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Abstract—This article presents the results using a parametric 

approach and a Wavelet Transform in analysing signals emitting 

from the sperm whale. The extraction of intrinsic characteristics of 

these unique signals emitted by marine mammals is still at present a 

difficult exercise for various reasons: firstly, it concerns non-

stationary signals, and secondly, these signals are obstructed by 

interfering background noise. 

In this article, we compare the advantages and disadvantages of 

both methods: AutoRegressive models and Wavelet Transform. 

These approaches serve as an alternative to the commonly used 

estimators which are based on the Fourier Transform for which the 

hypotheses necessary for its application are in certain cases, not 

sufficiently proven. 

These modern approaches provide effective results particularly for 

the periodic tracking of the signal's characteristics and notably when 

the signal-to-noise ratio negatively effects signal tracking. 

Our objectives are twofold. Our first goal is to identify the animal 

through its acoustic signature. This includes recognition of the 

marine mammal species and ultimately of the individual animal 

(within the species). The second is much more ambitious and directly 

involves the intervention of cetologists to study the sounds emitted 

by marine mammals in an effort to characterize their behaviour. 

We are working on an approach based on the recordings of marine 

mammal signals and the findings from this data result from the 

Wavelet Transform. This article will explore the reasons for using 

this approach. In addition, thanks to the use of new processors, these 

algorithms once heavy in calculation time can be integrated in a real-

time system. 

Keywords—autoregressive model, Daubechies Wavelet, Fourier 

Transform, marine mammals, signal processing, spectrogram, sperm 

whale, Wavelet Transform. 

I. INTRODUCTION

ARINE mammals emit very unique sounds. These 

sounds distinguish them from other species but also 
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enable individuals of the same species to be identified. The 

definition of an acoustic signature is key to identifying an 

animal but also in the endeavor of behavioral analysis. Our 

work is compatible with the cetologist’s research geared 

towards tracking an animal (or a group of marine mammals), 

and aims to correlate their signals to specific life sequences: 

hunting, social behaviour, mating… 

Real-life conditions make the recording of marine mammals 

difficult [1][2]. The noise-to-signal ratio is often 

unfavourable.  

At present, scientific analysis of sounds emitted by marine 

mammals follows a classical approach based on the Fourier 

Transform [3][4][5][6][7]. In order to achieve a time-

frequency representation, the spectrogram is of widespread 

use. It is relatively easy to interpret the obtained results by 

observing the evolution of frequencies during successive time 

windows. In addition, the spectrogram is easily applied and 

currently obtained through fast calculation: in our studies, we 

use the split radix method to reduce the calculation time. Also, 

the spectrogram is systematically used in most analyses of 

marine mammal signals without much attention to strict 

mathematical hypothesis necessary for its use. The Fourier 

transform is not optimal when the signal-to-noise ratio is 

deficient or when signals are extremely brief or staccato. 

Similarly, the Fourier transform is inadequate for non-

stationary and non-linear signals. It is important to be critical, 

in interpreting the obtained results. While this estimating 

device can appear perfectly suitable in cases where the sounds 

contain principal characteristic frequencies (in vocalisation of 

killer-whales, for example), it can be less adapted to dealing 

with transitory or even impulsive sounds, as in the case of 

sperm whales [8][9][10]. Comparisons can be drawn with 

speech signals in human beings, between the voiced parts 

(which provide specific frequency peaks known as harmonics 

formants) and the unvoiced parts (for example plosive or 

fricative sounds).  

In using the Fourier Transform the first step is to find a 

compromise between time and frequency resolution with the 

drawback that in favouring one, precision in the other is lost. 

As for harmonic signals, for which we know, a priori, the 

range of frequencies, the spectrogram is sufficient for arriving 

at a first estimation of the frequencies evolution. The 

mathematic formula is 
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Where tx  is the signal, tg  the time window, T and f

the coordinates in the time-frequency representation ( Zn ).

This representation has some drawbacks: 

1) It is irreversible.  

2) It often results in an over-sampling of the original signal 

in order to detect rapid signal fluctuations. 

3) It does not allow for a time localization in every 

frequency.  

