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Abstract—Neurons in the nervous system communicate with 

each other by producing electrical signals called spikes. To 
investigate the physiological function of nervous system it is essential 
to study the activity of neurons by detecting and sorting spikes in the 
recorded signal. In this paper a method is proposed for considering 
the spike sorting problem which is based on the nonlinear modeling 
of spikes using exponential autoregressive model. The genetic 
algorithm is utilized for model parameter estimation. In this regard 
some selected model coefficients are used as features for sorting 
purposes. For optimal selection of model coefficients, self-organizing 
feature map is used. The results show that modeling of spikes with 
nonlinear autoregressive model outperforms its linear counterpart. 
Also the extracted features based on the coefficients of exponential 
autoregressive model are better than wavelet based extracted features 
and get more compact and well-separated clusters. In the case of 
spikes different in small-scale structures where principal component 
analysis fails to get separated clouds in the feature space, the 
proposed method can obtain well-separated cluster which removes 
the necessity of applying complex classifiers.  

 
Keywords—Exponential autoregressive model, Neural data, 

spike sorting, time series modeling. 

I. INTRODUCTION 

EQUENTIAL analysis of single-site recordings includes 
important knowledge about the physiological function of 

the nervous system. In this purpose placing a single 
microelectrode in the vicinity of neuron membrane is a 
common task. The recorded time series by microelectrode 
contains spikes (neuronal discharges) of the neurons in 
microelectrode field of view. In such recording, as the 
microelectrode tip is surrounded by several neurons so the 
recorded signal contains the activity of more than one neuron 
therefore the separation of spikes and allocating each to one 
distinct neuron is a common problem in neural signal analysis. 
Such task is referred as spike sorting.  

The shape of extracellularly recorded spikes depends on the 
electrical characteristics of the microelectrode, the relative 
position of microelectrode with respect to the target neurons, 
and on the electrical properties of neuronal membrane. 
Therefore in a stationary recording site, the shape of the 
produced action potentials by each distinct neuron is highly 
stereotyped. This means that temporal characteristics of spike 
waveforms can be considered as a useful tool for spike sorting 
[1], [2]. The sorting procedure classifies extracted spikes in 
some clusters according to their origination. So each cluster 
should represent spikes related to one distinct neuron. The 
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most important step in clustering is the feature extraction 
where more distinctive features create more compact and well-
separated clusters in feature space. This allows simpler 
classifiers to be applied.  

In practice it is difficult to guess the optimal features for 
classification beforehand. A great deal of efforts in spike 
sorting is focused on optimal feature selection. Simple features 
like peak-to-peak amplitude or spike duration aren’t optimal 
and discriminative, especially in the low signal to noise ratios 
(SNR). On the other hand such features in the cases where 
spikes have similar amplitude and different shape aren't 
discriminative [3], [4]. Transformation of spikes into a new 
space by mathematical tools can reveal some hidden 
characteristics of time domain representation which can help 
better discrimination between spikes. In this regard wavelet 
methods for feature extraction have gained considerable 
attention. As multiresolution wavelet transform gives a time-
frequency representation of each spike, so temporal and 
frequency content of the spike can be used for finding 
distinguishable features [5]-[8]. In wavelet domain, any 
coefficient is the projection of spike on the translated and 
dilated version of mother wavelet which exhibits a fraction of 
energy content of the spike in a certain frequency band. 
Greater similarity between mother wavelet and spike 
waveform causes sparser transform. This makes mother 
wavelet selection a critical issue.  

Projection of spikes on some first principal components 
computed from the covariance matrix of spike dataset reduces 
the dimensionality of spikes to some limited number of 
coefficients called scores. Each score is the weight of the 
projection of spike in the direction of one principal 
component. The scores can be used as features for clustering. 
Although PCA is a powerful tool in feature extraction but it 
fails to distinguish spikes different in small-scale structures 
[7]. 

