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Stability and Bifurcation Analysis in a Model of
Hes1 Selfregulation with Time Delay

Kejun Zhuang, Hailong Zhu

Abstract—The dynamics of a delayed mathematical model for
Hes1 oscillatory expression are investigated. The linear stability of
positive equilibrium and existence of local Hopf bifurcation are
studied. Moreover, the global existence of large periodic solutions
has been established due to the global bifurcation theorem.
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I. INTRODUCTION

S INCE the oscillatory gene expression driven by negative
feedback loops was first predicted by Goodwin [1], vari-

ants of this model have been proposed, see [2–4] and the
references cited therein. In those delayed models, oscillations
are generated if the delays surpass a critical value; in such
cases, the delays can be regarded as driving the oscillations.
From the viewpoint of mathematics, this kind of oscillations
are exactly periodic solutions of delay differential equations
due to Hopf bifurcation [5–7].

Oscillatory expression of members of the Hes/Her family of
basic helix–loop–helix transcription factors have been shown
to be involved in the segmentation clock [8]. The Hes/Her fam-
ily members that oscillate during somitogenesis are involved
in direct negative feedback loops, since they are capable of
repressing their own transcription. Especially, Hes1 represses
the transcription of its own gene through direct binding to
regulatory sequences in the Hes1 promoter. Then Bernard
considered the influence of an additional factor known to
be involved in the Hes1 repression loop, namely Gro/TLE1.
Protein Gro/TLE1 is activated through Hes1–induced hyper–
phosphorylation. This activation is described by a Hill function
that is a monotonically increasing function of Hes1 with Hill
coefficient. The associated equations are written as [2]:{

dH(t)
dt = f0kn

kn+Gn(t−τ) − αH(t),
dG(t)

dt = g0Hm(t)
lm+Hm(t) − σG(t),

(1)

where H(t) and G(t) are the relative concentrations of Hes1
protein and of the TLE1/Groucho–Hes1. All the coefficients
are positive constants, f0 and g0 are the production rates of
Hes1 protein and of the TLE1/Groucho–Hes1, respectively. σ
is the linear degradation rate of GroH, m and l0 are parameters
representing the sensitivity and scale of the rate of formation of
the GroH complex. In this model, Hes1 mRNA is not explicitly
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modeled, but protein complex formation between Hes1 and
its transcriptional co–repressor TLE1/Groucho is incorporated
explicitly. Detailed numerical analysis was given to describe
the stability and local Hopf bifurcation in [2].

The aim of this paper is to give the explicitly mathe-
matical analysis for stability and periodicity of system (1).
The remainder of the paper is organized as follows. In next
section, existence of small amplitude periodic solutions will
be proved by analyzing the distribution of roots for the
transcendental characteristic equation. In Section 3, the global
Hopf bifurcation is established.

II. LINEAR STABILITY ANALYSIS

Assume that system (1) has the unique positive equilibrium
E∗(H∗, G∗), then the corresponding linear system at E∗ is in
the form {

dH(t)
dt = a11G(t− τ) − αH(t),

dG(t)
dt = a21H(t) − σG(t),

(2)

where a11 = −nαH∗Gn−1
∗

kn+Gn∗
< 0 and a21 = mσlmG∗

H∗(lm+Hm∗ ) > 0.
Then the characteristic equation is

λ2 + (α+ σ)λ+ ασ − a11a21e
−λτ = 0. (3)

When τ = 0, equation (3) can be reduced to λ2 +(α+σ)λ+
ασ−a11a21 = 0, which has two roots with negative real parts.
Next we shall explore the distribution of characteristic roots
when τ > 0. Let λ = iω(ω > 0) be a root of (3). Then

−ω2 + i(α+ σ)ω + ασ − a11a21(cosωτ − i sinωτ) = 0.

Separation of the real and imaginary parts yields{
ω2 − ασ = −a11a21 cosωτ,
(α+ σ)ω = −a11a21 sinωτ,

and

ω4 + (α2 + σ2)ω2 + (ασ + a11a21)(ασ − a11a21) = 0. (4)

It is easy to verify that equation (4) has the unique positive
root when ασ+a11a21 < 0. This means that the characteristic
equation only has a pair of purely imaginary roots.