4) Data regarding inter-spectral phases is lost. 

The above formula (eq. 1) provides a representation of 

time-frequency. However, the time window length must be 

determined from the outset. Thus, the approach is less than 

ideal if we consider that the whole of frequencies varies with 

time and so it is under and overestimated at random. This is a 

major disadvantage when dealing with sperm whales as these 

particular signals are brief and so both rich in frequency and 

time domains (see figure 1). These sounds are produced 

through a very unique mechanism: they are pneumatic in 

origin and the spermaceti figure importantly [11][12][13][14]. 

The spectrogram of the sperm whales signal (figure 1) is 

shown in figure 2. 

We note the different segments of the click in both figure 1 

and 2. In these 2 illustrations, we can distinguish 4 segments; 

the first being a sequence of impulses of the strongest 

amplitude; followed by a segment of residue; the third and 

fourth segments repeating the first two but with lesser 

amplitude. 

To arrive at this spectrogram, we had to choose the two 

following parameters for the time window: length and shape. 

The length corresponds to the number of click samplings. This 

number is actually a compromise between time and frequency 

precision. We put forth an a priori hypothesis regarding the 

scope of the frequency range. Consequently, we can propose 

the most appropriate size for the time window reserved for 

this particular frequency range. The disadvantage is that 

through this fixing of the time window size, the precision on 

the higher frequencies deteriorates.  

The spectrogram (figure 2) is calculated based on 64 

samplings which constitute the shortest time window that can 

be chosen in order to consider a stationary signal for the 

length of a millisecond. This choice can be debated when 

referring to the first (and the third) segment of the click. Other 

frequency estimators have been defined in signal processing 

theory to avoid the disadvantages in using the spectrogram

[15][16]. We chose to employ the Wavelet Transform 

[17][18][19]. We will justify this choice in the following 

section. Then we will illustrate the acoustic signatures 

obtained through the Wavelet Transform. Before concluding, 

we will show the results of its performance when adding the 

noise factor. 

II. METHOD 

To avoid inaccuracies in time-frequency localisation and 

compensate for the drawbacks of the spectrogram, different 

mathematic approaches are defined based on a projection of 

the signal on various vectors each having different time 

lengths. The objective of this projection is that it be adaptable 

to the frequencies we plan to research. 

We have chosen the AutoRegressive parametric models 

(AR models) for the following reasons: firstly, this approach 

provides a representation of pertinent desired information in a 

set of coefficients which can then be used either directly in 

signal analysis or as input in an expert pattern recognition 

system. Secondly, this model is resistant to noise and can, by 

tracking coefficients, distinguish the presence of a marine 

mammal. 

We have also chosen the Wavelet Transform. This 

transform is used with the objective of having a precise time-

frequency representation and the resistance to noise. 

Following is a presentation of both methods. 

A. AutoRegressive Model 

The parametric model is an approach used to provide a 

Fig. 1.  Sperm whale Click. The above signal illustrates the 4 segments 

including the first impulse and final residue. 

Fig. 2.  Spectrogram of the sperm whale click. Above, the spectrogram 

results from the click recorded and shown in figure 1. In order to calculate 

this spectrogram we favored time precision (as opposed to frequency 

precision) by choosing a large time window. 
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representation of time signals [20][21][22]. Essentially, the 

model is a linear combination of previous signal samples or of 

a noise. Whether dealing with speech processing, theory of 

automatic domain, or a prediction of time series, a complete 

set of models has been defined. The basic formula is the 

following [20][22]: 
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Where )( zE  represents the Adjusted Mean (AM), generally 

it is a white noise that is used as input in the parametric 

model; where )( zY  represents the AutoRegressive part (AR), 

past samples of the time signal are concerned; where )(zU

represents the eXogenous part (X): it is an external input, for 

example, the tendency of a time series or the need for 

comparison with another series is liable to influence the 

current model. 

Figure 3 provides a graphic illustration of this basic 

parametric model. 

In order to deduce the pertinent signal information in a set 

of coefficients, it is best to use algorithms which cause the 

coefficients to converge to where optimal values are attained, 

according to chosen criteria of error. It is the least square 

average of error that is commonly used. Many algorithms can 

be employed; Yule-Walker, Levinson, or adaptive algorithms. 

