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Abstract—Occurrences of spurious crests on the troughs of large, 

relatively steep second-order Stokes waves are anomalous and not an 
inherent characteristic of real waves. Here, the effects of such 
occurrences on the statistics described by the standard second-order 
stochastic model are examined theoretically and by way of 
simulations. Theoretical results and simulations indicate that when 
spurious occurrences are sufficiently large, the standard model leads 
to physically unrealistic surface features and inaccuracies in the 
statistics of various surface features, in particular, the troughs and 
thus zero-crossing heights of large waves. Whereas inaccuracies can 
be fairly noticeable for long-crested waves in both deep and 
shallower depths, they tend to become relatively insignificant in 
directional waves.  
 

Keywords—Large waves, non-linear effects, simulation, spectra, 
spurious crests, Stokes waves, wave breaking, wave statistics.  

I. INTRODUCTION 
HE second-order Stokes model describing long-crested 
surface waves  is of the form [1] 

 

                 χχηηη 2cos
2
1cos 2

21 fkaa +=+= ,              (1) 

 
where a = wave amplitude, k = wave number, q = kd, d = 
mean water depth, χ = wave phase, =ω  angular frequency, ak 
= wave steepness, and 
 
                  qqqf 3sinh2/)]2cosh2([cosh +=                    (2) 

 
is a dimensionless measure of the effect of relative water 
depth q on the second-order correction η2. In general, f ≥ 1, 
f→1 in deep water where q > π, and f→ 3/2q3 in shallow water 
where q < π/10, approximately  

The relative validity and convergence of the preceding 
deterministic model regarded as the first two terms of a power 
series expansion in wave steepness ak are often inferred from 
the ratio test [1]. The latter imposes an upper limit to the 
steepness of waves that can be described by (1) and higher-
order Stokes models in shallow water. However, unless   

 
                                  fak 2/1≤ ,                                         (3) 

 
(1) describes anomalous wave forms characterized with 
spurious crests at wave troughs. It turns out that (3) is a more 
stringent condition than the ratio test [1].  Secondary crests do 
not appear in third- and higher-order Stokes waves.  

The steepness of large waves also tends to be limited by an 
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upper bound often related to wave breaking. An 
approximation for such a bound is given by [2] 

 
                                   qak tanh448.0≤ .                         (4) 

  
This expression tends to ak ≤ 0.448q in shallow waters and 

to to ak ≤ 0.448 in deep water where the upper bound ak = 
0.448 is better known as the Stokes limit. The upper limit 
described by (4) is an approximate extension of the same 
concept to finite water depths. Comparisons of (4) to 
laboratory and oceanic data suggest that it is not a consistent 
indicator of wave breaking or its inception [3]. However, it 
does indicate an upper bound to the heights of large waves, 
breaking or otherwise [3]-[5]. One refinement recently 
proposed replaces 0.448 with 0.55 in deep water [6].  

Fig. 1 illustrates (2) and the upper limits of (3) and (4). It is 
seen that constraint (3) on spurious crests for q ≤ 2 in shallow 
and transitional water depths, and (4) for q > 2 in transitional 
and deep waters indicate if (1) depicts physically valid 
approximations to large waves free of spurious crests. 
Evidently, if 0.448 in (4) were to be replaced with 0.55, then 
(3) would be the only principal constraint on the physical 
validity of (1). 

To illustrate wave forms described by (1), assume that q = 
0.4π and consider waves represented by three discrete points 
in Fig. 1 and characterized by ak= 0.01, 0.2, and 0.4, 
respectively. Fig. 2 displays the explicit wave profiles 
predicted from (1). The first case where ak = 0.01 is well 
below the upper limits of (3)-(4) represents a linear wave, 
effectively. The remaining two cases display the same wave 
profile modified by the second-order corrections as wave 
steepness increases. Case ak = 0.2 is near but below the upper 
bound of (3) whereas ak = 0.4 violates (3) and (4) both.  In the 
profiles for ak = 0.01 and 0.2, wave troughs appear concave 
upward and represent physically acceptable approximations 
within the range of validity of (1). In contrast, case ak = 0.4 is 
physically unrealistic, displaying an anomalous trough section 
characterized by a negative spurious hump or crest at χ = π 
and two identical troughs symmetrically located on both sides 
of and below the spurious crest at χ 

1 = π - cos-1(1/2akf) and χ 
2 

= π + cos-1(1/2akf), respectively. Such wave forms lie outside 
the realistic range of (1).  

