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Stability analysis of impulsive stochastic fuzzy
cellular neural networks with time-varying delays

and reaction-diffusion terms
Xinhua Zhang and Kelin Li

Abstract—In this paper, the problem of stability analysis for
a class of impulsive stochastic fuzzy neural networks with time-
varying delays and reaction-diffusion is considered. By utilizing
suitable Lyapunov-Krasovskii funcational, the inequality technique
and stochastic analysis technique, some sufficient conditions ensur-
ing global exponential stability of equilibrium point for impulsive
stochastic fuzzy cellular neural networks with time-varying delays
and diffusion are obtained. In particular, the estimate of the expo-
nential convergence rate is also provided, which depends on system
parameters, diffusion effect and impulsive disturbed intention. It is
believed that these results are significant and useful for the design
and applications of fuzzy neural networks. An example is given to
show the effectiveness of the obtained results.

Keywords—Exponential stability; stochastic fuzzy cellular neural
networks; time-varying delays; impulses; reaction-diffusion terms.

I. INTRODUCTION

IN mathematical modelling of real world problems, we
encounter inconveniences, namely, the complexity and the

uncertainty or vagueness. In order to take vagueness into
consideration, fuzzy theory is considered as a suitable setting.
Based on traditional CNN, Yang et al. proposed the fuzzy
cellular neural networks (FCNN) [1], [2], which integrates
fuzzy logic into the structure of the traditional CNN and main-
tains local connectedness among cells. Unlike previous CNN
structures, FCNN has fuzzy logic between its template input
and/or output besides the sum of product operation. FCNN is
very useful paradigm for image processing problems (e.g., see,
[10], [11]), which is a cornerstone in image processing and pat-
tern recognition. In such applications, the stability of networks
plays an important role, it is of significance and necessary to
investigate the stability. It is well known, in both biological
and artificial neural networks, the delays arise because of the
processing of information. Time delays may lead to oscillation,
divergence, or instability which may be harmful to a system.
Therefore, study of neural dynamics with consideration of the
delayed problem becomes extremely important to manufacture
high quality neural networks. In recent years, there have been
many analytical results for FCNNs with various axonal signal
transmission delays, for example, see [3]-[11] and references
therein. However, strictly speaking, diffusion effects cannot be
avoided in the neural networks when electrons are moving in
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asymmetric electromagnetic fields. So we must consider that
the activations vary in space as well as in time. In order to
take the reaction-diffusion phenomena into neural networks,
many reaction-diffusion neural network models have been
formulated and investigated in recent years, for example, see
[12]-[24] and references therein.

On the other hand, in respect of the complexity, besides
delay effect, impulsive effect likewise exists in a wide variety
of evolutionary processes in which states are changed abruptly
at certain moments of time, involving such fields as medicine
and biology, economics, mechanics, electronics and telecom-
munications, etc. Many interesting results on impulsive effect
have been gained, e.g., Refs. [25]-[32]. As artificial electronic
systems, neural networks such as CNN, bidirectional neural
networks and recurrent neural networks often are subject to
impulsive perturbations which can affect dynamical behaviors
of the systems just as time delays. Therefore, it is necessary to
consider both impulsive effect and delay effect on the stability
of neural networks.

In recent years, the dynamic behavior of stochastic neural
networks, especially the stability of stochastic neural networks,
has become a hot study topic. The main reason is that in
practice, a real system is usually affected by external pertur-
bations which, in many cases, are of great uncertainty and
hence may be treated as random. As pointed out by Haykin
[36], in real nervous systems, synaptic transmission is a noisy
process brought on by random fluctuations from the release of
neurotransmitters and other probabilistic causes. Therefore, it
is of significant importance to consider stochastic effects for
the stability of neural networks. In Ref. [?]-[32], the authors
studied the exponential stability of several delayed neural
networks with impulsive and stochastic effect. In Ref. [33],
a delay-independent sufficient condition for the exponential
stability of stochastic Cohen-Grossberg neural networks with
time-varying delays and reactionCdiffusion terms. In Ref. [34],
[35], the authors investigated the theory and application of
stability for stochastic reaction diffusion systems.

Motivated by the above discussions, the objective of this
paper is to formulate and study impulsive stochastic FCNNs
with time-varying delays and reaction-diffusion terms. Under
quite general conditions, by employing suitable Lyapunov-
Krasovskii funcational, the inequality technique and stochastic
analysis technique, some sufficient conditions ensuring the
existence, uniqueness and exponential stability of equilibrium
point for impulsive stochastic FCNNs with time-varying de-
lays and reaction-diffusion terms are obtained.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

22

The paper is organized as follows. In Section II, the
new neural network model is formulated, and the necessary
knowledge is provided. We give some sufficient conditions of
exponential stability of impulsive stochastic FCNNs with time-
varying delays and reaction-diffusion terms in Section III. In
section IV, an example is given to show the effectiveness of
the obtained results. Finally, we give the conclusion in section
V.

