in order to investigate the effect of the non-linear 
behavior of the operational amplifier, and the effect of the 
feed-forward character of Hforward as well. 

For the initial design of the circuit, the second order analytic 
model of the operational amplifier can be used, however, in 
this case, in order to confirm the dynamic behavior of the final 
configuration, the application of a numerical model of the 
circuit is strongly recommended. 

This compensation technique is similar to the so-called lead-
lag (or noise gain) compensation treated in [4], with the 
exception that in our compensation no additional electric 
components are being used. The advantage of the lead-lag type 
compensation is that it reduces neither the output swing nor the 
accuracy of the filter, and it affects just slightly the bandwidth 
of the system. The increased noise sensitivity however has to 
be considered in a noisy environment or in noise sensitive 
circuits. 

VII.  CONCLUSION 

As the results of the simulation show, it is possible to 
achieve a significant improvement of the stability, only by 
optimizing the passive components already existing in the 
circuit. Through the simplification of the electric circuitry by 
omitting the additional electric components, the overall 

reliability of the implemented all-pass filter can be increased, 
by reducing the space requirements and by cutting on the 
production costs on the same time. 
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