Now, note that in all three cases considered, 
akfa )2/1(1/ +=η  at =χ 0 and 2π where wave crests appear, 

irrespective of (3). So long as (3) holds, η /a = -1 + (1/2) akf at  
χ = π  where a regular wave trough is seen, as in cases where 
ak = 0.01 and 0.2. Evidently, the second-order correction is 
(1/2) akf. It displaces crests and troughs both upward equally. 
Thus, the wave height, H, defined as the elevation difference 
between the maximum and minimum of a zero up- or down-
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crossing cycle is 2a, the same as in the linear profile. 
However, if (3) is violated as in case ak = 0.4, a negative  

 

 
Fig. 1 Upper bounds (3)-(4) on wave steepness 

 

 
Fig. 2 Second-order waves for ak = 0.01, 0.2, and 0.4 at q = 0.4π 

 
spurious crest will appear at π=χ  where 
 

    akf
a 2

11+−=
η ,                             (5) 

 
as before, but also two anomalous wave troughs at χ = χ 

1 and  

χ 
2  where 

 

                        
akf

akf
a 4

1
2
1

−−=
η .                                (6) 

 
Since 2akf > 1, (6) is larger than (5) in absolute value. For 

case ak = 0.4 of Fig. 2, 2akf =1.483. As a result, η/a = - 0.63 
and η/a = - 0.71 from (5) and (6), respectively. In other words, 
the trough described by (6) is about 13% deeper than (5). So, 
an immediate consequence of spurious occurrences is that 
trough amplitudes would appear larger than they should within 
the physically valid range of the second-order theory.  This 
also leads to H = 2.08a for ak = 0.4 with an overestimation 
error of about 4% relative to 2a. Thus, H/2a = 1 only if ak  ≤ 
1/2f.  Otherwise  

 

                            1
4

11
2
1

2
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=

akf
akf

a
H .                 (7) 

 
Spurious crests and anomalous double troughs are not 

systemic features observed in oceanic waves or in 
mechanically generated waves. Also, whereas the effects of 
constraints (3)-(4) on the deterministic second-order Stokes 
theory are straightforward to predict, it is hardly the case for 
the standard second-order random model used for describing 
oceanic waves [7]-[10]. The latter generalizes (1), taking into 
account the random nature of the wind-disturbed sea surface 
characterized by directional spectrum. It has a two-term form, 
the same as (1), but second-order correction η2 and so η are 
algebraically a good more cumbersome and not amenable to 
analytical manipulations with ease. And, η is not immune 
against errors due to occurrences of spurious crests. As 
previously mentioned, such errors do not arise in third- and 
higher-order Stokes expansions, but there is no explicit 
stochastic model for describing third- or higher-order random 
waves similar to the standard second-order model.   

Over the years, the standard model and/or simulations 
derived from it have been used in developing a variety of 
theoretical results of practical value on the nature and statistics 
of a variety of surface features observed in oceanic 
measurements. Some of these are approximations based on the 
Gram-Charlier series expansions of distributions describing 
surface elevations, slopes, wave envelopes, and phases [4], 
[8], [11]. Others such as the distributions describing the 
statistics of wave heights, crests, troughs and wave groups are 
either narrowband approximations [12]-[14], or they represent 
asymptotic limits valid for large waves [15]-[22], [26]. All 
these appear to work reasonably well in describing oceanic 
waves characterized by simple wind-wave spectra.  

The standard model is also used in simulations for 
validating a theoretical result [20]-[22], [25] or as an 
exploratory tool for investigating the statistical nature of wave 
characteristics not amenable to theoretical analyses [10].  If 
certain spectral and statistical parameters in such simulations 
are specified arbitrarily or in a manner mimicking those 
observed in a severe sea state, then the resulting statistics 
describing various surface features can be affected by errors 
arising from possible occurrences of spurious crests and 
anomalous double troughs. Simulated wave heights can also 
violate upper bounds described by breaking criteria such as 
(3), leading to unrealistic results or flawed conclusions. Such 
errors are more likely to appear in large waves of interest, both 
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theoretical and practical. The present study explores such 
errors and their effects on various statistics of large waves 
based on the asymptotic theories [16]-[24].  

II. SECOND-ORDER RANDOM MODEL 

A. Model and Definitions 
The second-order random representation is of the form η = 

η1 + η2. At a fixed point, say (x, y) = (0, 0) for simplicity, η1 is 
described in time t by 

 
                       )(])(cos[1 kk dZt∫ += εωη ,                    (8) 

 
where k denotes wave-number vector with direction θ  and 
modulus k such that ω2 = gk tanh q, ε’s are independent 
random phases uniformly distributed in (0, 2π), and  
 
                               2/1])(2[)( kkk dEdZ = .                         (9) 

 
Here, E is the directional wave-number spectrum (density). 
Directional spectrum F defined over the frequency-direction 
domain follows from θωθω ddFdE ),(=k .  

Ordinary spectral moments are: 
 

∫=∫∫= ωωωθωθωω dSddFm jj
j )(),( ,         (10) 

 
where S represents the frequency spectrum. The variance is σ2 
= m0, ωm = m1/m0 = spectral-mean frequency, and  
 

                          2/12
120 ]1)/[( −= mmmv                       (11) 

           
serves as a measure of bandwidth for S. An integral measure 
of wave steepness is εp = σkp, with kp = spectral-peak wave 
number.  Finally, the upper (+) and lower (-) envelopes of η1 
are defined by 
 

2/12
1

2
1 )ˆ( ηηξ +±=± ,                         (12) 

 
where 1̂η denotes the Hilbert transform of η1.  Assuming that ω 
> 0, 1̂η follows from (8) by replacing cosine term with sine. 