II. MODEL DESCRIPTION AND PRELIMINARIES

In this section, we will consider the model of impulsive
stochastic fuzzy neural networks with time-varying delays
and diffusion, it is described by the following functional
differential equation
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dui(t, x) =
[ m

∑

r=1

∂
∂xr

(Dir
∂ui(t,x)

∂xr
) − aiui(t, x)

+
n
∑

j=1

aijfj(uj(t, x))

+
n
∧

j=1

αijgj(uj(t− τij(t), x))

+
n
∨

j=1

βijgj(uj(t− τij(t), x)) + Ii

]

dt

+
n
∑

j=1

σij(uj(t, x), uj(t− τij(t), x))dwj(t),

t ≥ 0, t �= tk, x ∈ G,
ui(t+k , x) = ui(t−k , x) + Jik(ui(t−k , x)),

k ∈ N � {1, 2, · · ·},
ui(s, x) = φi(s, x), −τ < s ≤ 0, x ∈ G,
ui(t, x) = 0, t ≥ 0, x ∈ ∂G

(1)
for i ∈ I � {1, 2, · · · , n}, where x = (x1, x2, · · · , xm)T ∈
G ⊂ Rm, |xr| < lr, r = 1, 2, · · · ,m and mesG > 0;
u = (u1, u2, · · · , un)T ∈ Rn; ui(t, x) is the state of the ith
neuron at time t and in space x; Dir ≥ 0correspond to the
transmission diffusion coefficient along the ith neuron; fi and
gi denote the signal functions of the ith neuron at time t and

in space x; Ii =
n
∑

j=1

bijvj + Ĩi +
n
∧

j=1

Tijvj +
n
∨

j=1

Hijvj , and vi

and Ĩi denote input and bias of the ith neuron, respectively;
ai > 0, aij , αij , βij are constants, ai represent the rate with
which the ith unit will reset its potential to the resting state in
isolation when disconnected from the networks and external
inputs; aij and bij are elements of feedback template and
feedforward template, respectively; αij , βij denote connection
weights of the delays fuzzy feedback MIN template and
the delays fuzzy feedback MAX template, respectively; Tij

and Hij are elements of fuzzy feedforward MIN template
and fuzzy feedforward MAX template, respectively;

∧

and
∨

denote the fuzzy AND and fuzzy OR operation, respec-
tively; τij(t) (0 ≤ τij(t) ≤ τij ≤ τ , τij are constants,
τ = max

1≤i,j≤n
{τij} ) correspond to the transmission delays

at time t; σi(u, v) = (σi1(u, v), σi2(u, v), · · · , σin(u, v))T ,
where σi(u, v) denote the weight function of random pertur-
bation, ω(t) = (ω1(t), ω2(t), · · · , ωn(t))T is an n-dimensinal
Brownian motion defined on complete probability space
(Ω,F , {Ft}t≥0, P ) with a filtration {Ft}t≥0 satisfying the

usual conditions. tk is called impulsive moment, and satisfies
0 < t1 < t2 < · · ·, lim

k→+∞
tk = +∞; ui(t−k , x) and ui(t+k , x)

denote the left-hand and right-hand limits at tk, respectively;
Jik show impulsive perturbation of the ith neuron at time tk,
respectively. We always assume ui(t+k , x) = ui(tk, x), k ∈ N .

If Jik(ui(t, x)) = 0, i ∈ I , k ∈ N , then system (1) may
reduce to the following model:
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[ m
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∂xr
) − aiui(t, x)

+
n
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j=1

aijfj(uj(t, x))

+
n
∧

j=1

αijgj(uj(t− τij(t), x))

+
n
∨

j=1

βijgj(uj(t− τij(t), x)) + Ii

]

dt

+
n
∑

j=1

σij(uj(t, x), uj(t− τij(t), x))dwj(t),

t > 0, x ∈ G,
ui(s, x) = φi(s, x), −τ < s ≤ 0, x ∈ G,
ui(t, x) = 0, t ≥ 0, x ∈ ∂G.

(2)
System (2) is called the continuous system of model (1).

If σik(ui(t, x)) = 0, Jik(ui(t, x)) = 0, i ∈ I , k ∈ N , then
system (1) may reduce to the following model:
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dui(t,x)
dt =

m
∑

r=1

∂
∂xr

(Dir
∂ui(t,x)

∂xr
) − aiui(t, x)

+
n
∑

j=1

aijfj(uj(t, x))

+
n
∧

j=1

αijgj(uj(t− τij(t), x))

+
n
∨

j=1

βijgj(uj(t− τij(t), x)) + Ii,

t > 0, x ∈ G,
ui(s, x) = φi(s, x), −τ < s ≤ 0, x ∈ G,
ui(t, x) = 0, t ≥ 0, x ∈ ∂G.