There are number of studies focused on the statistical 
solutions for waveform clustering. An example is the 
clustering based on the mixture of Gaussian model. This 
method is based on the assumption of Gaussian distribution of 
background noise and spike waveforms of each neuron. Such 
statistical assumption makes it possible to apply Gaussian 
mixture decomposition and use the model parameters as 
features [9]. Another choice for spike sorting is methods 
utilizing neural network. The main weakness of feature 
extraction methods based on neural networks is their necessity 
for learning procedure and optimal structure that relies on a-
priori knowledge about the data which usually aren't 
accessible in neural data processing [10]. Some techniques 
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have considered sorting of overlapped spikes caused by 
simultaneously firing of several neurons in the microelectrode 
neighborhood. The blind source separation methods like 
independent component analysis (ICA) can be used for 
removing cross talk between different neurons then an 
artificial neural network in a supervised or unsupervised 
fashion can be used for classifying separated source spikes 
[11] 

In the present work a method for optimal feature extraction 
is proposed which is based on the spike modeling by 
exponential autoregressive model (EXPAR) combined with 
self-organizing feature map (SOFM). The method needs no a-
priori information about the characteristics of spikes. The 
paper is organized as the following. In Section II the method 
for modeling of spikes by an EXPAR model is explained. Also 
in this section SOFM is used for space dimension reduction. In 
Section III the performance of EXPAR model and proposed 
feature extraction method are compared with some traditional 
methods. The results show that the nonlinear EXPAR model 
outperforms its linear autoregressive counterpart in modeling 
action potential. The paper is concluded in Section IV.  

II. MATERIAL AND METHODS 

A. Modeling Action Potential 

The main idea of spike modeling is representation of a time 
series via some model coefficients. It is useful for signal 
compression, classification and reconstruction. In this paper 
mathematical modeling of action potential is considered to 
express each spike based on its model coefficients. One of the 
well-recognized models for time series modeling is 
autoregressive (AR) model. The AR model specifies that the 
output variable depends linearly on its own previous values. In 
the case of action potentials, as neurons behave inherently in a 
nonlinear fashion so it seems that the nonlinear model is more 
capable to represent action potential [12] so an exponential 
autoregressive (EXPAR) model as a non-linear tool is used for 
action potential modeling [13]. An EXPAR model is 
mathematically expressed as (1): 

 

y φ π exp γy y   
(1) 

 
where p is the model order,  is a nonlinear coefficient, and 
finally φ  and π  are linear model coefficients. It should be 
noted that setting all π  coefficients to zero, EXPAR model is 

reduced to a simple AR model. For the large values of signal 
samples, EXPAR model acts like an AR model with 
coefficients φ  and for the small values of samples it acts like 
an AR model with coefficients φ π . For the large initial 
values of signal, the characteristic equation of model is 
expressed as (2) and for small initial values it is represented by 
(3).  
 

0  (2)  
 

0 (3) 
 
For limit cycle considerations, it is necessary that all roots 

of (2) be placed inside the unit circle and some roots of (3) be 
outside the unit circle. It guaranties that all predicted samples 
by the model in the long term prediction tend to limit cycle. 
For excluding the unstable singular points, the condition 
expressed by (4) must be satisfied. 

 
1 ∑

∑
1 0 

(4) 

 
Because of the nonlinear nature of model, it is difficult to 

estimate the coefficients. Here Genetic Algorithm (GA) 
accompanied by simple least square method is utilized for 
optimal model parameter estimation. The procedure of model 
parameter estimation is as following: 
Step 1. Predefined range for nonlinear coefficient ( ) is 

specified: γ a b  and γ 0 
Step 2. An initial population for probable values of  is 

created. Here a binary genetic algorithm is considered 
so the created γ values are in the binary string format c 
with l bit resolution. Each member of this initial 
population is called chromosome. The string c can be 
converted to a decimal value by (5). 
 

γ a
c b a
2 1

 
(5) 

 

Step 3. For each value of  the problem of parameter 
estimation is reduced to a linear case and the least 
square method is used for estimating other parameters 
(φ , π ). For a second order model other parameters are 
specified as the following: 

 

1
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(6) 

In (6), N is the length of data to be modeled and  is the 
residual of the estimation. The concise form of above can be 
expressed as , where  is the vector of parameters 
that should be estimated based on the known values of data 

samples in matrix B and vector , and  is the residual vector. 
The solution for  is given by (7). 

 
 (7) 
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Step 4. Knowing the value of  and estimating other 
parameters by least square method (step 3), the signal 
is completely modeled. By Reconstructing data based 
on the estimated parameters and computing residual 
mean square value as σ ∑ , the fitness of 
estimated parameters is obtained. Here an exponential 
function of the residual mean square value is used for 
fitness computing as: fitness exp σ . 

Step 5. Choosing another chromosome ( ) and repeat steps 3 
and 4, the fitness value for all possible solutions 
(estimated parameters) are computed.  