The second-order correction can be expressed as  
 
            −+ += 222 ηηη ,                                 (13) 

 
where 
 

    )'()(cos
4
1

2 kk dZdZK∫∫= ±±± Ωη ,             (14) 

         )'()()( kk εεωωΩ ±+′±=± t ,                   (15) 
 

and ±K are second-order kernels associated with the frequency 
sum and difference terms in (13). The explicit forms of the 

latter are rather lengthy and cumbersome. They are given 
elsewhere [7]-[10] and not repeated here for economy of 
space. 

In the most general case, the statistical structure of η and the 
range of its relative validity are not adequately understood, 
especially, in transitional water depths. In the so-called weakly 
nonlinear theory, η1 provides the bulk of the surface 
description. It is zero-mean Gaussian with variance σ2 = m0. 
Second-order correction η2 is orthogonal to η1, zero-mean but 
non-Gaussian with variance  

 
       ')'()()',(2

2 kkkkkk ddEEG∫∫=〉〈η ,               (16) 

 
where 4/)( 22 −+ += KKG . As in the deterministic theory, η2 
imposes a well-known vertical skewness on η1 [7]-[11]. This 
is described by the skewness coefficient  λ3 = < η3> / σ3, given 
by 
 

  2/3
03 /')'()()',( mddEEK kkkkkk∫∫=λ ,         (17) 

 
where 2/)(3 −+ += KKK . 

B. Theoretical Distributions 
There are several theoretical distributions describing 

various surface features implied by the standard model. In 
order to elaborate some of these distributions, assume that all 
elevations are scaled with σ = m0

1/2. On this basis, an 
approximation for the probability density of scaled η follows 
from the narrowband model [12] in the form [27] 

 

 
,2/1;0

,2/1;π2/]2/)1(exp[ 22

μη

μημη

−≤≈

−>−−= ZZp
     (18) 

 
where Z = (1+2μη)1/2 and μ ≈ λ3 / 3.  As λ3→0, the preceding 
density converges to the Gaussian density  
 
                 ,||;π2/)2/exp(

1 1
2
1 ∞<−= ηηηp           (19) 

 
appropriate to η1 . 

Scaled linear ξ is Rayleigh-distributed, with the probability 
density and exceedance distribution described, respectively, 
by 

 
),2/exp( 2ξξξ −=p                            (20) 

                                 ).2/exp( 2ξξ −=Q                              (21) 
 

Assuming narrowband waves, the probability density and 
exceedance distribution of scaled wave heights h ≈ 2ξ are 
given, respectively, by 

 
                      ),4/exp()4/()( 2

2 hhhp −=ξ                     (22) 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:1, 2013

123

 

 

   ).8/exp()( 2
2 hhQ −=ξ                          (23) 

 
These are variants of the Rayleigh law and valid as ν→0. 

However, wind seas are not narrowband, and h < 2ξ always. 
As a result, (23) overestimates the actual heights of large 
waves by as much as 8-10% [21]. Alternatively, large wave 
heights can be described more accurately by asymptotic 
models [15]-[18], [18]. For example, the Boccotti asymptotic 
model [18] leads to the probability density and exceedance 
distribution  

 
        ),2exp(2 110 hchccph −=                       (24) 

                           ),exp( 2
10 hccQh −=                            (25) 

 
where h >> 1, and c0 ≥ 1 and c1 ≤ 1/4 are coefficients 
dependent on two specific parameters inferred from the 
autocorrelation of surface elevations. They are elaborated 
elsewhere [15]-[18) and not repeated here. In general, second-
order corrections do not affect (24) and (25) [15]-[22]. 

Second-order scaled crest ξ + and trough ξ - amplitudes 
associated with large waves are asymptotically described by 
the quadratic expressions [20] 

 
     2)2/1( ξμξξ ±=± ,                           (26) 

 
where ξ >> 1. Clearly, ξ + and ξ – are mirror images or simply 
symmetric with respect to the Rayleigh-distributed linear ξ.  A 
change of variables in (20) via (26) yields the probability 
densities [20], [21] 
 
           ξμξξ

ξ
±−=±

± 1/)2/exp()( 2p .            (27) 

C. Comparisons with Oceanic Data 
To compare the preceding theoretical results to actual 

statistics observed under oceanic conditions, we consider 9-
hour measurements gathered with a Marex radar from the Tern 
platform in 167 m water depth in the northern North Sea 
during a severe storm in January, 1993 [10], [20]. This data 
set, hereafter simply referred to as Tern, represents severe 
stormy seas with wave heights as large as 25 m and crest 
exceeding 15 m. The sampling rate of surface time series is 
5.12 Hz. The analysis of hourly segments gives σ = 3.02 m, 
spectral-peak period Tp ≈ 14.1 s, λ3 = 0.172, μ ≈ 0.06, εp = 
0.061 and ν = 0.63 as overall averages, and a total of 3,164 
zero up-crossing waves. All the preceding parameters 
somewhat vary over time. For instance, the hourly σ estimates 
vary so that 2.85 m ≤ σ ≤ 3.25 m.  To compensate for this 
variability, all statistics estimated from hourly surface series 
were scaled with the corresponding segmental σ estimates. 