(3)

System (3) is called fuzzy cellular neural networks with time-
delays and reaction-diffusion terms.

Throughout this paper, we make the following assumptions:
(H1) The activation functions fi and gi are bounded and

there exist two positive diagonal matrices F =
diag(F1, F2, · · · , Fn) and G = diag(G1, G2, · · · , Gn),
such that

|fi(u)−fi(v)| ≤ Fi|u−v|, |gi(u)−gi(v)| ≤ Gi|u−v|
for all u, v ∈ R, i ∈ I .

(H2) Let hik(u) = u + Jik(u) be Lipschitz continuous in R,
that is, there exist nonnegative constants γik, i ∈ I , k ∈
N , such that

|hik(u) − hik(v)| ≤ √
γik|u− v|,

for all u, v ∈ R.
Remark 1. It should be noted that assumption (H1) guar-
antees the existence of an equilibrium point for system (3)
by the well-known Brouwer fixed-point theorem. Let u∗ =



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

23

(u∗1, · · · , u∗n)T be an equilibrium point of system (3). For the
stability of equilibrium of system (1), we furthermore assume
that

(H3) σ(u, v) is linear adding and exist two non-negative ma-
trices S = (sij)n×n and W = (wij)n×n such that

trace
[

(σi(u, v) − σi(u∗, u∗))T (σi(u, v) − σi(u∗, u∗))
]

≤
n

∑

j=1

sij(uj − u∗j )
2 +

n
∑

j=1

wij(vj − u∗j )
2

for all u = (u1, · · · , un)T , v = (v1, · · · , vn)T .
(H4) σij(u∗j , u

∗
j ) = 0, Jik(u∗i ) = 0, i, j ∈ I , k ∈ N .

To begin with, we introduce some notation and recall some
basic definitions.
PC[J × G, Rn] �

{

u(t, x) : J × G → Rn |u(t, x) is

continuous at t �= tk, u(t+k , x) = u(tk, x) and u(t−k , x) exists
for t, tk ∈ J, k ∈ N

}

, where J ⊂ R is an interval.

PC[J,Rn] �
{

u(t) : J → Rn |u(t) is continuous at t �=
tk, u(t+k ) = u(tk) and u(t−k ) exists for t, tk ∈ J, k ∈ N

}

,
where J ⊂ R is an interval.
PC(G) � {ϕ : (−∞, 0] × G → Rι| ϕ(s+, x) = φ(s, x) for

s ∈ (−∞, 0), ϕ(s−, x) exists for s ∈ (−∞, 0], ϕ(s−, x) =
ϕ(s, x) for all but at most a finite number of points s ∈
(−∞, 0]}.
PC �

{

φ : (−∞, 0] → Rn| φ(s) is bounded on (−∞, 0],
and φ(s+) = φ(s) for s ∈ (−∞, 0), φ(s−) exists for s ∈
(−∞, 0], φ(s−) = φ(s) for all but at most a finite number of
points s ∈ (−∞, 0]

}

.

For u(t, x) = (u1(t, x), u2(t, x), · · · , un(t, x))T ∈ Rm,

we define ‖ui(t, x)‖2 =
[

∫

G |ui(t, x)|2dx
]

1
2

, ‖ui(t, x)‖2
2 =

∫

G |ui(t, x)|2dx, i ∈ I , and for any φ(s, x) =
(φ1(s, x), φ2(s, x), · · · , φn(s, x))T ∈ PC(G), the norm on
PC(G) is defined by

‖φ‖2
2 = sup

−τ≤s≤0

n
∑

i=1

‖φi(s, x)‖2
2,

then it can be proved that PC(G) is a Banach space.
For an m × n matrix A, |A| denotes the absolute value

matrix given by |A| = (|aij |)m×n. For A = (aij)m×n, B =
(bij)m×n ∈ Rm×n, A ≥ B (A > B) means that each pair of
corresponding elements of A and B such that the inequality
aij ≥ bij (aij > bij).

Definition 1: The equilibrium point u∗ of system (1) is said
to be globally exponentially stable, if there exist constants
λ > 0 and M ≥ 1 such that

n
∑

i=1

(

E(‖ ui(t, x)− u∗i ‖2
2)

)

≤ME
(

‖ φ− u∗ ‖2
2

)

e−λ(t−t0)

for all t ≥ t0, where u = (u1(t, x), u2(t, x), · · · , un(t, x))T

is any solution of system (1) with the initial condition φ =
(φ1, φ2, · · · , φn)T ∈ PC(G).