This parametric model is a generalisation of all models used 

in the identification of a time series.  We can deduce which 

model to use, AR model, MA model or ARX model 

depending on which of the three inputs described above is 

more pertinent to the analysis. 

We have numerous criteria at our disposal for a subsequent 

evaluation of these results: converging of the squared error, 

normalised averaged error, white test of error. In addition we 

can use Akaïke criteria also known as Final Prediction Error 

[23]. It is a criterion which provides a 

Performance/Complexity ratio: 

.
1

1 2e
pN

pN
FPE  (3) 

Where N , p  are respectively the number of signal samples 

studied and the number of model parameters (otherwise 

known as its order). e  is the error between signal samples and 

the values calculated by this model. We note that as the order 

increases, the criteria increases.  Therefore, for a given error, a 

model having many parameters is considered to be less 

optimal than a weaker order model. 

To summarize, there are 3 steps to carrying out this 

approach most effectively (see figure 4): selection of model, 

selection of algorithm, and validation. 

This approach has many advantages, particularly as it 

corresponds to the original idea that all existing physical 

processes can be modeled (ad least in approximation) through 

a more or less complicated linear system. In many 

applications, we have to go further by choosing non-linear 

models only in instances where the results obtained through 

parametric models are unsatisfactory [20]. We will take this 

into consideration in further studies at a later date. 

What advantages does this approach provide? We side-step 

the drawbacks of the Fourier estimator. It is no longer 

necessary to hypothesize as to the frequency of the analysed 

signal. It is also no longer necessary to resort to time windows 

of analysis. Finally, through the use of the adaptive algorithm, 

it is not necessary to make hypotheses in reference to the 

stationary nature of the signal. It is certainly this latter 

argument which is the preponderant for our application: the 

model coefficients can evolve with each introduction of a new 

sample making it possible, through analysis of the value of 

this weight, to distinguish a marine mammal’s zones of 

presence or absence. 

Finally, if for the novice, the evolution of coefficients does 

not provide any results, or the results are too difficult to 

interpret, one can arrive at the spectral representation using 

the following formula 

Fig. 4.  Parametric approach. After having selected both model and 

parametric algorithm, the performance has to be evaluated. This 

method facilitates the selection of the best suited model for the 

planned application.  

Fig. 3.  Design of the ARMA model. 
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We note that it is easy to go from time representation to 

frequency representation (eq. 4). In addition, the model gives 

a spectrum having finer resolution than that of the Fourier 

Transform. We also note that modelling the time signal is a 

question of modelling its spectrum. 

Also, as with the spectrogram, one can provide a time-

frequency representation. We show the evolution of the 

spectrum we calculated using each new coefficient value 

(obtained with each new signal sample, for example). But one 

can also provide a time-model representation with a direct 

visualisation of the time evolutions of a set of coefficients. We 

apply these two modes of representation in our work. 

We have chosen to develop this method for use on signals 

emitted by marine mammals and in particular, by sperm 

whales, for two principle reasons: firstly, to attribute one 

model to each individual cetacean and secondly, because it is 

more resistant to noise than the spectrogram. 

Our method provides a satisfactory approximation by 

presenting a linear model of the process, with a period of 

calculation which allows one to easily imagine its real-time 

application. 

B. Wavelet Transform 

Morlet, for example, introduced time windows of various 

lengths which are inversely proportionate to the desired 

frequency. Through his approach, Morlet maintained a time 

precision with resolution independent of the frequency and 

did so even for non-stationary signals. The Wavelet 

Transform [24] is based on the same approach: the result is 

represented in a time frequency graph of varying resolution. 

This method provides frequency resolution (through low 

frequencies analysis) and time resolution (through high 

frequencies analysis). 

As is evident in figure 5, the spectrogram gives a uniform 

time frequency resolution. The Wavelet Transform resolution 

is contingent on the frequency. 

The wavelets analyse finite time signals whose average is 

zero. Their particular shape is suited to discontinuous signals 

or signals with quick impulses. In fact, the results stemming 

from the Wavelet Transform constitute a multi-scale approach 

(rather than time-frequency graph, figure 5). 