Fig. 3 shows an overall average of hourly frequency spectra 
in a dimensionless form S* = ωp S(ω)/m0 versus u = ω/ωp , 
where ωp = spectral-peak frequency. The product u4S* plotted 
in the same figure suggests that S has a high-frequency slope 
proportional to ω - 4 approximately.  

By setting a ≈ σh/2, (4) is rewritten as 
 

       max/tanh896.0 hkqh =≤ σ .                  (28) 
 

Fig. 4 shows a comparison of the upper bound of the 
preceding expression, hmax , with the scatter of observed wave 
heights h and zero up-crossing periods T scaled with the 
spectral mean period Tm = 2πm0/m1 = 11.2 s. Clearly, larger 
wave heights lie below hmax . Further, a short section of the 
surface profile around the deepest wave trough observed and 
shown in Fig. 5 displays no anomalous troughs with spurious 
secondary crests, if one allows for instrumental noise and 
inaccuracies due to oceanic spray and digital sampling.   

Fig. 6 (a) compares the surface-elevation densities observed 
to the theoretical expressions (18) and (19). Similarly, Fig. 6 
(b) contrasts the densities of crest and trough amplitudes 
observed to the Rayleigh and second-order densities described 
by (20) and (27), respectively.  Finally, Fig. 6 (c) shows the 
variation of the ratio h/hR with Qh, where h stands for the 
observed or theoretical wave height predicted from (25), and 
hR = 2[-2 ln(Qh)]1/2 denotes the Rayleigh-distributed wave 
height inferred from (23) by setting Q2ξ = Qh. It appears that 
for larger waves, the general agreement between the data and 
model predictions are quite favorable in all cases. Though not 
shown here, the statistics of other surface features observed in 
Tern such as wave envelopes and wave phases also compare 
quite well with the second-order theoretical results [4], [11], 
[13]. 

III. EFFECTS OF SPURIOUS CRESTS  

A. Threshold for Spurious-Crest Occurrences 
The apparent inference that one can draw from the 

preceding comparisons and many others elsewhere, e. g. [4]-
[5], [8]-[14], is that the standard model works generally works  

 

 
 Fig. 3  Tern: frequency spectrum S * = ωp S / m0 versus ω / ωp 
 

0.2 0.5 1 5 10
10-4

10-3

10-2

10-1

100

101

u = ω /ωp

S 
*

S* ~ u- 4 

u4 S* 

S* 

u4 S* 

ωp = 0.444 rad .s-1

εp = 0.061
σ = 3.021 m



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:1, 2013

124

 

 

    
Fig. 4 Tern: scatter diagram of wave heights and periods 

 

 
Fig. 5 Tern: surface profile around the deepest wave trough 

 
Fig. 6 Tern data (discrete) vs. linear (dashed) and second-order 

predictions (continuous): (a) surface elevations compared to second-
order (18) and linear Gaussian (19) densities; (b) crest and trough 

amplitudes vs. Rayleigh (20) and second-order (27) predictions; and, 
(c) wave heights vs. Rayleigh (23) and Boccotti (25) distributions  
 

quite well in describing the statistics of various surface 
features in simple wind seas. However, most of these 
comparisons rely on statistics estimated from sample 
populations of limited size, similar to the present comparisons 
with the Tern data.  Large populations of measurements 
representative of relatively extreme and homogeneous wind 
seas are scarce. Inhomogeneous trends often observed in the 
spectral and statistical characteristics of oceanic storm seas 
lead to additional complications. In particular, the presence of 
third- and higher-order nonlinear interactions in such seas can 
cause the observed statistics to deviate significantly from the 
second-order predictions.  

Even under idealized conditions of statistical homogeneity, 
and in the absence of third- and higher-order nonlinear effects 
and surface stresses, the probability structure of various 
surface features is either unknown at all or can only be 
described approximately or asymptotically. A similar 
inference is also valid for the kinematics and dynamics of the 
wave-induced fluid motions. Of course, the nature of all these 
can be explored via simulations of large sample populations 
from the standard model, e.g. as in [20]-[21], for wave heights 
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and crests. Intuitively, the larger a simulated sample 
population becomes, the more likely it is to include 
intermittent occurrences of relatively rare, large surface 
displacements arising from the constructive interference of  a 
sufficiently large number of spectral components of different 
frequencies and amplitudes, thus leading to wave forms with 
large crest and/or trough amplitudes. The question is then if all 
of these would be representative of realistic waves within the 
range of relative validity of the second-order model devoid of 
anomalous troughs. As will be shown in the following, the 
answer is not always affirmative. 

 A probabilistic analysis of spurious crests on relatively 
deep wave troughs requires the joint probability density of η 
and its first two time derivatives. The exact form of that 
density is not known, and possible approximations to it, e.g., 
by way of Gram-Charlier series expansions lead to functional 
forms that violate the non-negativity condition for large 
negative values of η, as is well known. An alternative 
approach is to draw upon the expected structure of the second-
order surface around a deep trough. Given the spectrum, this 
approach makes it possible in an average sense to determine a 
threshold for trough amplitudes beyond which spurious-crest 
occurrences are more likely. 