Lemma 1: [12] For any positive integer n, let gj : R→ R
be a function (j ∈ J ), then we have
∣

∣

∣

n
∧

j=1

αjgj(uj) −
n
∧

i=1

αjgj(vj)
∣

∣

∣
≤

n
∑

j=i

∣

∣

∣
αj

∣

∣

∣
·
∣

∣

∣
gj(uj) − gj(vj)

∣

∣

∣
,

∣

∣

∣

n
∨

j=1

αjgj(uj) −
n
∨

j=1

αjgj(vj)
∣

∣

∣
≤

n
∑

j=1

∣

∣

∣
αj

∣

∣

∣
·
∣

∣

∣
gj(uj) − gj(vj)

∣

∣

∣

for all α = (α1, α2, · · · , αn)T , u = (u1, u2, · · · , un)T , v =
(v1, v2, · · · , vn)T ∈ Rn.

Lemma 2: [16] Let G be a cube |xr| < lr (r = 1, 2, · · · , l)
and let h(x) be a real-valued function belonging to C1(G)
which vanish on the boundary ∂G of G, i.e., h(x)|∂G = 0.
Then

∫

G
h2(x)dx ≤ l2r

∫

G

∣

∣

∣

∂h

∂xr

∣

∣

∣

2

dx.

Lemma 3: [12] Let a < b ≤ +∞, and let y(t) =
(y1(t), y2(t), · · · , yn(t))T ∈ PC[[a, b), Rn] satisfy the fol-
lowing delay differential inequality with the initial condition
ũ(a+ s) ∈ PC:

D+yi(t) ≤ −riyi(t)+
n

∑

j=1

pijyj(t)+
n

∑

j=1

qijyj(t−τij(t)) (4)

for all i ∈ I , where ri > 0, pij > 0, qij > 0, i ∈ I . If the
initial conditions satisfies

yi(s) ≤ κξie
−λ(s−a), s ∈ [−τ, a], i ∈ I , (5)

where λ > 0, ξ = (ξ1, ξ2, · · · , ξn)T > 0 and satisfy

(λ− ri)ξi +
m

∑

j=1

(pij + eλτijqij)ξj < 0, i ∈ I . (6)

Then

yi(t) ≤ κξie
−λ(t−a), t ∈ [−a, b), i ∈ I . (7)

III. MAIN RESULTS

In this section, we will discuss global exponential stability
of impulsive stochastic FCNNs with time-varying delays and
reaction-diffusion terms, and give their proofs.

Theorem 1: Under assumptions (H1)-(H4), if the following
conditions hold:

(C1) there exist constant λ > 0 and vectors ξ =
(ξ1, ξ2, · · · , ξn)T > 0 ,such that

0 >
[

λ− 2ai − 2
m

∑

r=1

Dir

l2r
+

n
∑

j=1

(Fj |aij | +Gj |αij)|

+Gj |βij |)
]

ξi +
n

∑

j=1

(

Fj |aij | + sij

)

ξj

+
n

∑

j=1

(

Gj |αij | +Gj |βij | + wij

)

eλτijξj ;

(C2) μ = sup
k∈N

{

ln μk

tk−tk−1

}

< λ, where μk =

max
1≤i≤n

{1, γik}, k ∈ N ;
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then system (1) has exactly one globally exponentially stable
equilibrium point, and its exponential convergence rate equals
λ− μ.
Proof. Let u(t, x) = (u1, u2, · · · , un)T be an arbitrary
solution of system (1) with the initial condition φ =
(φ1, φ2, · · · , φn)T ∈ PC(G), set vi(t, x) = ui(t, x) − u∗i for
i ∈ I . It is easy to see that system (1) can be transformed
into the following system
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dvi(t, x) =
[ m

∑

r=1

∂
∂xr

(Dir
∂vi(t,x)

∂xr
) − aivi(t, x)

+
n
∑

j=1

aij

(

fj(vj + u∗j ) − fj(u∗j )
)

+
n
∧

j=1

αijgj(vj(t− τij(t), x) + u∗j )

−
n
∧

j=1

αijgj(u∗j )

+
n
∨

j=1

βijgj(vj(t− τij(t), x) + u∗j )

−
n
∨

j=1

βijgj(u∗j )
]

dt

+
n
∑

j=1

σij(vj + u∗j , uj(t− τij(t), x) + u∗j )dwj(t),

t ≥ 0, t �= tk, x ∈ G,
vi(t+k , x) = vi(t−k , x) + Jik(vi(t−k , x) + u∗j ), k ∈ N,
vi(s, x) = φi(s, x) − u∗i , −τ < s ≤ 0, x ∈ G,
vi(t, x) = 0, t ≥ 0, x ∈ ∂G

(8)
for all i ∈ I .

For the system (8), construct the following Lyapunov func-
tional:

Vi(t) =
∫

G
v2

i (t, x)dx

By the Itô differential formula, we get

LVi(t) =
∫

G
2vi

[

m
∑

l=1

∂

∂xl
(Dil

∂vi

∂xl
) − aivi

+
n

∑

j=1

aij

(

fj(vj + u∗j ) − fj(u∗j )
)

+
n
∧

j=1

αijgj(vj(t− τij(t), x) + u∗j )

−
n
∧

j=1

αijgj(u∗j )

+
n
∨

j=1

βijgj(vj(t− τij(t), x) + u∗j )

−
n
∨

j=1

βijgj(u∗j )
]

dx

+2
n

∑

j=1

∫

G
(ui − u∗i )

×σij(vj + u∗j , vj(t− τij(t), x) + u∗j )dwj(t)dx

+
∫

G
trace(σ̃i

T σ̃i)dx, (9)

where σ̃i = σi(vj + u∗j , vj(t− τij(t), x) + u∗j ).