The notion of frequency is replaced by that of scale: to 

consider high and low frequencies, the wavelet t  is either 

contracted or dilated (figure 6). We note that a given wavelet 

width corresponds to a fixed resolution also called scale.

Consequently, this wavelet is projected onto the entire length 

of the signal for analysis. 

The family of wavelets is created by: 
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t  is called mother wavelet. Another expression is 
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where tba ,
 is the wavelet obtained from dilatation by 

using term 0a  and by shifting by using term Rb  of the 

mother wavelet t . We therefore have two parameters that 

characterize the wavelet: the scale (or dilation) a, associated 

with frequency, and the shifting term b , associated with the 

temporal (time) position. The greater a , the more dilated the 

wavelet. As a result, the greater values of a  will be associated 

to low frequencies and the lesser values to higher frequencies. 

As with all transforms, the obtained coefficients can serve 

to reconstruct the signal. In our case, they quantify the 

similarity of the wavelet to the analysed signal. In determining 

these coefficients we calculate a Continuous Wavelet 

Transform (CWT). These coefficients allow us to better 

visualize the signal’s content exactly as the representation of 

the spectre did based on the coefficients of the Fourier 

Transform. 

As regards the CWT, we must calculate the coefficients 

baC ,
, as they relate to the signal analysis tx  over the domain 

D by the wavelet tba ,
 : 

., ,,,

D

baDbaba dtttxxC  (8) 

Even if these coefficients lack physical meaning, their 

absolute value will be higher than the similarity between tx

and tba ,
 will be important. 

Fig. 5.  The time-frequency graph 

Fig. 6.  Dilatation of wavelet. Once a wavelet has been selected 

(here, the Mexican hat) it is either contracted or dilated in order to 

consider the presence of all frequencies susceptible to being 

contained in the signal (highs and lows). 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

857

To calculate a signal’s Wavelet Transform, therefore, it is 

necessary to calculate a series of scalar products to a specific 

scale at any given time (or the signal’s projection onto the 

wavelet). The steps to follow are 

1) select a mother wavelet t  ; 

2) select a range of scale factors (values of a ) ; 

3) choose a range for time shifts (values of b ) ;

4) create a wavelet tba ,
 for each pair ba,  and calculate 

the scaled product to obtain a coefficient 
baC ,

.

By sampling the two parameters a  and b  of the wavelet, 

the principal is to separate the signal into two components, 

one representing its general form (also called approximation)

and the other representing its details. This is to say that the 

general shape of a function is represented by its low 

frequencies, whereas detail is represented by its high 

frequencies. It is the same as using 2 filters simultaneously 

(low and high pass filters). 

A wavelet t  and a scale function of tba ,
 are 

associated with each pair of filters. With each transform, we 

move from a signal length N  to two signals of length 2/N .

This is referred to as passing to an inferior resolution. By 

repeating this method, the whole range of resolutions can be 

accessed. The minimal decomposition leaves only one value 

for both the approximation and the details. In practice, it is in 

analysing the results obtained through various resolutions that 

we fix the value of the level of decomposition. 

III. RESULTS AND COMMENTS 

Following is a presentation of results obtained by using 

AutoRegressive Models and the Wavelet Transform. 

A. AutoRegressive Model 

In this section, we will present the results obtained when 

applying this method, beginning with the research of the 

model order, coefficients evolution and spectrogram 

comparisons and finally noise resistance. 

After a first analysis of the spectrum of sperm whale clicks, 

we opted to use the AutoRegressive model. We used the FPE 

Akaïke criterion (referred to above) to obtain the optimal 

model order (see figure 7). 

Figure 7 shows Akaïke criteria of less than 5.10 -3 as soon as 

the order of AR models is higher than 25. With an order 

between 25 and 50, the criteria stagnate. It is in this range that 

we choose our model. 

To avoid an unjustifiable increase of time of calculation, we 

set the order of AR models to 32. 