Assume for the moment that we observe a relatively large 
negative minimum η1(to) of η1 at t = to. Since the scaled linear 
surface has the equivalent form )(cos)(1 tt φξη = , where 

11 /ˆtan ηηφ = , it is easily verified that 
 

                  ottot =+−= 2/12
1 ])/(1[/)( φξξξη �� .           (29) 

 
Given ξ, the joint probability structure of ξ�  andφ�  [28] 

indicates thatξ�  is independent ofξ and Gaussian with zero-

mean and standard deviation ωmν, and thatφ� is also Gaussian 
but with mean ωm and standard deviation ωmν/ξ. So, 

)( νωξ mO=� and )/(1/ ξνωφ Om ±=� . These results allow one 
to rewrite (29) as 
 
                       ])/(1[)( 2

1 …+−−= ξνξη Oto .                (30) 
 
Therefore, η1(to) = - ξ with an error of at most O(ν/ξ)2 that 
diminishes for sufficiently large ξ since ν < 1 in simple wind 
seas.  

The expected profile of η1(to+τ), given A ≡{ η1(to) < - ξ << -
1}, follows in present notation from [24] as 

 
                   )()(11 τρτηη ξCt Ao −=〉+〈= ,                 (31) 

 
with 〉+〈= )()()( 11 τηητρ oo tt ≡ autocorrelation function, and  
 

                   
)2/erfc(
)2/exp(

π
2)(

2

1
ξ
ξηξ

−
=〉〈= AotC .             (32) 

For  ξ  >> 1, Cξ = ξ / [1- ξ - 2 + 3ξ - 4 - … ] so that  Cξ → ξ as 
ξ→∞ . Now, note that replacing Cξ with ξ coupled with a sign 
change in (31) yields the expected surface profile around an 
exceptionally large crest, as in [17] and  [23]. 

The expected profile of η(to+τ ), given A, is easily obtained 
from (31) as [29], 

 
            ])()6/()([)( τλτρτηη ξξ CCt Ao +−=〉+〈= ,    (33) 
 
where  
 

      ')()()(
2

3)( 2/3
0

kkkk ddEE
m

′∫∫ += −+ ΗΗτλ ,     (34) 

 
with   
 
          τωωΗ )(cos ′±= ±± K .                      (35) 
 
Again, considering the limit case Cξ → ξ as ξ→∞ and 
changing the sign of ρ in (33) will lead to the expected surface 
profile around an exceptionally large crest,  as in [14]-[15] and 
[18]-[22].  

The occurrence of spurious crests at wave troughs requires 
that the second derivative of η at τ = 0 be negative. Explicitly,  

 
       0]6/)0()0([ ≤+− λρ ξξ

���� CC ,                      (36) 
 

where  
 02 /)0( mm−=ρ�� ,                                   (37) 

       2/3
02/)(3)0( mII −+ +−=λ�� ,                    (38) 

       ')()()( 2 kkkk ddEEKI ′∫∫ ±= ±+± ωω .           (39) 
 

The solution, say, *ξ of the upper limit of (36), namely 

 
                      )(/4 2

2/1
0*

−+ += IImmCξ                      (40) 
 

provides the threshold beyond which wave troughs exhibit 
spurious crests.  Numerically, *ξ follows with ease from a 
few iterations of the Newton-Raphson scheme, taking the 
right-hand-side of (40) as an initial estimate for *ξ .  

For long-crested waves travelling all in the same direction 
in deep water, gK /|| 22 ωω ′±±=± . On this basis, one can 

show that 0/)2(2 4031
2
2 >++=+ gmmmmmI , 0≤−I , and 

|| −+ >> II .  If ξ is also sufficiently large so that Cξ ≈ ξ, then 
(40) can be approximated as 

 
             )2(/2* 4031

2
22

2/1
0 mmmmmmmg ++≈ξ .         (41) 

 
For long-crested narrowband waves in deep water, the 
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second-order model reduces to [12], [21] 
 

            φξμφξηηη 2cos
2
1cos 2

21 +=+= ,             (42) 

 
where 3// 3

22/1
0 λωμ ≈≈ gm m , and )(tφ is the phase function, 

independent of ξ and uniformly distributed over an interval of 
2π such that mωφ =〉〈 � . It can be verified that given ξ, (42) 
exhibits spurious crests if ξ  > *ξ = 1/2μ. Thus, (42) is valid 
for η > -1/2μ, consistent with the domain of pη in (18). 

 Consider now the narrowband limit of (40). If ξ >> 1 as 
ν→0, j

mj mm ω0→ , 42
08 mmI ω=+  and 0=−I  identically, 

thus reducing (40) to the threshold 
 

         μξξ 2/1** =≈C ,                            (43) 
 
consistent with the narrowband approximation (42). 

When *ξ is sufficiently large, the exceedance frequency of 
waves with anomalous troughs follows from (21) as 

 
                           )2/*exp()( 2*

* ξξξξ −=≈ QQ .              (44) 
 

This expression provides an estimate for the fraction of zero 
up- or down-crossing waves likely to be affected by 
anomalous troughs with spurious crests.     