From Green’s formula and the initial condition, we have
∫

G
vi

m
∑

r=1

∂

∂xr

(

Dir
∂vi

∂xr

)

dx

= −
m

∑

r=1

∫

G
Dir

( ∂vi

∂xr

)2

dx. (10)

By Lemma 2, we can obtain
∫

G
vi

m
∑

r=1

∂

∂xr

(

Dir
∂vi

∂xr

)

dx

≤ −
m

∑

r=1

Dir

l2r
‖vi(t, x)‖2

2. (11)

From assumption (H1) and Höder inequality, we have
∫

G
vi

n
∑

j=1

aij

(

fj(vj + u∗j ) − fj(u∗j )
)

dx

≤
n

∑

j=1

|aij |
∫

G
|vj(t, x)||fj(vj) + u∗j ) − fj(u∗j )|dx

≤
n

∑

j=1

|aij |
∫

G
|vi(t, x)||vj(t, x)|Fjdx

≤
n

∑

j=1

Fj |aij |‖vi(t, x)‖2‖vj(t, x)‖2. (12)

By Lemma 1, assumption (H1) and Höder inequality, we have
∫

G
vi ×

[

n
∧

j=1

αijgj(vj(t− τij(t), x) + u∗j )

−
n
∧

j=1

αijgj(u∗j )
]

dx

≤
∫

G
|vi|

×
∣

∣

∣

n
∧

j=1

αijgj(vj(t− τij(t), x) + u∗j ) −
n
∧

j=1

αijgj(u∗j )
∣

∣

∣
dx

≤
∫

G
|vi|

n
∑

j=1

|αij ||gj(vj(t− τij(t), x) + u∗j ) − gj(u∗j )|dx

=
n

∑

j=1

|αij |
∫

G
|vi||gj(vj(t− τij(t), x) + u∗j ) − gj(u∗j )|dx

≤
n

∑

j=1

|αij |Gj

∫

G
|vi(t, x)||vj(t− τij(t), x)|dx

≤
n

∑

j=1

Gj |αij |‖vi(t, x)‖2‖vj(t− τij(t), x)‖2. (13)

By the same reason, we have
∫

G
vi ×

[

n
∨

j=1

βijgj(vj(t− τij(t), x) + u∗j )

−
n
∨

j=1

βijgj(u∗j )
]

dx



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

25

≤
n

∑

j=1

Gj |βij |‖vi(t, x)‖2‖v∗j (t− τij(t), x)‖2. (14)

According to assumption (H3), we have
∫

G
σ̃T

i σ̃idx

=
∫

G

[

σ̃i − σi(u∗, u∗)
]T [

σ̃i − σi(u∗, u∗)
]

dx

≤
n

∑

j=1

sij

∫

G
v2

j (t, x)dx

+
n

∑

j=1

wij

∫

G
v2

j (t− τij(t), x)dx

≤
n

∑

j=1

sij‖vj(t, x)‖2
2 +

n
∑

j=1

wij‖vj(t− τij(t), x)‖2
2.

(15)

By applying (11)-(15) to (9), it follows from a2 + b2 ≥ 2ab
that

LVi(t) ≤ −
(

2ai + 2
m

∑

r=1

Dir

l2r

)

‖vi(t, x)‖2
2

+2
n

∑

j=1

Fj |aij |‖vi(t, x)‖2‖vj(t, x)‖2

+2
n

∑

j=1

Gj

(

|αij | + |βij |
)

×‖vi(t, x)‖2‖vj(t− τij(t), x)‖2

+
n

∑

j=1

sij‖vj(t, x)‖2
2

+
n

∑

j=1

wij‖vj(t− τij(t), x)‖2
2.

+2
n

∑

j=1

∫

G
vi

×σij(vj + u∗j , vj(t− τij(t), x) + u∗j )dwj(t)dx

≤
[

− 2ai + 2
m

∑

r=1

Dir

l2r

+
n

∑

j=1

(

Fj |aij | +Gj |αij | +Gj |βij |
)]

×‖vi(t, x)‖2
2

+
n

∑

j=1

(

Fj |aij | + sij

)

‖vj(t, x)‖2
2

+
n

∑

j=1

(

Gj |αij | +Gj |βij | + wij

)

×‖vj(t− τij(t), x)‖2
2

+2
n

∑

j=1

∫

Ω

vi

×σij(vj + u∗j , vj(t− τij(t), x) + u∗j )dwj(t)dx.
(16)

Taking the mathematical expectation of both sides of (16), we
have

D+E(Vi(t)) ≤
[

− 2ai − 2
m

∑

r=1

Dir

l2r

+
n

∑

j=1

(

Fj |aij | +Gj |αij | +Gj |βij |)
]

×E
(

‖vi(t, x)‖2
2

)

+
n

∑

j=1

(

Fj |aij | + sij

)

E
(

‖vj(t, x)‖2
2

)

+
n

∑

j=1

(

Gj |αij | +Gj |βij | + wij

)

×E
(

‖vj(t− τij(t), x)‖2
2

)

i.e.