From above, we have the following lemma.
Lemma 2.1. If ασ + a11a21 < 0, then equation (3) has a
pair of purely imaginary roots ±iω0 when τ = τj , where

ω0 =

√√
(α2 − σ2)2 + 4a2

11a
2
21 − (α2 + σ2)

2
,

τj =
1
ω0

(
arccos

ασ − ω2

a11a21
+ 2jπ

)
, j = 0, 1, 2, . . . .
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Let λ(τ) = β(τ)+ iω(τ) be a root of (3) satisfying β(τj) =
0 and ω(τj) = ω0, j = 0, 1, 2, . . ..
Lemma 2.2. If ασ + a11a21 < 0, then β′(τj) > 0.
Proof. By substituting λ(τ) into equation (3) and differentiat-
ing both sides of the equation with respect to τ , we obtain

dλ(τ)
dτ

∣∣∣∣
τ=τj

=
−a11a21λe

−λτ

2λ+ (α+ σ) + a11a21τe−λτ

∣∣∣∣
τ=τj

=
−a11a21λ

eλτ (2λ+ α+ σ) + a11a21τ

∣∣∣∣
τ=τj

=
−a11a21ω0i

(cosω0τj + isinω0τj)(α+ σ + 2iω0) + a11a21τj
,

and

dβ(τ)
dτ

∣∣∣∣
τ=τj

=
ω2

0(2ω2
0 + α2 + σ2)
A

> 0,

where A = [(α + σ) cosω0τj − 2ω0 sinω0τj + a11a21τj ]2 +
[(α+ σ) sinω0τj + 2ω0 cosω0τj ]2. The conclusion follows.

According to Corollary 2.4 in [9], it is easy to verify the
distribution of characteristic roots.
Lemma 2.3. (i) If ασ + a11a21 > 0, then all roots of (3)
have strictly negative real parts.
(ii) If ασ + a11a21 < 0, then there exist τ0 < τ1 < τ2 < · · ·
such that all roots of (3) have negative real parts when τ ∈
[0, τ0), and equation (3) has 2(j + 1) roots with positive real
parts when τ ∈ (τj , τj+1).

From Lemma 2.2–2.3 and the Hopf bifurcation theorem
[10], we have the following results.
Theorem 2.4. (i) If ασ+ a11a21 > 0, then positive equilib-
rium E∗ of (1) is locally asymptotically stable for any τ > 0.
(ii) If ασ + a11a21 < 0, then E∗ is asymptotically stable for
τ ∈ [0, τ0), and unstable for τ > τ0. System (1) undergoes a
Hopf bifurcation at E∗ when τ = τj , j = 0, 1, 2, . . . .

III. GLOBAL EXISTENCE OF HOPF BIFURCATING PERIODIC
SOLUTIONS

In this section, we focus on the global continuation of
positive periodic solutions bifurcating from the equilibrium
E∗. Throughout this section, we closely follow the notation in
[11] and define
X = C([−τ, 0],R2),
Σ = Cl{(x, τ, p) : (x, τ, p) ∈ X × R+ × R+, x is a p −

periodic solutions of (1)},
N =

{
(x̂, τ, p) : x̂ = (Ĥ, Ĝ), f0kn

kn+Ĝn
= αĤ, g0Ĥm

lm+Ĝm
= σĜ

}
,

Δ(x∗, τ, p)(λ) = λ2 + (α+ σ)λ+ ασ − a11a21e
−λτ ,

and let C(x∗, τj , 2π/ω0) denote the connected component of
(x∗, τj , 2π/ω0) in Σ, where ω0 and τj are defined in Lemma
2.1.
Lemma 3.1. If m and n are even, then all periodic solutions
of (1) are positive and uniformly bounded.
Proof. Let (H(t), G(t)) be a nonconstant periodic solution
of (1), and H(t1) = M1, H(t2) = m1 be its maximum and

minimum of H(t), respectively. Then H ′(t1) = H ′(t2) = 0,
namely

M1 =
f0k

n

α(kn +Gn(t1 − τ))

and

m1 =
f0k

n

α(kn +Gn(t2 − τ))
.