B. Numerical Results and Simulations 
Consider directional frequency spectra described by 
 

                          ,)()(*),( θαθω DuSF =                       (45) 

                  )(4
0 )exp()/()(* ugn

p γuaumuS −− −= ω ,      (46) 

                        )2/(πcos)( 21 βθβθ −=D ,                      (47) 
 

where 0/ >= pu ωω , 2/|| πβθ ≤< . For n = 5 and a = 5/4, 

S* represents the non-dimensional form of the conventional 
JONSWAP spectrum. Setting n = 4 and a = 1, as in [30], 
modifies (46) so as to mimic spectra that tend to u-4 for u >>1 
as opposed to the u-5 tail of the conventional formulation. In 
either case, γ = peak-enhancement coefficient, g(u) = standard 
JONSWAP exponent function, and α = dimensionless constant 
such that the volume under F equals m0. For the average 
JONSWAP spectrum γ = 3.3. The frequency spectra estimated 
from hourly segments of Tern are described well by (46) with 
γ ≈ 2.5~3.5 for 2 < u < 10, approximately.  

In implementing the conventional or modified JONSWAP 
spectrum in linear Gaussian simulations, it is necessary to 
band-limit the spectral domain to an upper frequency cut-off 
to avoid unstable fourth- and higher-order moments. This not 
only raises awkward questions as to what the cut-off 
frequency should be, but also it presents a further point of 
concern in second-order simulations, particularly if η1 is 
described by a spectrum that tends to ω−n over high 

frequencies. Second-order corrections on linear spectra are 
O(ω4) and non-negative. They tend to amplify linear spectral 
amplitudes on either side of the spectral peak, mostly away 
from it. The resulting second-order η is then characterized by a 
spectrum that tends to ω−n+4. So, it is obvious that if the linear 
spectrum is similar to a conventional or modified JONSWAP 
form and defined over an unbounded frequency range, it needs 
to be tapered to attenuate as ω−8 or ω−9, respectively, starting 
at some frequency sufficiently greater than the spectral-peak 
frequency ωp.  So, in simulating second-order surface series 
from a linear conventional or modified form of (46), we will 
band-pass (46) so that 102.0 << u  and also taper it by 

4)/5.3()( uuw = for 5.3>u  Band-passing and tapering (46) 
in the manner described leads to simulated non-linear spectra 
effectively similar to the non-tapered form of (46) used in 
linear simulations for 102.0 << u . Numerical computations 
on the tapered form of the modified JONSWAP spectrum 
indicate that in reducing the upper cut-off from u = 30 to 10, 
spectral moments mj for j = 0, 1,…, 4 do not vary 
significantly. The most noticeable variation is seen in m4 as 
reduction of about 1.3%. 

The frequency-independent nature of the directional 
distribution (47) is not altogether realistic, but it is merely of 
convenience for the numerical computations of *ξ from (40). 
The parameter β in radians controls the directional bandwidth. 
As β → 0, waves become long-crested and travel all in the 
same direction while as β → π/2, they become short-crested. 
Fig. 8 illustrates directional distributions described by (47) for 
β = 0, π/12, π/8, …, π/2, all indicated in degrees in the figure. 
 

    
Fig. 7 Directional distribution (47) for various β 

 
Consider now waves described by (45)-(47) at deep water, 

and assume that σ = 3 m, Tp = 14 s and εp = 0.061, similar to 
Tern. The numerical solutions for ξ * would then follow via 
four-fold numerical integration from (39)-(40) based on the 
tapered and band-limited forms of the conventional and 
modified JONSWAP formulations. The results for various 
values of angular spread β are summarized in Table I.  
Repeating the same exercise at shallower water depths of d = 
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100 m (q ≥ π/11 and qp = kp d = 2.11) and d = 50 m (q ≥ π/16 
and qp = 1.2) leads to the results in Tables II and III, 
respectively. In all three tables, the fraction Qξ* of waves 
whose trough amplitudes exceed ξ * is displayed as 105Qξ*, 
approximating the number of spurious crests that one can on 
average expect in a sample population of 105 waves. A quick 
review of the values in Tables I-III indicates that spurious 
occurrences are most pronounced in long-crested waves 
described by spectra similar to the modified JONSWAP form 
that tends to ω-4. While such occurrences tend to decrease and 
become less significant as the angular spread of waves widens, 
they increase dramatically at shallower depths. What all this 
means is that given ξ * >> 1, one can expect the simulated 
statistics of second-order elevations η, trough amplitudes ξ - , 
and thus exceedance frequency distribution of wave heights 
Qh to progressively deviate from the theoretical predictions for 