D+E(‖ui − u∗i ‖2
2)

≤
[

− 2ai − 2
m

∑

r=1

Dir

l2r

+
n

∑

j=1

(

Fj |aij | +Gj |αij | +Gj |βij |)
]

×E
(

‖ui − u∗i ‖2
2

)

+
n

∑

j=1

(

Fj |aij | + sij

)

E
(

‖uj − u∗j‖2
2

)

+
n

∑

j=1

(

Gj |αij | +Gj |βij | + wij

)

×E
(

‖ui(t− τij(t), x) − u∗j‖2
2

)

(17)

for all i ∈ I , tk−1 < t < tk, k ∈ N.

Let yi(t) = E(
∥

∥

∥
ui − u∗i ‖2

2

)

, i ∈ I , and ri = 2ai +

2
m
∑

r=1

Dir

l2r
−

n
∑

j=1

(

Fj |aij |+Gj |αij |+Gj |βij |
)

, pij = Fj |aij |+
sij , qji = Gj |αij | +Gj |βij | + wij for i ∈ I , from (18), we
have

D+yi(t) ≤ −riyi(t) +
n

∑

j=1

pijyj(t) +
n

∑

j=1

qijyj(t− τij(t))

(18)
for all i ∈ I . From condition (C1), there exist constant λ > 0
and vectors ξ = (ξ1, ξ2, · · · , ξn)T > 0 such that

0 >
[

λ− 2ai − 2
m

∑

r=1

Dir

l2r

+
n

∑

j=1

(Fj |aij | +Gj |αij)| +Gj |βij |)
]

ξi

+
n

∑

j=1

(

Fj |aij | + sij

)

ξj

+
n

∑

j=1

(

Gj |αij | +Gj |βij | + wij

)

eλτijξj . (9)
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Taking κ = E(‖φ−u∗‖2
2)

min
1≤i≤n

{ξi} , it is easy to prove that

yi(s) ≤ κξie
−λs, s ∈ [−τ, 0], i ∈ I . (20)

From Lemma 3, we obtain

yi(t) ≤ κξie
−λt, 0 = t0 ≤ t < t1. (21)

Suppose that, for l ≤ k, the following inequalities hold:

yi(t) ≤ κμ0μ1 · · ·μl−1ξie
−λt, tl−1 ≤ t < tl, i ∈ I ,

(22)
where μ0 = 1. When l = k + 1, we note that

yi(tk) = E
(

‖ui(tk, x) − u∗i ‖2
2

)

= E
(

‖ui(t+k , x) − u∗i ‖2
2

)

= E
(

‖ui(t−k , x) + Jik(ui(t−k , x) − u∗i ‖2
2

)

= E
(

‖hik(ui(t−k , x) − hik(u∗i )‖2
2

)

≤ γikyi(t−k )
≤ κμ0μ1 · · ·μk−1μkξi lim

t→t−k
e−λt

≤ κμ0μ1 · · ·μk−1μkξie
−λtk . (23)

From (22), (23) and μk ≥ 1, we have

yi(t) ≤ κμ0μ1 · · ·μk−1μkξie
−λt, −τ ≤ t ≤ tk. (24)

Combining (19),(24) and Lemma 3, we obtain that

yi(t) ≤ κμ0μ1 · · ·μkξie
−λt, tk ≤ t < tk+1. (25)

Applying the mathematical induction, we can obtain the fol-
lowing inequalities

yi(t) ≤ κμ0μ1 · · ·μkξie
−λt, t ∈ [tk, tk+1), k ∈ N. (26)

According to (C2), we have μk ≤ eμ(tk−tk−1) < eλ(tk−tk−1),
so we get

yi(t) ≤ κeμt1eμ(t2−t1) · · · eμ(tk−1−tk−2)ξie
−λt

= κξie
μtk−1e−λt

≤ κξie
−(λ−μ)t, t ∈ [tk−1, tk), k ∈ N.

That is

yi(t) ≤ κξie
−(λ−μ)t, t ∈ [−τ, tk), k ∈ N. (27)

It follows that
n

∑

i=1

(

E(‖ui(t, x) − u∗i ‖2
2)

)

=
n

∑

i=1

yi(t)

≤
n

∑

i=1

κξie
−(λ−μ)t

=
∑n

i=1 ξi
min

1≤i≤n
{ξi}E

(

‖φ− u∗‖2
2

)

e−(λ−μ)t.