We modelled the click (shown in figure 1): figure 8 shows 

the evolution of coefficients (on both vertical and horizontal 

axes) and figure 9 shows the evolution of the spectrum 

calculated from the coefficients. 

Figure 9 is an AR spectrogram illustrating the evolution of 

spectrums with each modification of the model coefficients. In 

any case, this mode of representation is more easily 

interpreted by the cetologist.  He can identify the frequency 

evolutions. This mode of presentation is extracted from figure 

8 and it engenders increased calculation time. So, in keeping 

with the objective of building an expert system for detecting 

automatically the presence of marine mammals, the analysis of 

coefficients is sufficient and we can bypass this mode of 

presentation. 

We have focused on the resistance factor in our approach 

for different signal-to-noise ratios (performance levels are 

kept stable despite the added noise factor). To reiterate, the 

results obtained by the Fourier spectrogram are not always 

easily interpreted when the signal-to-noise ratio is very weak. 

For the purpose of our study, we added white noise to the 

reference clicks. While this approach is purely theoretical, the 

Fig. 7.  Application of Akaïke criteria. The above value depicts the 

axis corresponding to the amplitude of Akaïke criteria as it pertains 

to the order of the AR model, of 8 clicks. 

Fig. 8.  Evolution of the coefficients. Time is represented on the 

horizontal axis. The 32 coefficients are on the vertical axis. Their 

amplitude is projected onto a multicolored scale. 

Fig. 9.  Evolution of the spectrum. Time is represented on the 

horizontal axis. The spectrums calculated from the 32 coefficients 

are represented on the vertical axis. The amplitude is projected onto 

a multicolored scale. 
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results obtained under unfavourable conditions can serve as a 

reference point. In practice, we consistently use a filter before 

recording the signals. Figure 10 and 11 show the results 

obtained with signal-to-noise ratios equal to 0 and -5 dB. 

The influence of added noise is apparent in the preceding 

two figures. We have established a threshold to keep only the 

important coefficients because we believe it necessary to 

resort to an expert system to treat these signals under 

unfavourable conditions. This will be the subject of an 

upcoming publication by our team of researchers. 

B. Wavelet Transform 

For the purpose of our study, we applied the Daubechies 

wavelet (order 15) [25]. We chose this wavelet for its great 

similarity to the shape of the referenced click [19]. We carried 

out the analysis based on a scale of 1 to 64 (at intervals of 1). 

The number 1 mark indicates half of the sampling frequency 

(24 kHz). One can easily distinguish the shape of the time-

scale representation of the clicks. 

We applied this technique to the click presented in figure 1. 

Figure 12 depicts the multi-scale representation. 

1) Analysis of the shape 'fanning out': In figure 12, we note 

a fan shape symbolizing the acoustic signature of the 

emissions from the sperm whale. This shape is the 

characteristic result of the Daubechies wavelet applied on the 

sperm whale click. This shape is entirely different from what 

we can discern through a killer whale's shrill whistling, for 

example. Thus we have laid out two distinct objectives. The 

first is to distinguish the species, or indicate when a sperm 

whale signal has been detected. This can be done using 

continuous monitoring mechanisms in a given marine zone, 

for instance, based on global characteristics that the Wavelet 

Transform provides. A range corresponding to this opening or 

fanning out which represents the click needs to be established. 

We have embarked upon research that would address this.  At 

present, the study has only been applied to a limited number 

of recorded sperm whales and thus needs to be further 

explored before it can be validated. Secondly, it is necessary 

to identify a single sperm whale. We could compare our 

method of recognition to those of digital impressions: i.e. the 

superimposing of new findings on those provided in a data 

base. We chose 10 identical points serving as references to 

verify the identity of an animal. 

2) Results with addition of noise: We are interested in the 

further testing of the Wavelet Transform when we add noise. 

To this end, we have purposely degraded the signal-to-noise 

ratio. Note that the spectrogram which has as a base the 

Fourier estimator is considerably noise sensitive and 

performance decreases rapidly when the signal-to-noise ratios 

are unfavorable. In such an instance, the time-frequency 

representation obtained is essentially non-exploitable. 