 
TABLE I 

THRESHOLDS FOR SPURIOUS CRESTS IN DEEP WATER 

  JONSWAP ~  ω – 5  modified JONSWAP ~ ω - 4 

β  ξ * 105 Q *  ξ * 105 Q * 

0o  4.062 26.13  3.103 810.2 

15o  4.118 20.79  3.148 706.0 

30o  4.287 10.22  3.281 459.6 

45o  4.572 2.890  3.506 214.0 

60o  4.978 0.415  3.827 65.94 

75o  5.513 0.025  4.250 11.95 

90o  6.185 0.000  4.783 1.075 

 
TABLE II 

THRESHOLDS FOR SPURIOUS CRESTS IN TRANSITIONAL WATER: d = 100 m 

  JONSWAP ~  ω – 5  modified JONSWAP ~ ω - 4 

β  ξ * 105 Q *  ξ * 105 Q * 

0o  3.800 73.17  2.940 1327 

15o  3.852 59.90  2.9822 1172 

30o  4.011 32.07  3.1098 794.2 

45o  4.279 10.57  3.3249 397.6 

60o  4.660 1.930  3.6308 137.2 

75o  5.158 0.167  4.0326 29.43 

90o  5.782 0.006  4.5373 3.384 

 
TABLE III 

THRESHOLDS FOR SPURIOUS CREST IN TRANSITIONAL WATER: d = 50 m 
  JONSWAP ~  ω – 5  modified JONSWAP ~ ω - 4 

β  ξ * 105 Q *  ξ * 105 Q * 

0o  2.6105 3313  2.173 9441 

15o  2.6487 2996  2.206 8775 

30o  2.7653 2185  2.308 6975 

45o  2.9601 1251  2.478 4640 

60o  3.2326 538.1  2.717 2492 

75o  3.5822 163.5  3.026 1026 

90o  4.0081 32.47  3.407 301.8 

 
                           *])2/1(1[* ξμξη −−< ,                        (48) 

                              *])2/1(1[* ξμξξ −>− ,                       (49) 
 

and *QQh < .  
The preceding expressions are approximations inferred 

from the expected shape of the surface around a sufficiently 
deep trough. They indicate what we can expect to see in an 
average sense. In actual realizations, negative surface 
elevations and wave troughs that satisfy the constraints (48) 
and (49) may not all exhibit spurious crests. Conversely, some 
negative surface elevations and wave troughs that do not 
satisfy (48) and (49) may also exhibit spurious crests, albeit 
less likely than when (48) and (49) are satisfied. 

The simulation of a sufficiently large sample population of 
directional waves in deep or shallow water requires a rather 
cumbersome computational effort, demanding a good deal of 
memory. This may not be necessary for illustrating the general 
nature of the principal results developed here. As a simpler 
alternative, consider two simple cases, A and B, for simulating 
long-crested deep-water waves described by a modified 
JONSWAP spectrum. Table IV shows the target values of σ 
and Tp selected in each case for simulating non-tapered linear, 
tapered linear and second-order surface series to be generated 
from the latter. Clearly, linear and non-linear waves in case A 
have similar characteristics to those observed in Tern whereas 
case B represents relatively less steep or gentler waves. In 
both cases, the simulations are easily carried out to generate 
fairly large populations of more than 105 waves, using 20 
iterations of an efficient procedure elaborated in [22]. The 
same table also summarizes the number of waves, and the 
principal spectral and statistical parameters simulated. The 
simulated values of σ and Tp are effectively the same as the 
target values. 

In each case, we first simulate linear waves from the non-
tapered spectrum, identified with the heading “linear” in Table 
IV. A particular result such as a scatter diagram, a probability 
density or distribution estimated from these serves as a relative 
reference for comparing a corresponding non-linear result. In 
order to make the eventual comparisons between the linear 
and non-linear waves compatible, it is necessary to use the 
same sets of random phases, i. e.  ε in (8), for both non-tapered 
and tapered linear simulations before one proceeds to generate 
second-order corrections (14) from the tapered linear 
simulations. Linear series simulated from the tapered spectrum 
are tagged as “tapered”, and second-order series that follow 
from these are simply denoted as “non-linear’ in the table. 
Finally, note that second-order corrections always tend to 
increase m0 and thus σ slightly. So, a tapered linear series 
needs to be simulated with a slightly smaller value of σ than 
that of the non-tapered linear series to obtain a second-order 
series characterized by a σ value that is nearly the same as that 
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of the non-tapered linear series. Otherwise, the eventual 
comparisons between the non-tapered linear and non-linear 
series generated from the tapered linear series would be 
distorted as a result of scaling each with a different σ.  

C. Comparisons 
Fig. 8 shows the scatter diagrams of wave heights and 

periods simulated in comparison with the upper bound 
described by Hmax = 0.0227gT2, which follows from (4) or (28) in 
deep water. In Fig. 8 (a) and (b) appropriate respectively to the linear 
and non-linear waves simulated in case A, some wave heights appear 
to exceed Hmax. However, nearly all waves with heights larger than 
4σ do not. So, the statistics describing the heights, and crest 
and trough amplitudes of relatively large waves simulated in 
case A are not affected by the upper-bound limits implied by 
constraints such as (4) or its refinements [6]. Evidently, the  
 

TABLE IV 
 SIMULATION CASES A & B:  PARAMETERS AND INTEGRAL STATISTICS 
  case A   case B  

 linear tapered non-linear linear tapered non-linear 

waves 109,563 107,387 108,464 127,706 119,444 119,717 

σ   (m) 3.00 2.95 3.00 1.50 1.49 1.50 
Tp   (s) 14 14 14 12 12 12 
Tm  (s) 10.74 11.07 8.12 9.21 9.49 7.62 
ν 0.51 0.41 0.54 0.51 0.41 0.50 
λ3 0.00 0.00 0.204 0.00 0.00 0.140 
μ 0.00 0.00 0.068 0.00 0.00 0.047 
εp 0.062 0.061 0.061 0.042 0.042 0.042 
ξ* ∞  ∞  3.10 ∞  ∞  4.77 
105Q* ∞  ∞  810 ∞  ∞  1.14 

 

 
Fig. 8 Scatter of wave heights and periods observed in simulations 

compared to: (a) case A  linear waves, (b) case A  non-linear waves, 
(c) case B linear waves, and (d) case B non-linear waves 

same conclusion is also valid nearly for all waves of case B, 
shown in Fig 8 (c) and (d). 