Let M =
Pn

i=1 ξi

min
1≤i≤n

{ξi} > 1, then we have

n
∑

i=1

(

E(‖ui(t, x) − u∗i ‖2
2)

)

≤ME
(

‖φ− u∗‖2
2

)

e−(λ−μ)t.

The proof is completed.

Remark 2. when Dil = 0, system (1) may reduce to the
following model:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dui(t) =
[

− aiui(t) +
n
∑

j=1

aijfj(uj(t))

+
n
∧

j=1

αijgj(uj(t− τij(t)))

+
n
∨

j=1

βijgj(uj(t− τij(t))) + Ii

]

dt

+
n
∑

j=1

σij(uj(t), uj(t− τij(t)))dwj(t),

t ≥ 0, t �= tk,
ui(t+k ) = ui(t−k ) + Jik(ui(t−k )), k ∈ N,
ui(s) = φi(s), −τ < s ≤ 0

(28)

for i ∈ I . For system (28), we have following corollary.

Corollary 1: Under assumptions (H1), (H2), (H3), (C1) and
(C2), then system (28) has exactly one globally exponentially
stable equilibrium point.

Remark 3. when σij = 0, system (2.1) may reduce to the
following model:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ui(t,x)
∂t =

m
∑

r=1

∂
∂xr

(Dir
∂ui(t,x)

∂xr
) − aiui(t, x)

+
n
∑

j=1

aijfj(uj(t, x))

+
n
∧

j=1

αijgj(uj(t− τij(t), x))

+
n
∨

j=1

βijgj(uj(t− τij(t), x)) + Ii,

t ≥ 0, t �= tk, x ∈ G,
ui(t+k , x) = ui(t−k , x) + Jik(ui(t−k , x)), k ∈ N,
ui(s, x) = φi(s, x), −τ < s ≤ 0, x ∈ G,
ui(t, x) = 0, t > 0, x ∈ ∂G

(29)

for i ∈ I . For system (29) , it is easy to obtain the following
result:

Corollary 2: Under assumptions (H1) and (H2) , if the
following conditions hold:

(C1′) there exist constant λ > 0 and vectors ξ =
(ξ1, ξ2, · · · , ξn)T > 0 such that

0 >
[

λ− 2ai − 2
m

∑

r=1

Dir

l2r

+
n

∑

j=1

(Fj |aij | +Gj |αij)| +Gj |βij |)
]

ξi

+
n

∑

j=1

(Fj |aij |ξj +
n

∑

j=1

(

Gj |αij | +Gj |βij |
)

eλτijξj ;
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(C2) μ = sup
k∈N

{

ln μk

tk−tk−1

}

< λ, where μk =

max
1≤i≤n

{1, γik}, k ∈ N ;

then system (29) has exactly one globally stable equilibrium
point, and its exponential convergence rate equals λ− μ.

Remark 4. Note that Lemma 1 transforms the fuzzy AND
(
∧

) and the fuzzy OR (
∨

) operation into the SUM operation
(
∑

). So above results can be applied to the following classical
impulsive stochastic fuzzy neural networks with time-varying
delays and reaction-diffusion terms
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dui(t, x) =
[ m

∑

r=1

∂
∂xr

(Dir
∂ui(t,x)

∂xr
) − aiui(t, x)

+
n
∑

j=1

aijfj(uj(t, x))

+
n
∑

j=1

αijgj(uj(t− τij(t), x)) + Ii

]

dt

+
m
∑

j=1

σij(uj(t, x), uj(t− τij(t), x))dwj(t),

t ≥ 0, t �= tk, x ∈ G,
ui(t+k , x) = ui(t−k , x) + Jik(ui(t−k , x)), k ∈ N,
ui(s, x) = φi(s, x), −τ < s ≤ 0, x ∈ G,
ui(t, x) = 0, t > 0, x ∈ ∂G

(30)
for i ∈ I . For system (30) , it is easy to obtain the following
result.

Theorem 2: Under assumptions (H1), (H2) and (H3), if the
following conditions hold:

(C̄1) there exist constant λ > 0 and vectors ξ =
(ξ1, ξ2, · · · , ξn)T > 0 such that

0 >
[

λ− 2ai − 2
m

∑

r=1

Dir

l2r

+
n

∑

j=1

(Fj |aij | +Gj |αij)| +Gj |βij |)
]

ξi

+
n

∑

j=1

(

Fj |aij | + sij

)

ξj

+
n

∑

j=1

(

Gj |αij | +Gj |βij | + wij

)

eλτijξj ;

(C2) μ = sup
k∈N

{

ln μk

tk−tk−1

}

< λ, where μk =

max
1≤i≤n

{1, γik}, k ∈ N ;

then system (30) has exactly one globally exponentially stable
equilibrium point, and its exponential convergence rate equals
λ− μ.