Step 6. The Genetic operator (crossover and mutation) are used 
to generate new members which called offspring. The 
new generations are produced as follows: 

Cross over: Sort chromosomes based on their fitness 
values. The most efficient chromosome is located in the top of 
the list. Select two chromosomes with higher fitness values for 
cross over. For increasing the chance of chromosomes with 
smaller fitness values to be included in offspring generation, 
selection of the chromosomes is done with a probability. For 
this aim the span of [2n-1,2n] is allocated to the n-th 
chromosome in the sorted population then a random number is 
generated and the chromosome which the generated number is 
belong to its span is selected. In this manner the chromosome 
with higher fitness value has the greater chance to be selected 
for cross over. For two selected chromosomes which both 
have l bit resolution, another random number k is generated in 
the interval (1:l-1) which k is the location where cross over 
occurs. The bits from k to l-1 of the first chromosome are 
replaced by the corresponding bits in the second chromosome, 
and vice versa. By cross over, two new offspring are 
generated. By discarding some chromosomes with lower 
fitness value from initial populations, the new offspring are 
added to the end of population list. 

Mutation: In each step of offspring generation, the small 
numbers of chromosomes are selected randomly from the 
population list and one randomly selected bit of them is 
reversed for mutation. It should be noted that the probability 
of mutation is decreased by time (iteration).  
Step 7. The fitnesses of generated population members which 

contain new possible values of  are computed and the 
population is sorted based on fitness values again. 
Follow steps 3 and 4 to obtain the (φ , π  coefficients 

of each  coefficient. 
Step 8. Steps 3 to 7 are iterated for a large number of 

predefined iterations. Finally from the population the 
γ coefficient with largest fitness value and related 
(φ , π  coefficients are selected as the optimal 
coefficients for model. The estimated coefficients for a 
second order model are arranged in a vector like 
[     . 

B. Critical Points for Spike Segmentation  

The most important parameter of EXPAR model is its 
order. The main approach for model order selection involves 
selecting a model order that minimizes one or more 

information criteria evaluated over a range of model orders. 
Commonly used information criteria include Akaike 
Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC) [14]. Briefly, such criteria are engaged with 
entropy rate or prediction error of the model and the number 
of freely estimated parameters or coefficients in the model. 
Increasing the model order increases the number of 
parameters. By minimizing both terms, the optimal order for 
the model is chosen. In the model order selection, data sample 
size is a critical issue. Also in modeling physiological signals 
it is important to consider underlying dynamic behavior which 
is difficult to understand in many physiological cases. By 
increasing complexity and variation levels in a signal it is 
essential to increase the model order for reducing prediction or 
forecasting error. Model with small order faces with increased 
forecasting error, impairs the frequency resolution of the 
signal and merge near peaks. Generally in practice it is better 
to examine more than one criterion to find the best model 
order. In this paper instead of getting involved in complex 
mathematical criterion for model order selection, action 
potential signals are detached to shorter segments in some 
critical points and in each segment with lower complexity, the 
parameter estimation is carried out [15]. For finding critical 
points in action potential time series, the morphological shape 
of them is considered.  

The action potential generation can be divided into five 
phases including the rising phase, the peak phase, the falling 
phase, the undershoot phase, and the refractory period which 
are managed by ionic gates. In rising phase the membrane 
potential becomes more positive and depolarization occurs. 
This phase concludes with action potential peak where 
membrane potential reaches the maximum. After peak 
location the falling phase starts which the membrane potential 
falls down. Then an undershoot event which called 
hyperpolarization is possible. In such phase the membrane 
potential is more negative than resting potential. Finally, the 
time during a subsequent action potential is impossible or 
difficult to fire is called the refractory period, which may 
overlap with the other phases.  

As usually in action potential detection procedure, extracted 
spikes are aligned with their dominant peak location, so the 
peak is selected as one critical point. The instance before 
dominant peak with maximum slope and the instance after 
dominant peak with maximum absolute slope value are 
selected as other critical points. Such points are highly 
depends on the action potential waveform which is important 
in the process of sorting. 

The probable valley location produced by hyperpolarization 
is another critical point. Due to the activity of other neurons 
the lower amplitude part of an action potential (initial and tail 
segments of spike) are contaminated much more by 
interferences so to reduce the effect of such interferences the 
initial and tail segments of each spike are discarded in 
modeling procedure. Discarded segments have duration equal 
to 0.1 times of action potential length. Selected critical points 
and produced segments between them for a sample action 
potential are shown in Fig. 1. Segmentation causes the 
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variability in each segment be reduced so the lower order 
model can be used for modeling each segment. Note that the 
slow variation in each segment can be modeled by exponential 
behavior of EXPAR model. 