Fig. 9 compares the densities of simulated surface 
displacements to (18) and (19). The thresholds below which η 
should be affected by spurious crests are from (48) or Table 
IV and included in the figure. For case A in Fig. 10 (a), where 
about 0.81% of wave troughs or about 880 out of 108,464 
non-linear waves simulated are expected to display spurious 
crests, the comparisons tend to confirm the validity of the 
expected threshold -2.78 quite well as the observed density of 
non-linear η progressively exceeds the theoretical density (18) 
when η < - 2.78, approximately. This does not happen in case 
B where the threshold is noticeably lower and nearly 
coincident with the lower limit of negative values of simulated 
surface series. In order to observe possible effects of spurious 
crests in this case, it would be necessary to simulate much 
longer surface series and thus many more waves than 
simulated here. 

The comparisons of densities describing simulated crest and 
trough amplitudes to the corresponding theoretical predictions 
from (27) are shown in Fig. 10 (a) and (b) for cases A and B, 
respectively. The same figures also include, from (49) or 
Table IV, the thresholds above which simulated trough 
amplitudes can be expected to display spurious effects. The 
distortions and/or amplifications of the density of simulated 
trough amplitudes are seen in Fig. 10 (a) for case A, but they 
are manifest more clearly at amplitudes somewhat larger than 
the theoretically expected threshold of 2.78. Otherwise, the 
overall nature of results displayed here is similar to Fig. 9 (a) 
and (b).  

Finally, the comparisons between the simulated h/hR ratios 
and the corresponding theoretical predictions from (23) are 
shown in Fig. 11 (a) and (b).  Notice that the thresholds, 
namely Q* estimates appropriate to both cases are given in 
Table IV. These are included in Fig. 11. In particular, Fig. 11 
(a) clearly shows that for Qh < Q*, spurious occurrences 
amplify the heights of non-linear waves simulated in case A, 
and cause them to appear progressively larger than they should 
be within the realistic range of the second-order theory. 
Similar effects do not appear in case B of Fig. 11 (b) since Q* 
≈ 1.14x10-5, suggesting that less than 0.00114% of all 
simulated non-linear waves or 1-2 out of 119,717 waves are 
likely to be affected by spurious crests.  

IV. CONCLUSIONS 
 Occurrences of anomalous wave troughs characterized by 

spurious crests are not a typical feature of wind waves. 
However, they arise as a systemic source of error in the 
statistics describing large negative surface displacements, 
trough amplitudes and thus the heights of relatively large and 
steep waves simulated via the standard second-order model. 
Spurious occurrences do not affect wave crests.  

The threshold criterion developed here appears to be 
reasonably effective in exploring how and to what extent 
spurious crests affect the statistics derived from a large 
population of waves simulated via the standard second-order 
model. Numerical results from idealized forms of directional 
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surface spectra, albeit limited, indicate that effects of spurious 
occurrences are most pronounced in simulations mimicking 
long-crested seas, especially at relatively shallower water 
depths. As to be expected, this is consistent with the general 
nature of deterministic second-order Stokes theory. Effects of 
spurious occurrences tend to diminish with the angular spread 
of simulated waves, in particular, at deep water.  

Several theoretical expressions considered here and 
developed from the standard second-order model appear to be 
quite effective in describing the statistics of various surface 
features in large oceanic waves. Significant discrepancies 
between these expressions and oceanic data do not arise often. 
This is mainly because most comparisons typically rely on 
sample populations of limited size or use a large composite of 
small populations from different sea states. Theoretical 
expressions derived from the standard second-order stochastic 
theory are valid over a restricted domain closely associated 
with the occurrence of spurious crests. Thus, significant errors 
or discrepancies may not appear between the second-order 
predictions and actual data unless measurements represent 
shallow-water waves, or they are sufficiently extensive, 
comprising large negative surface displacements outside the 
domain of validity of theoretical expressions. 

 

     
Fig. 9 Probability densities of simulated linear and non-linear surface 
elevations in comparisons with theoretical densities (18) and (19): (a) 

case A, and (b) case B 
 

       
 

Fig. 10 Probability densities of simulated non-linear crest and trough 
amplitudes in comparisons with predictions from (27): (a) case A, 

and (b) case B  

 

 
Fig. 11 Wave-height ratios h/hR simulated (discrete) in comparisons 
with theoretical ratios (continuous) from Boccotti distribution (25): 

(a) case A, and (b) case B 
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