IV. AN ILLUSTRATIVE EXAMPLE

In order to illustrate the feasibility of our above-established
criteria in the preceding sections, we provide a concrete ex-
ample. Although the selection of the coefficients and functions
in the example is somewhat artificial, the possible application
of our theoretical theory is clearly expressed.

Consider the following impulsive fuzzy neural networks
with time-varying delays and reaction-diffusion terms:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dui(t, x) =
[ 3

∑

r=1

∂
∂xr

(Dir
∂ui(t,x)

∂xr
) − aiui(t, x)

+
2
∑

j=1

aijfj(uj(t, x))

+
2
∧

j=1

αijgj(uj(t− τij(t), x))

+
2
∨

j=1

βijgj(uj(t− τij(t), x)) + Ii

]

dt

+
2
∑

j=1

σij(uj(t, x), uj(t− τij(t), x)))dwj(t),

t ≥ 0, t �= tk, x ∈ G,
ui(t+k , x) = ui(t−k , x) + (−1 +

√
e) sin(ui(t−k , x)),

t0 = 0, tk − tk−1 = 5, k ∈ N,
ui(s, x) = φi(s, x), −τ < s ≤ 0, x ∈ G,
ui(t, x) = 0, x ∈ ∂G

(31)
for i = 1, 2, where G = {(x1, x2, x3)T | |xr| < lr = 1, r =
1, 2, 3}, and

D11 = 0.01, D12 = 0.03, D13 = 0.01,
D21 = 0.01, D22 = 0.02, D23 = 0.02,
a1 = 2.5, a2 = 3, a11 = 0.25,
a12 = −0.5, a21 = −0.5, a22 = 0.5,
α11 = 0.25, α12 = −0.25, α21 = −0.25,
α22 = 0.5, β11 = 0.25, β12 = 0.25
β21 = −0.35, β22 = 0.25, I1 = 0.75,
I2 = −0.75, τ11(t) = | sin t|, τ12(t) = 1 + 0.5 sin t,
τ21(t) = | cos t|, τ22(t) = 1.5 cos2 t;

trace
[

(σi(u, v) − σi(u∗, u∗))T (σi(u, v) − σi(u∗, u∗))
]

≤
n

∑

j=1

sij(uj − u∗j )
2 +

n
∑

j=1

wij(vj − u∗j )
2,

where

s11 = 0.2, s12 = 0.2, s21 = 0.1
s22 = 0.2, w11 = 0.2, w12 = 0.1,
w21 = 0.1, w22 = 0.2
f1(u) = f2(u) = g1(v) = g2(v) = |v+1|−|v−1|

2 .

It is easy to verify that assumptions (H1), (H2) and (H3) are
satisfied, and it is easy to calculate that

F = G =
(

1
1

)

,

(τij)2×2 =
(

1 1.5
1 1.5

)

, γik = e, i = 1, 2, k ∈ N,

μk = max{1, e} = e, μ = sup
k∈N

ln e
tk−tk−1

= 0.2.
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Solving the following optimization problem
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

maxλ,

0 >
[

λ− 2a1 − 2
3
∑

r=1

Dir

l2r
+

2
∑

j=1

((|a1j | +Gj |α1j)|

+Gj |β1j |)
]

ξ1 +
2
∑

j=1

(|a1j |Fj + s1j)ξj

+
2
∑

j=1

(Gj |α1j | + |β1j |Gj + w1j)eλτ1jξj

0 >
[

λ− 2a2 − 2
3
∑

r=1

Dir

l2r
+

2
∑

j=1

((|a2j | +Gj |α2j)|

+Gj |β2j |)
]

ξ2 +
2
∑

j=1

(|a2j |Fj + s2j)ξj

+
2
∑

j=1

(Gj |α2j | + |β2j |Gj + w2j)eλτ2jξj

λ > 0, ξ = (ξ1, ξ2)T > 0.

we obtain that ξ = (1461190, 1771331)T > 0, λ ≈
0.479257 > 0.1 = μ. From Theorem 1, the equilibrium
point of system (31) is globally exponentially stable, and its
exponential convergence rate λ− μ ≈ 0.279257.

V. CONCLUSIONS

A class of impulsive stochastic FCNNs with time-varying
delays and reaction-diffusion terms has been formulated and
investigated. The general sufficient conditions have been ob-
tained to ensure the existence, uniqueness and exponential
stability of the equilibrium point for impulsive stochastic
FCNNs with time-varying delays and reaction-diffusion terms.
In particular, the estimate of the exponential convergence rate
is also provided, which depends on the system parameters,
boundary conditions, delays and impulses. An illustrate exam-
ple is given to show the effectiveness of obtained results. In
addition, the sufficient conditions what we obtained are easily
verified. This has practical benefits, since easily verifiable
conditions for the global exponential stability are important
in the design and applications of neural networks.
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