Thus, 0 < H(t) ≤ f0
α .

Similarly, let G(t3) = M2, G(t4) = m2 be its maximum
and minimum of G(t), we get 0 < G(t) ≤ g0

σ . Then all
periodic solutions of (1) are positive and bounded for any t.
Lemma 3.2. System (1) has no nonconstant τ−periodic
solution.
Proof. For a contradiction, suppose that system (1) has a
τ−peridic solution. Then the following ordinary differential
equations has nonconstant periodic solution:{

dH(t)
dt = f0kn

kn+Gn(t) − αH(t),
dG(t)

dt = g0Hm(t)
lm+Hm(t) − σG(t).

(5)

If we define P (H,G) = f0kn

kn+Gn − αH and Q(H,G) =
g0Hm

lm+Hm − σG, then ∂P
∂H + ∂Q

∂G = −α − σ < 0. According
to Bendixson–Dulac Criterion, system (5) has no nonconstant
periodic solutions. This completes the proof.
Theorem 3.3. If ασ + a11a21 < 0 and m,n are even, then
periodic solutions bifurcating from positive equilibrium of (1)
still exist for τ > τj , j = 0, 1, 2, . . . .
Proof. If is sufficient to prove that the projection of
C(x∗, τj , 2π/ω0) onto τ−space includes [τj ,∞) for each
j ≥ 0.

From Lemma 2.2 and 2.3, there exist ε > 0, δ > 0 and a
smooth curve λ : (τj − δ, τj + δ) → C, such that

Δ(λ(τ)) = 0, |λ(τ) − iω0| < ε,

for all τ ∈ [τj − δ, τj + δ] and

λ(τj) = iω0,
dRe(λ(τ))

dτ

∣∣∣∣
τ=τj

> 0.

Define Ωε = {(u, p) : 0 < u < ε, |p− 2π/ω0| < ε}. It is not
difficult to show that if |τ − τj | ≤ δ and (u, p) ∈ Ωε, then
Δ(x∗, τ, p) (u+ 2imπ/p) = 0 if and only if u = 0, τ =
τj , p = 2π/ω0. This verifies the assumptions (A1)–(A4) in
[11] for m = 1.

Moreover, putting

H±
(
x∗, τj ,

2π
ω0

)
(u, p) = Δ(x∗, τj ± δ, p)

(
u+ i

2π
p

)
,

then we can compute the crossing number of the isolated
center (x∗, τj , 2π/ω0) as follows

γ

(
x∗, τj ,

2π
ω0

)
= degB

(
H−

(
x∗, τj ,

2π
ω0

)
,Ωε

)

−degB

(
H+

(
x∗, τj ,

2π
ω0

)
,Ωε

)
= −1,
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where degB denotes the Brouwer degree. Then we have∑
(x̂,τ,p)∈C(x∗,τj ,2π/ω0)

γ(x̂, τ, p) < 0.

Therefore, from Theorem 3.3 in [11], the connected compo-
nent C(x∗, τj , 2π/ω0) in Σ is unbounded.

Lemma 3.1 implies that the projection of C(x∗, τj , 2π/ω0)
onto x−space is bounded. From the definition of τj , we know
that 0 < 2π/ω0 < τj when j > 0. Then the projection onto
p−space is also bounded.

Besides, the projection of C(x∗, τj , 2π/ω0) onto τ−space
is bounded below due to Lemma 3.2. This means that the pro-
jection of C(x∗, τj , 2π/ω0) onto τ−space must be unbounded
and includes [τj ,∞). As a result, bifurcating periodic solutions
of (1) still exist when τ is far away from the first critical value
τ0.

IV. CONCLUSION

In this paper, we analyze the Hes1 oscillatory expression
model by regarding time delay τ as bifurcation parameter. We
conclude that periodic oscillation may occur when τ passes
through some critical values, and the amplitude of oscillation
is small. Moreover, the amplitude of oscillation may increase
with τ when Hill coefficient is an even number, which can be
explained by existence of global Hopf bifurcation.
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