Figure 13 is of particular interest while it illustrates that 

even when the signal-to-noise ratio is entirely unfavorable, as 

with SNR = -5 dB, we come back to the acoustic signature of 

the sound emitted by the sperm whale. Certainly, there are 

many parasites which can interfere with pertinent information. 

However, it is entirely feasible that a certain number of 

particular terms be preserved (number of ‘continuous and 

discontinuous lines’ of the fanning out, for instance) which 

lead us to believe that recognition via the ‘digital impression’ 

warrants further analysis. Our studies have shown that it is 

possible to decrease the SNR to -10 dB all the while 

preserving a desired level of performance. Further results 

based on more sperm whale studies should be achieved in 

order to confirm these levels of performance. 

Fig. 10.  Scattering of coefficients. White noise has been added. The 

signal-to-noise ratio is 0 dB.  

Fig. 11.  Scattering of coefficients. White noise has been added. The 

signal-t-noise ration is -5dB. 

Fig. 12.  Wavelet Transform of the sperm whale click. The Wavelet 

Transform of the click provides a characteristic representation 

which serves as acoustic signature of the emitted sounds of the 

sperm whale 
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IV. CONCLUSION

With this article, we presented two modern approaches 

which would avoid the drawbacks of Fourier estimators 

particularly when the signal-to-noise ratio has deteriorated, as 

is often the case with marine mammal signals recorded at sea. 

Modern technology now allows for other types of real-time 

representations. We have seen that the parametric model is of 

interest not only because the algorithms that assure 

convergence of model coefficients are easily implemented but 

also because its use is not based on restrictive hypotheses of 

the Fourier estimators. 

We must also mention the potential for calculating 

frequency representation based on the coefficients, which 

makes this method easily interpretable even by the novice. 

In addition, we have demonstrated other possible uses of 

coefficients. We can promptly provide a time-evolved 

representation of these coefficients, as is the practice with the 

spectrogram. 

From the graphic illustration, it is possible to discern the 

coefficients and to locate an acoustic signature. We can 

equally see the non-stationary nature for the entire duration of 

the recording and through this approach classify the ambient 

noise in a marine zone. 

We were also satisfied with the resistance factor of our 

method when the signal-to-noise ratio changed. 

This article also illustrates why the use of the Wavelet 

Transform for treating sounds emitted from sperm whales is of 

interest. These emitted sounds are distinctive, notably in their 

impulsive and brief shape. 

Essentially, the Wavelet Transform could have been applied 

to the signals at several levels. It can serve as (1) a filter which 

eliminates noise in recorded data, (2) a compression 

mechanism to optimise the storing of data, and (3) a projection 

on the basis vectors for extracting relevant information 

intrinsic to the sperm whale’s signals. It is in this latter case 

that we applied this transform: our aim being to provide a 

characteristic representation based on the multi-scale 

projection, from which we could extract sufficient data to 

confirm the presence of the sperm whale, the discerned shape 

of which appears as a fanning out. 

What is of particular interest is that these terms are to be 

used in an approach similar to the analysis of digital 

impressions. 

In addition, this article presents the performance of the 

Wavelet Transform when we add white noise. We have seen 

that even for entirely unfavorable signal-to-noise ratios, it is 

nonetheless possible to detect an acoustic signature. This is 

encouraging for its use under real conditions, keeping in mind 

that at sea, noise is always present. 

It is possible to envision, at present, a real-time application 

of this approach using the Wavelet Transform thanks to 

efficient algorithms and ever progressive processors. 

This work will need to be carried out through applications 

on a greater number of sperm whales to prove thoroughly 

valid. At present, we can say that the approach could be 

implemented in a complete system of sperm whale recognition 

and that it is encouraging for three reasons: it allows for a 

specific form of an acoustic signature, it is noise resistant and 

its employment does not impede a real-time application. 

This expert system could eventually be based on an 

artificial neural network [26][27][28]. This second objective is 

to be realized through extraction of intrinsic characteristics of 

the sounds emitted by each individual marine mammal 

followed by the treatment of these findings. A database 

containing the acoustic signature supplements existing 

information on those mammals we wish to observe which are 

living in or passing through the marine zone (transient or 

resident animals). 
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