It is possible that interferences caused by the activity of 
neighboring neurons destroy the hyperpolarization valley. In 
such case associated critical point of the hyperpolarization 
valley will be chosen in the mid distance between critical 
point with maximum absolute slope and starting point of the 
tail segment. As the amplitude, duration and shape of the 
action potential are determined largely by the properties of the 
excitable membrane and not the amplitude or duration of the 
stimulus so it is expected that the model coefficients for each 
segment of action potentials of one neuron are as close as 
possible to each other. EXPAR model with order p contains 
2p+1 free coefficients. Here the initial and tail segments of 
action potential are discarded for modeling purposes and other 
5 segments are considered for modeling. In this manner each 
action potential can be represented by 5  (2p+1) coefficients 
in a vector representation. After representing all spikes by the 
vector of coefficients, the limited numbers of estimated 
coefficients are selected as final features. For this aim SOFM 
is utilized.  
 

Fig. 1 Sample action potential and selected critical points. Critical 
points divide each spike to seven segments. The initial and tail (last) 
segments are discarded in modeling procedure and other segments 

are modeled by EXPAR model 

C.  Self-Organizing Feature Map (SOFM)  

SOFM is an unsupervised learning artificial neural network 
(ANN) which is used to produce a low-dimensional 
representation of the input space of the training samples, 
called map. SOFM may be considered as a nonlinear 
generalization of PCA [11]. The map contains a set of nodes 
or neurons with specified weight which are arranged in a 2D 
rectangular or hexagonal grid. Associated weight of each 
neuron has the same length as training data. SOFM consist of 
two different phases including training and mapping. In 
training step a high dimensional input training set is used for 
adjusting the weight and location of map nodes. In a 
competitive manner for any training data, node with closest 
weight to the training data is selected as winner node or best 
matching unit (BMU). The weight and location of the BMU 
and its neighbor neurons are altered toward input data as (8). 

  
1 , ,  (8) 

 
where in (8) w is the map node, i is training step, u is the index 
of the BMU, v is the index of neighboring neurons in the map 
and D is the input vector or training data.  is a monotonically 
decreasing learning coefficient and  is neighborhood function 
and its value depends on distance between neuron u and v. 
Usually a Gaussian function is selected as neighborhood 
function. The update value decreases with time and with 
distance from the BMU so the BMU is adapted the most and 
other SOFM nodes farer away are adapted the least. For each 
input data the update procedure is carried out and eventually 
the patterns or clusters in training dataset make the nodes a 
lower representative of dataset[16].  

Note that nodes replicate the main templates or patterns in 
training dataset because in training, similar input vectors tend 
to excite adjacent nodes in the map therefore similar patterns 
are mapped close together and dissimilar ones apart. 

D.  Method 

The steps of proposed method in feature extraction for spike 
sorting procedure are as following: 
1. Segment each spike in critical points.  
2. Model each segment except the initial and tail segments. 

These segments due to their low amplitude are likely to be 
contaminated with interferences caused by neighborhood 
neurons. The selected order for modeling of each segment 
is 2 so EXPAR model gives 5 coefficients for each 
segment as [     . Due to the presence of five 
segments for each spike, finally a vector of 25 parameters 
will be produced as a new representation of each spike 
due to 5 selected segments for each spike. In this step the 
matrix of spike dataset is mapped to a matrix of model 
coefficients.  

3. SOFM is used to obtain the main patterns of coefficient 
vectors in the matrix of coefficients. A 6 by 6 grid of 
nodes in a rectangular network is used as SOFM map. 
Associated weights for each node have the same size as 
training vector. In training step, training dataset with size 
of 500 spikes is fed to EXPAR model and a 500 by 25 
training matrix is generated. SOFM reduces training 
matrix to a 36 by 25 matrix which replicate the main 
templates in training matrix (matrix contains EXPAR 
coefficients).  

4. The final step is referred as feature extraction. As the 
exact number of classes aren't specified so instead of 
using produced SOFM map for clustering the weights of 
map nodes are compared to find two parameters with the 
maximum separation ability. For achieving better 
performance these two parameters are searched in two 
different segments.  

5. For clustering a simple linear discriminant analysis 
(LDA) is used.  
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